Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame^] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the classes used to represent and build scalar expressions. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |
| 14 | #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |
| 15 | |
| 16 | #include "llvm/ADT/DenseMap.h" |
| 17 | #include "llvm/ADT/FoldingSet.h" |
| 18 | #include "llvm/ADT/SmallPtrSet.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/ADT/iterator_range.h" |
| 21 | #include "llvm/Analysis/ScalarEvolution.h" |
| 22 | #include "llvm/IR/Constants.h" |
| 23 | #include "llvm/IR/Value.h" |
| 24 | #include "llvm/IR/ValueHandle.h" |
| 25 | #include "llvm/Support/Casting.h" |
| 26 | #include "llvm/Support/ErrorHandling.h" |
| 27 | #include <cassert> |
| 28 | #include <cstddef> |
| 29 | |
| 30 | namespace llvm { |
| 31 | |
| 32 | class APInt; |
| 33 | class Constant; |
| 34 | class ConstantRange; |
| 35 | class Loop; |
| 36 | class Type; |
| 37 | |
| 38 | enum SCEVTypes { |
| 39 | // These should be ordered in terms of increasing complexity to make the |
| 40 | // folders simpler. |
| 41 | scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr, |
| 42 | scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, |
| 43 | scUnknown, scCouldNotCompute |
| 44 | }; |
| 45 | |
| 46 | /// This class represents a constant integer value. |
| 47 | class SCEVConstant : public SCEV { |
| 48 | friend class ScalarEvolution; |
| 49 | |
| 50 | ConstantInt *V; |
| 51 | |
| 52 | SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) : |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame^] | 53 | SCEV(ID, scConstant, 1), V(v) {} |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 54 | |
| 55 | public: |
| 56 | ConstantInt *getValue() const { return V; } |
| 57 | const APInt &getAPInt() const { return getValue()->getValue(); } |
| 58 | |
| 59 | Type *getType() const { return V->getType(); } |
| 60 | |
| 61 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 62 | static bool classof(const SCEV *S) { |
| 63 | return S->getSCEVType() == scConstant; |
| 64 | } |
| 65 | }; |
| 66 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame^] | 67 | static unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) { |
| 68 | APInt Size(16, 1); |
| 69 | for (auto *Arg : Args) |
| 70 | Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize())); |
| 71 | return (unsigned short)Size.getZExtValue(); |
| 72 | } |
| 73 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 74 | /// This is the base class for unary cast operator classes. |
| 75 | class SCEVCastExpr : public SCEV { |
| 76 | protected: |
| 77 | const SCEV *Op; |
| 78 | Type *Ty; |
| 79 | |
| 80 | SCEVCastExpr(const FoldingSetNodeIDRef ID, |
| 81 | unsigned SCEVTy, const SCEV *op, Type *ty); |
| 82 | |
| 83 | public: |
| 84 | const SCEV *getOperand() const { return Op; } |
| 85 | Type *getType() const { return Ty; } |
| 86 | |
| 87 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 88 | static bool classof(const SCEV *S) { |
| 89 | return S->getSCEVType() == scTruncate || |
| 90 | S->getSCEVType() == scZeroExtend || |
| 91 | S->getSCEVType() == scSignExtend; |
| 92 | } |
| 93 | }; |
| 94 | |
| 95 | /// This class represents a truncation of an integer value to a |
| 96 | /// smaller integer value. |
| 97 | class SCEVTruncateExpr : public SCEVCastExpr { |
| 98 | friend class ScalarEvolution; |
| 99 | |
| 100 | SCEVTruncateExpr(const FoldingSetNodeIDRef ID, |
| 101 | const SCEV *op, Type *ty); |
| 102 | |
| 103 | public: |
| 104 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 105 | static bool classof(const SCEV *S) { |
| 106 | return S->getSCEVType() == scTruncate; |
| 107 | } |
| 108 | }; |
| 109 | |
