blob: efaaf9715b3de6d85ba6e69dc50fecf237b1b4e7 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an iterator that enumerates the intervals in a control flow
10// graph of some sort. This iterator is parametric, allowing iterator over the
11// following types of graphs:
12//
13// 1. A Function* object, composed of BasicBlock nodes.
14// 2. An IntervalPartition& object, composed of Interval nodes.
15//
16// This iterator is defined to walk the control flow graph, returning intervals
17// in depth first order. These intervals are completely filled in except for
18// the predecessor fields (the successor information is filled in however).
19//
20// By default, the intervals created by this iterator are deleted after they
21// are no longer any use to the iterator. This behavior can be changed by
22// passing a false value into the intervals_begin() function. This causes the
23// IOwnMem member to be set, and the intervals to not be deleted.
24//
25// It is only safe to use this if all of the intervals are deleted by the caller
26// and all of the intervals are processed. However, the user of the iterator is
27// not allowed to modify or delete the intervals until after the iterator has
28// been used completely. The IntervalPartition class uses this functionality.
29//
30//===----------------------------------------------------------------------===//
31
32#ifndef LLVM_ANALYSIS_INTERVALITERATOR_H
33#define LLVM_ANALYSIS_INTERVALITERATOR_H
34
35#include "llvm/ADT/GraphTraits.h"
36#include "llvm/Analysis/Interval.h"
37#include "llvm/Analysis/IntervalPartition.h"
38#include "llvm/IR/CFG.h"
39#include "llvm/IR/Function.h"
40#include "llvm/Support/ErrorHandling.h"
41#include <algorithm>
42#include <cassert>
43#include <iterator>
44#include <set>
45#include <utility>
46#include <vector>
47
48namespace llvm {
49
50class BasicBlock;
51
52// getNodeHeader - Given a source graph node and the source graph, return the
53// BasicBlock that is the header node. This is the opposite of
54// getSourceGraphNode.
55inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
56inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
57
58// getSourceGraphNode - Given a BasicBlock and the source graph, return the
59// source graph node that corresponds to the BasicBlock. This is the opposite
60// of getNodeHeader.
61inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
62 return BB;
63}
64inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
65 return IP->getBlockInterval(BB);
66}
67
68// addNodeToInterval - This method exists to assist the generic ProcessNode
69// with the task of adding a node to the new interval, depending on the
70// type of the source node. In the case of a CFG source graph (BasicBlock
71// case), the BasicBlock itself is added to the interval.
72inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
73 Int->Nodes.push_back(BB);
74}
75
76// addNodeToInterval - This method exists to assist the generic ProcessNode
77// with the task of adding a node to the new interval, depending on the
78// type of the source node. In the case of a CFG source graph (BasicBlock
79// case), the BasicBlock itself is added to the interval. In the case of
80// an IntervalPartition source graph (Interval case), all of the member
81// BasicBlocks are added to the interval.
82inline void addNodeToInterval(Interval *Int, Interval *I) {
83 // Add all of the nodes in I as new nodes in Int.
84 Int->Nodes.insert(Int->Nodes.end(), I->Nodes.begin(), I->Nodes.end());
85}
86
87template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy *>,
88 class IGT = GraphTraits<Inverse<NodeTy *>>>
89class IntervalIterator {
90 std::vector<std::pair<Interval *, typename Interval::succ_iterator>> IntStack;
91 std::set<BasicBlock *> Visited;
92 OrigContainer_t *OrigContainer;
93 bool IOwnMem; // If True, delete intervals when done with them
94 // See file header for conditions of use
95
96public:
97 using iterator_category = std::forward_iterator_tag;
98
99 IntervalIterator() = default; // End iterator, empty stack
100
101 IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
102 OrigContainer = M;
103 if (!ProcessInterval(&M->front())) {
104 llvm_unreachable("ProcessInterval should never fail for first interval!");
105 }
106 }
107
108 IntervalIterator(IntervalIterator &&x)
109 : IntStack(std::move(x.IntStack)), Visited(std::move(x.Visited)),
110 OrigContainer(x.OrigContainer), IOwnMem(x.IOwnMem) {
111 x.IOwnMem = false;
112 }
113
114 IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
115 OrigContainer = &IP;
116 if (!ProcessInterval(IP.getRootInterval())) {
117 llvm_unreachable("ProcessInterval should never fail for first interval!");
118 }
119 }
120
121 ~IntervalIterator() {
122 if (IOwnMem)
123 while (!IntStack.empty()) {
124 delete operator*();
125 IntStack.pop_back();
126 }
127 }
128
129 bool operator==(const IntervalIterator &x) const {
130 return IntStack == x.IntStack;
131 }
132 bool operator!=(const IntervalIterator &x) const { return !(*this == x); }
133
134 const Interval *operator*() const { return IntStack.back().first; }
135 Interval *operator*() { return IntStack.back().first; }
136 const Interval *operator->() const { return operator*(); }
137 Interval *operator->() { return operator*(); }
138
139 IntervalIterator &operator++() { // Preincrement
140 assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
141 do {
142 // All of the intervals on the stack have been visited. Try visiting
143 // their successors now.
