Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //==-- llvm/CodeGen/ExecutionDomainFix.h - Execution Domain Fix -*- C++ -*--==// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame^] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file Execution Domain Fix pass. |
| 10 | /// |
| 11 | /// Some X86 SSE instructions like mov, and, or, xor are available in different |
| 12 | /// variants for different operand types. These variant instructions are |
| 13 | /// equivalent, but on Nehalem and newer cpus there is extra latency |
| 14 | /// transferring data between integer and floating point domains. ARM cores |
| 15 | /// have similar issues when they are configured with both VFP and NEON |
| 16 | /// pipelines. |
| 17 | /// |
| 18 | /// This pass changes the variant instructions to minimize domain crossings. |
| 19 | // |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #ifndef LLVM_CODEGEN_EXECUTIONDOMAINFIX_H |
| 23 | #define LLVM_CODEGEN_EXECUTIONDOMAINFIX_H |
| 24 | |
| 25 | #include "llvm/ADT/SmallVector.h" |
| 26 | #include "llvm/CodeGen/LoopTraversal.h" |
| 27 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 28 | #include "llvm/CodeGen/ReachingDefAnalysis.h" |
| 29 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 30 | |
| 31 | namespace llvm { |
| 32 | |
| 33 | class MachineBasicBlock; |
| 34 | class MachineInstr; |
| 35 | class TargetInstrInfo; |
| 36 | |
| 37 | /// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track |
| 38 | /// of execution domains. |
| 39 | /// |
| 40 | /// An open DomainValue represents a set of instructions that can still switch |
| 41 | /// execution domain. Multiple registers may refer to the same open |
| 42 | /// DomainValue - they will eventually be collapsed to the same execution |
| 43 | /// domain. |
| 44 | /// |
| 45 | /// A collapsed DomainValue represents a single register that has been forced |
| 46 | /// into one of more execution domains. There is a separate collapsed |
| 47 | /// DomainValue for each register, but it may contain multiple execution |
| 48 | /// domains. A register value is initially created in a single execution |
| 49 | /// domain, but if we were forced to pay the penalty of a domain crossing, we |
| 50 | /// keep track of the fact that the register is now available in multiple |
| 51 | /// domains. |
| 52 | struct DomainValue { |
| 53 | /// Basic reference counting. |
| 54 | unsigned Refs = 0; |
| 55 | |
| 56 | /// Bitmask of available domains. For an open DomainValue, it is the still |
| 57 | /// possible domains for collapsing. For a collapsed DomainValue it is the |
| 58 | /// domains where the register is available for free. |
| 59 | unsigned AvailableDomains; |
| 60 | |
| 61 | /// Pointer to the next DomainValue in a chain. When two DomainValues are |
| 62 | /// merged, Victim.Next is set to point to Victor, so old DomainValue |
| 63 | /// references can be updated by following the chain. |
| 64 | DomainValue *Next; |
| 65 | |
| 66 | /// Twiddleable instructions using or defining these registers. |
| 67 | SmallVector<MachineInstr *, 8> Instrs; |
| 68 | |
| 69 | DomainValue() { clear(); } |
| 70 | |
| 71 | /// A collapsed DomainValue has no instructions to twiddle - it simply keeps |
| 72 | /// track of the domains where the registers are already available. |
| 73 | bool isCollapsed() const { return Instrs.empty(); } |
| 74 | |
| 75 | /// Is domain available? |
| 76 | bool hasDomain(unsigned domain) const { |
| 77 | assert(domain < |
| 78 | static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && |
| 79 | "undefined behavior"); |
| 80 | return AvailableDomains & (1u << domain); |
| 81 | } |
| 82 | |
| 83 | /// Mark domain as available. |
| 84 | void addDomain(unsigned domain) { AvailableDomains |= 1u << domain; } |
| 85 | |
| 86 | // Restrict to a single domain available. |
| 87 | void setSingleDomain(unsigned domain) { AvailableDomains = 1u << domain; } |
| 88 | |
| 89 | /// Return bitmask of domains that are available and in mask. |
| 90 | unsigned getCommonDomains(unsigned mask) const { |
| 91 | return AvailableDomains & mask; |
| 92 | } |
| 93 | |
| 94 | /// First domain available. |
| 95 | unsigned getFirstDomain() const { |
| 96 | return countTrailingZeros(AvailableDomains); |
| 97 | } |
| 98 | |
| 99 | /// Clear this DomainValue and point to next which has all its data. |
| 100 | void clear() { |
| 101 | AvailableDomains = 0; |
| 102 | Next = nullptr; |
| 103 | Instrs.clear(); |
| 104 | } |
| 105 | }; |
| 106 | |