| 110 | /// This class represents a zero extension of a small integer value |
| 111 | /// to a larger integer value. |
| 112 | class SCEVZeroExtendExpr : public SCEVCastExpr { |
| 113 | friend class ScalarEvolution; |
| 114 | |
| 115 | SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, |
| 116 | const SCEV *op, Type *ty); |
| 117 | |
| 118 | public: |
| 119 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 120 | static bool classof(const SCEV *S) { |
| 121 | return S->getSCEVType() == scZeroExtend; |
| 122 | } |
| 123 | }; |
| 124 | |
| 125 | /// This class represents a sign extension of a small integer value |
| 126 | /// to a larger integer value. |
| 127 | class SCEVSignExtendExpr : public SCEVCastExpr { |
| 128 | friend class ScalarEvolution; |
| 129 | |
| 130 | SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, |
| 131 | const SCEV *op, Type *ty); |
| 132 | |
| 133 | public: |
| 134 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 135 | static bool classof(const SCEV *S) { |
| 136 | return S->getSCEVType() == scSignExtend; |
| 137 | } |
| 138 | }; |
| 139 | |
| 140 | /// This node is a base class providing common functionality for |
| 141 | /// n'ary operators. |
| 142 | class SCEVNAryExpr : public SCEV { |
| 143 | protected: |
| 144 | // Since SCEVs are immutable, ScalarEvolution allocates operand |
| 145 | // arrays with its SCEVAllocator, so this class just needs a simple |
| 146 | // pointer rather than a more elaborate vector-like data structure. |
| 147 | // This also avoids the need for a non-trivial destructor. |
| 148 | const SCEV *const *Operands; |
| 149 | size_t NumOperands; |
| 150 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame^] | 151 | SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, |
| 152 | const SCEV *const *O, size_t N) |
| 153 | : SCEV(ID, T, computeExpressionSize(makeArrayRef(O, N))), Operands(O), |
| 154 | NumOperands(N) {} |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 155 | |
| 156 | public: |
| 157 | size_t getNumOperands() const { return NumOperands; } |
| 158 | |
| 159 | const SCEV *getOperand(unsigned i) const { |
| 160 | assert(i < NumOperands && "Operand index out of range!"); |
| 161 | return Operands[i]; |
| 162 | } |
| 163 | |
| 164 | using op_iterator = const SCEV *const *; |
| 165 | using op_range = iterator_range<op_iterator>; |
| 166 | |
| 167 | op_iterator op_begin() const { return Operands; } |
| 168 | op_iterator op_end() const { return Operands + NumOperands; } |
| 169 | op_range operands() const { |
| 170 | return make_range(op_begin(), op_end()); |
| 171 | } |
| 172 | |
| 173 | Type *getType() const { return getOperand(0)->getType(); } |
| 174 | |
| 175 | NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { |
| 176 | return (NoWrapFlags)(SubclassData & Mask); |
| 177 | } |
| 178 | |
| 179 | bool hasNoUnsignedWrap() const { |
| 180 | return getNoWrapFlags(FlagNUW) != FlagAnyWrap; |
| 181 | } |
| 182 | |
| 183 | bool hasNoSignedWrap() const { |
| 184 | return getNoWrapFlags(FlagNSW) != FlagAnyWrap; |
| 185 | } |
| 186 | |
| 187 | bool hasNoSelfWrap() const { |
| 188 | return getNoWrapFlags(FlagNW) != FlagAnyWrap; |
| 189 | } |
| 190 | |
| 191 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 192 | static bool classof(const SCEV *S) { |
| 193 | return S->getSCEVType() == scAddExpr || |
| 194 | S->getSCEVType() == scMulExpr || |
| 195 | S->getSCEVType() == scSMaxExpr || |
| 196 | S->getSCEVType() == scUMaxExpr || |
| 197 | S->getSCEVType() == scAddRecExpr; |
| 198 | } |
| 199 | }; |
| 200 | |
| 201 | /// This node is the base class for n'ary commutative operators. |
| 202 | class SCEVCommutativeExpr : public SCEVNAryExpr { |
| 203 | protected: |
| 204 | SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, |