144 Interval::succ_iterator &SuccIt = IntStack.back().second,
145 EndIt = succ_end(IntStack.back().first);
146 while (SuccIt != EndIt) { // Loop over all interval succs
147 bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
148 ++SuccIt; // Increment iterator
149 if (Done) return *this; // Found a new interval! Use it!
150 }
151
152 // Free interval memory... if necessary
153 if (IOwnMem) delete IntStack.back().first;
154
155 // We ran out of successors for this interval... pop off the stack
156 IntStack.pop_back();
157 } while (!IntStack.empty());
158
159 return *this;
160 }
161
162 IntervalIterator operator++(int) { // Postincrement
163 IntervalIterator tmp = *this;
164 ++*this;
165 return tmp;
166 }
167
168private:
169 // ProcessInterval - This method is used during the construction of the
170 // interval graph. It walks through the source graph, recursively creating
171 // an interval per invocation until the entire graph is covered. This uses
172 // the ProcessNode method to add all of the nodes to the interval.
173 //
174 // This method is templated because it may operate on two different source
175 // graphs: a basic block graph, or a preexisting interval graph.
176 bool ProcessInterval(NodeTy *Node) {
177 BasicBlock *Header = getNodeHeader(Node);
178 if (!Visited.insert(Header).second)
179 return false;
180
181 Interval *Int = new Interval(Header);
182
183 // Check all of our successors to see if they are in the interval...
184 for (typename GT::ChildIteratorType I = GT::child_begin(Node),
185 E = GT::child_end(Node); I != E; ++I)
186 ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
187
188 IntStack.push_back(std::make_pair(Int, succ_begin(Int)));
189 return true;
190 }
191
192 // ProcessNode - This method is called by ProcessInterval to add nodes to the
193 // interval being constructed, and it is also called recursively as it walks
194 // the source graph. A node is added to the current interval only if all of
195 // its predecessors are already in the graph. This also takes care of keeping
196 // the successor set of an interval up to date.
197 //
198 // This method is templated because it may operate on two different source
199 // graphs: a basic block graph, or a preexisting interval graph.
200 void ProcessNode(Interval *Int, NodeTy *Node) {
201 assert(Int && "Null interval == bad!");
202 assert(Node && "Null Node == bad!");
203
204 BasicBlock *NodeHeader = getNodeHeader(Node);
205
206 if (Visited.count(NodeHeader)) { // Node already been visited?
207 if (Int->contains(NodeHeader)) { // Already in this interval...
208 return;
209 } else { // In other interval, add as successor
210 if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
211 Int->Successors.push_back(NodeHeader);
212 }
213 } else { // Otherwise, not in interval yet
214 for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
215 E = IGT::child_end(Node); I != E; ++I) {
216 if (!Int->contains(*I)) { // If pred not in interval, we can't be
217 if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
218 Int->Successors.push_back(NodeHeader);
219 return; // See you later
220 }
221 }
222
223 // If we get here, then all of the predecessors of BB are in the interval
224 // already. In this case, we must add BB to the interval!
225 addNodeToInterval(Int, Node);
226 Visited.insert(NodeHeader); // The node has now been visited!
227
228 if (Int->isSuccessor(NodeHeader)) {
229 // If we were in the successor list from before... remove from succ list
230 Int->Successors.erase(std::remove(Int->Successors.begin(),
231 Int->Successors.end(), NodeHeader),
232 Int->Successors.end());
233 }
234
235 // Now that we have discovered that Node is in the interval, perhaps some
236 // of its successors are as well?
237 for (typename GT::ChildIteratorType It = GT::child_begin(Node),
238 End = GT::child_end(Node); It != End; ++It)
239 ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
240 }
241 }
242};
243
244using function_interval_iterator = IntervalIterator<BasicBlock, Function>;
245using interval_part_interval_iterator =
246 IntervalIterator<Interval, IntervalPartition>;
247
248inline function_interval_iterator intervals_begin(Function *F,
249 bool DeleteInts = true) {
250 return function_interval_iterator(F, DeleteInts);
251}
252inline function_interval_iterator intervals_end(Function *) {
253 return function_interval_iterator();
254}
255
256inline interval_part_interval_iterator
257 intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
258 return interval_part_interval_iterator(IP, DeleteIntervals);
259}
260
261inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
262 return interval_part_interval_iterator();
263}
264
265} // end namespace llvm
266
267#endif // LLVM_ANALYSIS_INTERVALITERATOR_H