| 107 | class ExecutionDomainFix : public MachineFunctionPass { |
| 108 | SpecificBumpPtrAllocator<DomainValue> Allocator; |
| 109 | SmallVector<DomainValue *, 16> Avail; |
| 110 | |
| 111 | const TargetRegisterClass *const RC; |
| 112 | MachineFunction *MF; |
| 113 | const TargetInstrInfo *TII; |
| 114 | const TargetRegisterInfo *TRI; |
| 115 | std::vector<SmallVector<int, 1>> AliasMap; |
| 116 | const unsigned NumRegs; |
| 117 | /// Value currently in each register, or NULL when no value is being tracked. |
| 118 | /// This counts as a DomainValue reference. |
| 119 | using LiveRegsDVInfo = std::vector<DomainValue *>; |
| 120 | LiveRegsDVInfo LiveRegs; |
| 121 | /// Keeps domain information for all registers. Note that this |
| 122 | /// is different from the usual definition notion of liveness. The CPU |
| 123 | /// doesn't care whether or not we consider a register killed. |
| 124 | using OutRegsInfoMap = SmallVector<LiveRegsDVInfo, 4>; |
| 125 | OutRegsInfoMap MBBOutRegsInfos; |
| 126 | |
| 127 | ReachingDefAnalysis *RDA; |
| 128 | |
| 129 | public: |
| 130 | ExecutionDomainFix(char &PassID, const TargetRegisterClass &RC) |
| 131 | : MachineFunctionPass(PassID), RC(&RC), NumRegs(RC.getNumRegs()) {} |
| 132 | |
| 133 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 134 | AU.setPreservesAll(); |
| 135 | AU.addRequired<ReachingDefAnalysis>(); |
| 136 | MachineFunctionPass::getAnalysisUsage(AU); |
| 137 | } |
| 138 | |
| 139 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 140 | |
| 141 | MachineFunctionProperties getRequiredProperties() const override { |
| 142 | return MachineFunctionProperties().set( |
| 143 | MachineFunctionProperties::Property::NoVRegs); |
| 144 | } |
| 145 | |
| 146 | private: |
| 147 | /// Translate TRI register number to a list of indices into our smaller tables |
| 148 | /// of interesting registers. |
| 149 | iterator_range<SmallVectorImpl<int>::const_iterator> |
| 150 | regIndices(unsigned Reg) const; |
| 151 | |
| 152 | /// DomainValue allocation. |
| 153 | DomainValue *alloc(int domain = -1); |
| 154 | |
| 155 | /// Add reference to DV. |
| 156 | DomainValue *retain(DomainValue *DV) { |
| 157 | if (DV) |
| 158 | ++DV->Refs; |
| 159 | return DV; |
| 160 | } |
| 161 | |
| 162 | /// Release a reference to DV. When the last reference is released, |
| 163 | /// collapse if needed. |
| 164 | void release(DomainValue *); |
| 165 | |
| 166 | /// Follow the chain of dead DomainValues until a live DomainValue is reached. |
| 167 | /// Update the referenced pointer when necessary. |
| 168 | DomainValue *resolve(DomainValue *&); |
| 169 | |
| 170 | /// Set LiveRegs[rx] = dv, updating reference counts. |
| 171 | void setLiveReg(int rx, DomainValue *DV); |
| 172 | |
| 173 | /// Kill register rx, recycle or collapse any DomainValue. |
| 174 | void kill(int rx); |
| 175 | |
| 176 | /// Force register rx into domain. |
| 177 | void force(int rx, unsigned domain); |
| 178 | |
| 179 | /// Collapse open DomainValue into given domain. If there are multiple |
| 180 | /// registers using dv, they each get a unique collapsed DomainValue. |
| 181 | void collapse(DomainValue *dv, unsigned domain); |
| 182 | |
| 183 | /// All instructions and registers in B are moved to A, and B is released. |
| 184 | bool merge(DomainValue *A, DomainValue *B); |
| 185 | |
| 186 | /// Set up LiveRegs by merging predecessor live-out values. |
| 187 | void enterBasicBlock(const LoopTraversal::TraversedMBBInfo &TraversedMBB); |
| 188 | |
| 189 | /// Update live-out values. |
| 190 | void leaveBasicBlock(const LoopTraversal::TraversedMBBInfo &TraversedMBB); |
| 191 | |
| 192 | /// Process he given basic block. |
| 193 | void processBasicBlock(const LoopTraversal::TraversedMBBInfo &TraversedMBB); |
| 194 | |
| 195 | /// Visit given insturcion. |
| 196 | bool visitInstr(MachineInstr *); |
| 197 | |
| 198 | /// Update def-ages for registers defined by MI. |
| 199 | /// If Kill is set, also kill off DomainValues clobbered by the defs. |
| 200 | void processDefs(MachineInstr *, bool Kill); |
| 201 | |
| 202 | /// A soft instruction can be changed to work in other domains given by mask. |
| 203 | void visitSoftInstr(MachineInstr *, unsigned mask); |
| 204 | |
| 205 | /// A hard instruction only works in one domain. All input registers will be |
| 206 | /// forced into that domain. |
| 207 | void visitHardInstr(MachineInstr *, unsigned domain); |
| 208 | }; |
| 209 | |
| 210 | } // namespace llvm |
| 211 | |
| 212 | #endif // LLVM_CODEGEN_EXECUTIONDOMAINFIX_H |