| 205 | enum SCEVTypes T, const SCEV *const *O, size_t N) |
| 206 | : SCEVNAryExpr(ID, T, O, N) {} |
| 207 | |
| 208 | public: |
| 209 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 210 | static bool classof(const SCEV *S) { |
| 211 | return S->getSCEVType() == scAddExpr || |
| 212 | S->getSCEVType() == scMulExpr || |
| 213 | S->getSCEVType() == scSMaxExpr || |
| 214 | S->getSCEVType() == scUMaxExpr; |
| 215 | } |
| 216 | |
| 217 | /// Set flags for a non-recurrence without clearing previously set flags. |
| 218 | void setNoWrapFlags(NoWrapFlags Flags) { |
| 219 | SubclassData |= Flags; |
| 220 | } |
| 221 | }; |
| 222 | |
| 223 | /// This node represents an addition of some number of SCEVs. |
| 224 | class SCEVAddExpr : public SCEVCommutativeExpr { |
| 225 | friend class ScalarEvolution; |
| 226 | |
| 227 | SCEVAddExpr(const FoldingSetNodeIDRef ID, |
| 228 | const SCEV *const *O, size_t N) |
| 229 | : SCEVCommutativeExpr(ID, scAddExpr, O, N) {} |
| 230 | |
| 231 | public: |
| 232 | Type *getType() const { |
| 233 | // Use the type of the last operand, which is likely to be a pointer |
| 234 | // type, if there is one. This doesn't usually matter, but it can help |
| 235 | // reduce casts when the expressions are expanded. |
| 236 | return getOperand(getNumOperands() - 1)->getType(); |
| 237 | } |
| 238 | |
| 239 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 240 | static bool classof(const SCEV *S) { |
| 241 | return S->getSCEVType() == scAddExpr; |
| 242 | } |
| 243 | }; |
| 244 | |
| 245 | /// This node represents multiplication of some number of SCEVs. |
| 246 | class SCEVMulExpr : public SCEVCommutativeExpr { |
| 247 | friend class ScalarEvolution; |
| 248 | |
| 249 | SCEVMulExpr(const FoldingSetNodeIDRef ID, |
| 250 | const SCEV *const *O, size_t N) |
| 251 | : SCEVCommutativeExpr(ID, scMulExpr, O, N) {} |
| 252 | |
| 253 | public: |
| 254 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 255 | static bool classof(const SCEV *S) { |
| 256 | return S->getSCEVType() == scMulExpr; |
| 257 | } |
| 258 | }; |
| 259 | |
| 260 | /// This class represents a binary unsigned division operation. |
| 261 | class SCEVUDivExpr : public SCEV { |
| 262 | friend class ScalarEvolution; |
| 263 | |
| 264 | const SCEV *LHS; |
| 265 | const SCEV *RHS; |
| 266 | |
| 267 | SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame^] | 268 | : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})), LHS(lhs), |
| 269 | RHS(rhs) {} |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 270 | |
| 271 | public: |
| 272 | const SCEV *getLHS() const { return LHS; } |
| 273 | const SCEV *getRHS() const { return RHS; } |
| 274 | |
| 275 | Type *getType() const { |
| 276 | // In most cases the types of LHS and RHS will be the same, but in some |
| 277 | // crazy cases one or the other may be a pointer. ScalarEvolution doesn't |
| 278 | // depend on the type for correctness, but handling types carefully can |
| 279 | // avoid extra casts in the SCEVExpander. The LHS is more likely to be |
| 280 | // a pointer type than the RHS, so use the RHS' type here. |
| 281 | return getRHS()->getType(); |
| 282 | } |
| 283 | |
| 284 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 285 | static bool classof(const SCEV *S) { |
| 286 | return S->getSCEVType() == scUDivExpr; |
| 287 | } |
| 288 | }; |
| 289 | |
| 290 | /// This node represents a polynomial recurrence on the trip count |
| 291 | /// of the specified loop. This is the primary focus of the |
| 292 | /// ScalarEvolution framework; all the other SCEV subclasses are |
| 293 | /// mostly just supporting infrastructure to allow SCEVAddRecExpr |
| 294 | /// expressions to be created and analyzed. |
| 295 | /// |
| 296 | /// All operands of an AddRec are required to be loop invariant. |
| 297 | /// |
| 298 | class SCEVAddRecExpr : public SCEVNAryExpr { |
| 299 | friend class ScalarEvolution; |
| 300 | |
| 301 | const Loop *L; |
| 302 | |
| 303 | SCEVAddRecExpr(const FoldingSetNodeIDRef ID, |
| 304 | const SCEV *const *O, size_t N, const Loop *l) |
| 305 | : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {} |
| 306 | |
| 307 | public: |
| 308 | const SCEV *getStart() const { return Operands[0]; } |
| 309 | const Loop *getLoop() const { return L; } |
| 310 | |
| 311 | /// Constructs and returns the recurrence indicating how much this |
| 312 | /// expression steps by. If this is a polynomial of degree N, it |
| 313 | /// returns a chrec of degree N-1. We cannot determine whether |
| 314 | /// the step recurrence has self-wraparound. |
| 315 | const SCEV *getStepRecurrence(ScalarEvolution &SE) const { |
| 316 | if (isAffine()) return getOperand(1); |
| 317 | return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1, |
| 318 | op_end()), |
| 319 | getLoop(), FlagAnyWrap); |
| 320 | } |
| 321 | |
| 322 | /// Return true if this represents an expression A + B*x where A |
| 323 | /// and B are loop invariant values. |
| 324 | bool isAffine() const { |
| 325 | // We know that the start value is invariant. This expression is thus |
| 326 | // affine iff the step is also invariant. |
| 327 | return getNumOperands() == 2; |
| 328 | } |
| 329 | |
| 330 | /// Return true if this represents an expression A + B*x + C*x^2 |
| 331 | /// where A, B and C are loop invariant values. This corresponds |
| 332 | /// to an addrec of the form {L,+,M,+,N} |
| 333 | bool isQuadratic() const { |
| 334 | return getNumOperands() == 3; |
| 335 | } |
| 336 | |
| 337 | /// Set flags for a recurrence without clearing any previously set flags. |
| 338 | /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here |
| 339 | /// to make it easier to propagate flags. |
| 340 | void setNoWrapFlags(NoWrapFlags Flags) { |
| 341 | if (Flags & (FlagNUW | FlagNSW)) |
| 342 | Flags = ScalarEvolution::setFlags(Flags, FlagNW); |
| 343 | SubclassData |= Flags; |
| 344 | } |
| 345 | |
| 346 | /// Return the value of this chain of recurrences at the specified |
| 347 | /// iteration number. |
| 348 | const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const; |
| 349 | |
| 350 | /// Return the number of iterations of this loop that produce |
| 351 | /// values in the specified constant range. Another way of |
| 352 | /// looking at this is that it returns the first iteration number |
| 353 | /// where the value is not in the condition, thus computing the |
| 354 | /// exit count. If the iteration count can't be computed, an |
| 355 | /// instance of SCEVCouldNotCompute is returned. |
| 356 | const SCEV *getNumIterationsInRange(const ConstantRange &Range, |
| 357 | ScalarEvolution &SE) const; |
| 358 | |
| 359 | /// Return an expression representing the value of this expression |
| 360 | /// one iteration of the loop ahead. |
| 361 | const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const; |
| 362 | |
| 363 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 364 | static bool classof(const SCEV *S) { |
| 365 | return S->getSCEVType() == scAddRecExpr; |
| 366 | } |
| 367 | }; |
| 368 | |
| 369 | /// This class represents a signed maximum selection. |
| 370 | class SCEVSMaxExpr : public SCEVCommutativeExpr { |
| 371 | friend class ScalarEvolution; |
| 372 | |
| 373 | SCEVSMaxExpr(const FoldingSetNodeIDRef ID, |
| 374 | const SCEV *const *O, size_t N) |
| 375 | : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) { |
| 376 | // Max never overflows. |
| 377 | setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); |
| 378 | } |
| 379 | |
| 380 | public: |
| 381 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 382 | static bool classof(const SCEV *S) { |
| 383 | return S->getSCEVType() == scSMaxExpr; |
| 384 | } |
| 385 | }; |
| 386 | |
| 387 | /// This class represents an unsigned maximum selection. |
| 388 | class SCEVUMaxExpr : public SCEVCommutativeExpr { |
| 389 | friend class ScalarEvolution; |
| 390 | |
| 391 | SCEVUMaxExpr(const FoldingSetNodeIDRef ID, |
| 392 | const SCEV *const *O, size_t N) |
| 393 | : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) { |
| 394 | // Max never overflows. |
| 395 | setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); |
| 396 | } |
| 397 | |
| 398 | public: |
| 399 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 400 | static bool classof(const SCEV *S) { |
| 401 | return S->getSCEVType() == scUMaxExpr; |
| 402 | } |
| 403 | }; |
| 404 | |
| 405 | /// This means that we are dealing with an entirely unknown SCEV |
| 406 | /// value, and only represent it as its LLVM Value. This is the |
| 407 | /// "bottom" value for the analysis. |
| 408 | class SCEVUnknown final : public SCEV, private CallbackVH { |
| 409 | friend class ScalarEvolution; |
| 410 | |
| 411 | /// The parent ScalarEvolution value. This is used to update the |
| 412 | /// parent's maps when the value associated with a SCEVUnknown is |
| 413 | /// deleted or RAUW'd. |
| 414 | ScalarEvolution *SE; |
| 415 | |
| 416 | /// The next pointer in the linked list of all SCEVUnknown |
| 417 | /// instances owned by a ScalarEvolution. |
| 418 | SCEVUnknown *Next; |
| 419 | |
| 420 | SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, |
| 421 | ScalarEvolution *se, SCEVUnknown *next) : |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame^] | 422 | SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {} |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 423 | |
| 424 | // Implement CallbackVH. |
| 425 | void deleted() override; |
| 426 | void allUsesReplacedWith(Value *New) override; |
| 427 | |
| 428 | public: |
| 429 | Value *getValue() const { return getValPtr(); } |
| 430 | |
| 431 | /// @{ |
| 432 | /// Test whether this is a special constant representing a type |
| 433 | /// size, alignment, or field offset in a target-independent |
| 434 | /// manner, and hasn't happened to have been folded with other |
| 435 | /// operations into something unrecognizable. This is mainly only |
| 436 | /// useful for pretty-printing and other situations where it isn't |
| 437 | /// absolutely required for these to succeed. |
| 438 | bool isSizeOf(Type *&AllocTy) const; |
| 439 | bool isAlignOf(Type *&AllocTy) const; |
| 440 | bool isOffsetOf(Type *&STy, Constant *&FieldNo) const; |
| 441 | /// @} |
| 442 | |
| 443 | Type *getType() const { return getValPtr()->getType(); } |
| 444 | |
| 445 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 446 | static bool classof(const SCEV *S) { |
| 447 | return S->getSCEVType() == scUnknown; |
| 448 | } |
| 449 | }; |
| 450 | |
| 451 | /// This class defines a simple visitor class that may be used for |
| 452 | /// various SCEV analysis purposes. |
| 453 | template<typename SC, typename RetVal=void> |
| 454 | struct SCEVVisitor { |
| 455 | RetVal visit(const SCEV *S) { |
| 456 | switch (S->getSCEVType()) { |
| 457 | case scConstant: |
| 458 | return ((SC*)this)->visitConstant((const SCEVConstant*)S); |
| 459 | case scTruncate: |
| 460 | return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S); |
| 461 | case scZeroExtend: |
| 462 | return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S); |
| 463 | case scSignExtend: |
| 464 | return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S); |
| 465 | case scAddExpr: |
| 466 | return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S); |
| 467 | case scMulExpr: |
| 468 | return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S); |
| 469 | case scUDivExpr: |
| 470 | return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S); |
| 471 | case scAddRecExpr: |
| 472 | return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S); |
| 473 | case scSMaxExpr: |
| 474 | return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S); |
| 475 | case scUMaxExpr: |
| 476 | return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S); |
| 477 | case scUnknown: |
| 478 | return ((SC*)this)->visitUnknown((const SCEVUnknown*)S); |
| 479 | case scCouldNotCompute: |
| 480 | return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S); |
| 481 | default: |
| 482 | llvm_unreachable("Unknown SCEV type!"); |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { |
| 487 | llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); |
| 488 | } |
| 489 | }; |
| 490 | |
| 491 | /// Visit all nodes in the expression tree using worklist traversal. |
| 492 | /// |
| 493 | /// Visitor implements: |
| 494 | /// // return true to follow this node. |
| 495 | /// bool follow(const SCEV *S); |
| 496 | /// // return true to terminate the search. |
| 497 | /// bool isDone(); |
| 498 | template<typename SV> |
| 499 | class SCEVTraversal { |
| 500 | SV &Visitor; |
| 501 | SmallVector<const SCEV *, 8> Worklist; |
| 502 | SmallPtrSet<const SCEV *, 8> Visited; |
| 503 | |
| 504 | void push(const SCEV *S) { |
| 505 | if (Visited.insert(S).second && Visitor.follow(S)) |
| 506 | Worklist.push_back(S); |
| 507 | } |
| 508 | |
| 509 | public: |
| 510 | SCEVTraversal(SV& V): Visitor(V) {} |
| 511 | |
| 512 | void visitAll(const SCEV *Root) { |
| 513 | push(Root); |
| 514 | while (!Worklist.empty() && !Visitor.isDone()) { |
| 515 | const SCEV *S = Worklist.pop_back_val(); |
| 516 | |
| 517 | switch (S->getSCEVType()) { |
| 518 | case scConstant: |
| 519 | case scUnknown: |
| 520 | break; |
| 521 | case scTruncate: |
| 522 | case scZeroExtend: |
| 523 | case scSignExtend: |
| 524 | push(cast<SCEVCastExpr>(S)->getOperand()); |
| 525 | break; |
| 526 | case scAddExpr: |
| 527 | case scMulExpr: |
| 528 | case scSMaxExpr: |
| 529 | case scUMaxExpr: |
| 530 | case scAddRecExpr: |
| 531 | for (const auto *Op : cast<SCEVNAryExpr>(S)->operands()) |
| 532 | push(Op); |
| 533 | break; |
| 534 | case scUDivExpr: { |
| 535 | const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); |
| 536 | push(UDiv->getLHS()); |
| 537 | push(UDiv->getRHS()); |
| 538 | break; |
| 539 | } |
| 540 | case scCouldNotCompute: |
| 541 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| 542 | default: |
| 543 | llvm_unreachable("Unknown SCEV kind!"); |
| 544 | } |
| 545 | } |
| 546 | } |
| 547 | }; |
| 548 | |
| 549 | /// Use SCEVTraversal to visit all nodes in the given expression tree. |
| 550 | template<typename SV> |
| 551 | void visitAll(const SCEV *Root, SV& Visitor) { |
| 552 | SCEVTraversal<SV> T(Visitor); |
| 553 | T.visitAll(Root); |
| 554 | } |
| 555 | |
| 556 | /// Return true if any node in \p Root satisfies the predicate \p Pred. |
| 557 | template <typename PredTy> |
| 558 | bool SCEVExprContains(const SCEV *Root, PredTy Pred) { |
| 559 | struct FindClosure { |
| 560 | bool Found = false; |
| 561 | PredTy Pred; |
| 562 | |
| 563 | FindClosure(PredTy Pred) : Pred(Pred) {} |
| 564 | |
| 565 | bool follow(const SCEV *S) { |
| 566 | if (!Pred(S)) |
| 567 | return true; |
| 568 | |
| 569 | Found = true; |
| 570 | return false; |
| 571 | } |
| 572 | |
| 573 | bool isDone() const { return Found; } |
| 574 | }; |
| 575 | |
| 576 | FindClosure FC(Pred); |
| 577 | visitAll(Root, FC); |
| 578 | return FC.Found; |
| 579 | } |
| 580 | |
| 581 | /// This visitor recursively visits a SCEV expression and re-writes it. |
| 582 | /// The result from each visit is cached, so it will return the same |
| 583 | /// SCEV for the same input. |
| 584 | template<typename SC> |
| 585 | class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> { |
| 586 | protected: |
| 587 | ScalarEvolution &SE; |
| 588 | // Memoize the result of each visit so that we only compute once for |
| 589 | // the same input SCEV. This is to avoid redundant computations when |
| 590 | // a SCEV is referenced by multiple SCEVs. Without memoization, this |
| 591 | // visit algorithm would have exponential time complexity in the worst |
| 592 | // case, causing the compiler to hang on certain tests. |
| 593 | DenseMap<const SCEV *, const SCEV *> RewriteResults; |
| 594 | |
| 595 | public: |
| 596 | SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {} |
| 597 | |
| 598 | const SCEV *visit(const SCEV *S) { |
| 599 | auto It = RewriteResults.find(S); |
| 600 | if (It != RewriteResults.end()) |
| 601 | return It->second; |
| 602 | auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S); |
| 603 | auto Result = RewriteResults.try_emplace(S, Visited); |
| 604 | assert(Result.second && "Should insert a new entry"); |
| 605 | return Result.first->second; |
| 606 | } |
| 607 | |
| 608 | const SCEV *visitConstant(const SCEVConstant *Constant) { |
| 609 | return Constant; |
| 610 | } |
| 611 | |
| 612 | const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { |
| 613 | const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); |
| 614 | return Operand == Expr->getOperand() |
| 615 | ? Expr |
| 616 | : SE.getTruncateExpr(Operand, Expr->getType()); |
| 617 | } |
| 618 | |
| 619 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
| 620 | const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); |
| 621 | return Operand == Expr->getOperand() |
| 622 | ? Expr |
| 623 | : SE.getZeroExtendExpr(Operand, Expr->getType()); |
| 624 | } |
| 625 | |
| 626 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
| 627 | const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); |
| 628 | return Operand == Expr->getOperand() |
| 629 | ? Expr |
| 630 | : SE.getSignExtendExpr(Operand, Expr->getType()); |
| 631 | } |
| 632 | |
| 633 | const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { |
| 634 | SmallVector<const SCEV *, 2> Operands; |
| 635 | bool Changed = false; |
| 636 | for (auto *Op : Expr->operands()) { |
| 637 | Operands.push_back(((SC*)this)->visit(Op)); |
| 638 | Changed |= Op != Operands.back(); |
| 639 | } |
| 640 | return !Changed ? Expr : SE.getAddExpr(Operands); |
| 641 | } |
| 642 | |
| 643 | const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { |
| 644 | SmallVector<const SCEV *, 2> Operands; |
| 645 | bool Changed = false; |
| 646 | for (auto *Op : Expr->operands()) { |
| 647 | Operands.push_back(((SC*)this)->visit(Op)); |
| 648 | Changed |= Op != Operands.back(); |
| 649 | } |
| 650 | return !Changed ? Expr : SE.getMulExpr(Operands); |
| 651 | } |
| 652 | |
| 653 | const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { |
| 654 | auto *LHS = ((SC *)this)->visit(Expr->getLHS()); |
| 655 | auto *RHS = ((SC *)this)->visit(Expr->getRHS()); |
| 656 | bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS(); |
| 657 | return !Changed ? Expr : SE.getUDivExpr(LHS, RHS); |
| 658 | } |
| 659 | |
| 660 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| 661 | SmallVector<const SCEV *, 2> Operands; |
| 662 | bool Changed = false; |
| 663 | for (auto *Op : Expr->operands()) { |
| 664 | Operands.push_back(((SC*)this)->visit(Op)); |
| 665 | Changed |= Op != Operands.back(); |
| 666 | } |
| 667 | return !Changed ? Expr |
| 668 | : SE.getAddRecExpr(Operands, Expr->getLoop(), |
| 669 | Expr->getNoWrapFlags()); |
| 670 | } |
| 671 | |
| 672 | const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { |
| 673 | SmallVector<const SCEV *, 2> Operands; |
| 674 | bool Changed = false; |
| 675 | for (auto *Op : Expr->operands()) { |
| 676 | Operands.push_back(((SC *)this)->visit(Op)); |
| 677 | Changed |= Op != Operands.back(); |
| 678 | } |
| 679 | return !Changed ? Expr : SE.getSMaxExpr(Operands); |
| 680 | } |
| 681 | |
| 682 | const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { |
| 683 | SmallVector<const SCEV *, 2> Operands; |
| 684 | bool Changed = false; |
| 685 | for (auto *Op : Expr->operands()) { |
| 686 | Operands.push_back(((SC*)this)->visit(Op)); |
| 687 | Changed |= Op != Operands.back(); |
| 688 | } |
| 689 | return !Changed ? Expr : SE.getUMaxExpr(Operands); |
| 690 | } |
| 691 | |
| 692 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| 693 | return Expr; |
| 694 | } |
| 695 | |
| 696 | const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { |
| 697 | return Expr; |
| 698 | } |
| 699 | }; |
| 700 | |
| 701 | using ValueToValueMap = DenseMap<const Value *, Value *>; |
| 702 | |
| 703 | /// The SCEVParameterRewriter takes a scalar evolution expression and updates |
| 704 | /// the SCEVUnknown components following the Map (Value -> Value). |
| 705 | class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> { |
| 706 | public: |
| 707 | static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, |
| 708 | ValueToValueMap &Map, |
| 709 | bool InterpretConsts = false) { |
| 710 | SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts); |
| 711 | return Rewriter.visit(Scev); |
| 712 | } |
| 713 | |
| 714 | SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C) |
| 715 | : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {} |
| 716 | |
| 717 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| 718 | Value *V = Expr->getValue(); |
| 719 | if (Map.count(V)) { |
| 720 | Value *NV = Map[V]; |
| 721 | if (InterpretConsts && isa<ConstantInt>(NV)) |
| 722 | return SE.getConstant(cast<ConstantInt>(NV)); |
| 723 | return SE.getUnknown(NV); |
| 724 | } |
| 725 | return Expr; |
| 726 | } |
| 727 | |
| 728 | private: |
| 729 | ValueToValueMap ⤅ |
| 730 | bool InterpretConsts; |
| 731 | }; |
| 732 | |
| 733 | using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>; |
| 734 | |
| 735 | /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies |
| 736 | /// the Map (Loop -> SCEV) to all AddRecExprs. |
| 737 | class SCEVLoopAddRecRewriter |
| 738 | : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> { |
| 739 | public: |
| 740 | SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M) |
| 741 | : SCEVRewriteVisitor(SE), Map(M) {} |
| 742 | |
| 743 | static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map, |
| 744 | ScalarEvolution &SE) { |
| 745 | SCEVLoopAddRecRewriter Rewriter(SE, Map); |
| 746 | return Rewriter.visit(Scev); |
| 747 | } |
| 748 | |
| 749 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| 750 | SmallVector<const SCEV *, 2> Operands; |
| 751 | for (const SCEV *Op : Expr->operands()) |
| 752 | Operands.push_back(visit(Op)); |
| 753 | |
| 754 | const Loop *L = Expr->getLoop(); |
| 755 | const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags()); |
| 756 | |
| 757 | if (0 == Map.count(L)) |
| 758 | return Res; |
| 759 | |
| 760 | const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res); |
| 761 | return Rec->evaluateAtIteration(Map[L], SE); |
| 762 | } |
| 763 | |
| 764 | private: |
| 765 | LoopToScevMapT ⤅ |
| 766 | }; |
| 767 | |
| 768 | } // end namespace llvm |
| 769 | |
| 770 | #endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |