blob: 6003b1b6b82c334ccc81fbc4c282e98ea79985bd [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides an interface for customizing the standard MachineScheduler
11// pass. Note that the entire pass may be replaced as follows:
12//
13// <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
14// PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
15// ...}
16//
17// The MachineScheduler pass is only responsible for choosing the regions to be
18// scheduled. Targets can override the DAG builder and scheduler without
19// replacing the pass as follows:
20//
21// ScheduleDAGInstrs *<Target>PassConfig::
22// createMachineScheduler(MachineSchedContext *C) {
23// return new CustomMachineScheduler(C);
24// }
25//
26// The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
27// scheduling while updating the instruction stream, register pressure, and live
28// intervals. Most targets don't need to override the DAG builder and list
29// scheduler, but subtargets that require custom scheduling heuristics may
30// plugin an alternate MachineSchedStrategy. The strategy is responsible for
31// selecting the highest priority node from the list:
32//
33// ScheduleDAGInstrs *<Target>PassConfig::
34// createMachineScheduler(MachineSchedContext *C) {
35// return new ScheduleDAGMILive(C, CustomStrategy(C));
36// }
37//
38// The DAG builder can also be customized in a sense by adding DAG mutations
39// that will run after DAG building and before list scheduling. DAG mutations
40// can adjust dependencies based on target-specific knowledge or add weak edges
41// to aid heuristics:
42//
43// ScheduleDAGInstrs *<Target>PassConfig::
44// createMachineScheduler(MachineSchedContext *C) {
45// ScheduleDAGMI *DAG = createGenericSchedLive(C);
46// DAG->addMutation(new CustomDAGMutation(...));
47// return DAG;
48// }
49//
50// A target that supports alternative schedulers can use the
51// MachineSchedRegistry to allow command line selection. This can be done by
52// implementing the following boilerplate:
53//
54// static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
55// return new CustomMachineScheduler(C);
56// }
57// static MachineSchedRegistry
58// SchedCustomRegistry("custom", "Run my target's custom scheduler",
59// createCustomMachineSched);
60//
61//
62// Finally, subtargets that don't need to implement custom heuristics but would
63// like to configure the GenericScheduler's policy for a given scheduler region,
64// including scheduling direction and register pressure tracking policy, can do
65// this:
66//
67// void <SubTarget>Subtarget::
68// overrideSchedPolicy(MachineSchedPolicy &Policy,
69// unsigned NumRegionInstrs) const {
70// Policy.<Flag> = true;
71// }
72//
73//===----------------------------------------------------------------------===//
74
75#ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
76#define LLVM_CODEGEN_MACHINESCHEDULER_H
77
78#include "llvm/ADT/ArrayRef.h"
79#include "llvm/ADT/BitVector.h"
80#include "llvm/ADT/STLExtras.h"
81#include "llvm/ADT/SmallVector.h"
82#include "llvm/ADT/StringRef.h"
83#include "llvm/ADT/Twine.h"
84#include "llvm/Analysis/AliasAnalysis.h"
85#include "llvm/CodeGen/MachineBasicBlock.h"
86#include "llvm/CodeGen/MachinePassRegistry.h"
87#include "llvm/CodeGen/RegisterPressure.h"
88#include "llvm/CodeGen/ScheduleDAG.h"
89#include "llvm/CodeGen/ScheduleDAGInstrs.h"
90#include "llvm/CodeGen/ScheduleDAGMutation.h"
91#include "llvm/CodeGen/TargetSchedule.h"
92#include "llvm/Support/CommandLine.h"
93#include "llvm/Support/ErrorHandling.h"
94#include <algorithm>
95#include <cassert>
96#include <memory>
97#include <string>
98#include <vector>
99
100namespace llvm {
101
102extern cl::opt<bool> ForceTopDown;
103extern cl::opt<bool> ForceBottomUp;
104
105class LiveIntervals;
106class MachineDominatorTree;
107class MachineFunction;
108class MachineInstr;
109class MachineLoopInfo;
110class RegisterClassInfo;
111class SchedDFSResult;
112class ScheduleHazardRecognizer;
113class TargetInstrInfo;
114class TargetPassConfig;
115class TargetRegisterInfo;
116
117/// MachineSchedContext provides enough context from the MachineScheduler pass
118/// for the target to instantiate a scheduler.
119struct MachineSchedContext {
120 MachineFunction *MF = nullptr;
121 const MachineLoopInfo *MLI = nullptr;
122 const MachineDominatorTree *MDT = nullptr;
123 const TargetPassConfig *PassConfig = nullptr;
124 AliasAnalysis *AA = nullptr;
125 LiveIntervals *LIS = nullptr;
126
127 RegisterClassInfo *RegClassInfo;
128
129 MachineSchedContext();
130 virtual ~MachineSchedContext();
131};
132
133/// MachineSchedRegistry provides a selection of available machine instruction
134/// schedulers.
135class MachineSchedRegistry : public MachinePassRegistryNode {
136public:
137 using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *);
138
139 // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
140 using FunctionPassCtor = ScheduleDAGCtor;
141
142 static MachinePassRegistry Registry;
143
144 MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
145 : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
146 Registry.Add(this);
147 }
148
149 ~MachineSchedRegistry() { Registry.Remove(this); }
150
151 // Accessors.
152 //
153 MachineSchedRegistry *getNext() const {
154 return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
155 }
156
157 static MachineSchedRegistry *getList() {
158 return (MachineSchedRegistry *)Registry.getList();
159 }
160
161 static void setListener(MachinePassRegistryListener *L) {
162 Registry.setListener(L);
163 }
164};
165
166class ScheduleDAGMI;
167
168/// Define a generic scheduling policy for targets that don't provide their own
169/// MachineSchedStrategy. This can be overriden for each scheduling region
170/// before building the DAG.
171struct MachineSchedPolicy {
172 // Allow the scheduler to disable register pressure tracking.
173 bool ShouldTrackPressure = false;
174 /// Track LaneMasks to allow reordering of independent subregister writes
175 /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
176 bool ShouldTrackLaneMasks = false;
177
178 // Allow the scheduler to force top-down or bottom-up scheduling. If neither
179 // is true, the scheduler runs in both directions and converges.
180 bool OnlyTopDown = false;
181 bool OnlyBottomUp = false;
182
183 // Disable heuristic that tries to fetch nodes from long dependency chains
184 // first.
185 bool DisableLatencyHeuristic = false;
186
187 MachineSchedPolicy() = default;
188};
189
190/// MachineSchedStrategy - Interface to the scheduling algorithm used by
191/// ScheduleDAGMI.
192///
193/// Initialization sequence:
194/// initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
195class MachineSchedStrategy {
196 virtual void anchor();
197
198public:
199 virtual ~MachineSchedStrategy() = default;
200
201 /// Optionally override the per-region scheduling policy.
202 virtual void initPolicy(MachineBasicBlock::iterator Begin,
203 MachineBasicBlock::iterator End,
204 unsigned NumRegionInstrs) {}
205
206 virtual void dumpPolicy() const {}
207
208 /// Check if pressure tracking is needed before building the DAG and
209 /// initializing this strategy. Called after initPolicy.
210 virtual bool shouldTrackPressure() const { return true; }
211
212 /// Returns true if lanemasks should be tracked. LaneMask tracking is
213 /// necessary to reorder independent subregister defs for the same vreg.
214 /// This has to be enabled in combination with shouldTrackPressure().
215 virtual bool shouldTrackLaneMasks() const { return false; }
216
217 // If this method returns true, handling of the scheduling regions
218 // themselves (in case of a scheduling boundary in MBB) will be done
219 // beginning with the topmost region of MBB.
220 virtual bool doMBBSchedRegionsTopDown() const { return false; }
221
222 /// Initialize the strategy after building the DAG for a new region.
223 virtual void initialize(ScheduleDAGMI *DAG) = 0;
224
225 /// Tell the strategy that MBB is about to be processed.
226 virtual void enterMBB(MachineBasicBlock *MBB) {};
227
228 /// Tell the strategy that current MBB is done.
229 virtual void leaveMBB() {};
230
231 /// Notify this strategy that all roots have been released (including those
232 /// that depend on EntrySU or ExitSU).
233 virtual void registerRoots() {}
234
235 /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
236 /// schedule the node at the top of the unscheduled region. Otherwise it will
237 /// be scheduled at the bottom.
238 virtual SUnit *pickNode(bool &IsTopNode) = 0;
239
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100240 /// Scheduler callback to notify that a new subtree is scheduled.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100241 virtual void scheduleTree(unsigned SubtreeID) {}
242
243 /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
244 /// instruction and updated scheduled/remaining flags in the DAG nodes.
245 virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
246
247 /// When all predecessor dependencies have been resolved, free this node for
248 /// top-down scheduling.
249 virtual void releaseTopNode(SUnit *SU) = 0;
250
251 /// When all successor dependencies have been resolved, free this node for
252 /// bottom-up scheduling.
253 virtual void releaseBottomNode(SUnit *SU) = 0;
254};
255
256/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
257/// schedules machine instructions according to the given MachineSchedStrategy
258/// without much extra book-keeping. This is the common functionality between
259/// PreRA and PostRA MachineScheduler.
260class ScheduleDAGMI : public ScheduleDAGInstrs {
261protected:
262 AliasAnalysis *AA;
263 LiveIntervals *LIS;
264 std::unique_ptr<MachineSchedStrategy> SchedImpl;
265
266 /// Topo - A topological ordering for SUnits which permits fast IsReachable
267 /// and similar queries.
268 ScheduleDAGTopologicalSort Topo;
269
270 /// Ordered list of DAG postprocessing steps.
271 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
272
273 /// The top of the unscheduled zone.
274 MachineBasicBlock::iterator CurrentTop;
275
276 /// The bottom of the unscheduled zone.
277 MachineBasicBlock::iterator CurrentBottom;
278
279 /// Record the next node in a scheduled cluster.
280 const SUnit *NextClusterPred = nullptr;
281 const SUnit *NextClusterSucc = nullptr;
282
283#ifndef NDEBUG
284 /// The number of instructions scheduled so far. Used to cut off the
285 /// scheduler at the point determined by misched-cutoff.
286 unsigned NumInstrsScheduled = 0;
287#endif
288
289public:
290 ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
291 bool RemoveKillFlags)
292 : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
293 LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU) {}
294
295 // Provide a vtable anchor
296 ~ScheduleDAGMI() override;
297
298 /// If this method returns true, handling of the scheduling regions
299 /// themselves (in case of a scheduling boundary in MBB) will be done
300 /// beginning with the topmost region of MBB.
301 bool doMBBSchedRegionsTopDown() const override {
302 return SchedImpl->doMBBSchedRegionsTopDown();
303 }
304
305 // Returns LiveIntervals instance for use in DAG mutators and such.
306 LiveIntervals *getLIS() const { return LIS; }
307
308 /// Return true if this DAG supports VReg liveness and RegPressure.
309 virtual bool hasVRegLiveness() const { return false; }
310
311 /// Add a postprocessing step to the DAG builder.
312 /// Mutations are applied in the order that they are added after normal DAG
313 /// building and before MachineSchedStrategy initialization.
314 ///
315 /// ScheduleDAGMI takes ownership of the Mutation object.
316 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
317 if (Mutation)
318 Mutations.push_back(std::move(Mutation));
319 }
320
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100321 /// True if an edge can be added from PredSU to SuccSU without creating
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100322 /// a cycle.
323 bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
324
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100325 /// Add a DAG edge to the given SU with the given predecessor
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100326 /// dependence data.
327 ///
328 /// \returns true if the edge may be added without creating a cycle OR if an
329 /// equivalent edge already existed (false indicates failure).
330 bool addEdge(SUnit *SuccSU, const SDep &PredDep);
331
332 MachineBasicBlock::iterator top() const { return CurrentTop; }
333 MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
334
335 /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
336 /// region. This covers all instructions in a block, while schedule() may only
337 /// cover a subset.
338 void enterRegion(MachineBasicBlock *bb,
339 MachineBasicBlock::iterator begin,
340 MachineBasicBlock::iterator end,
341 unsigned regioninstrs) override;
342
343 /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
344 /// reorderable instructions.
345 void schedule() override;
346
347 void startBlock(MachineBasicBlock *bb) override;
348 void finishBlock() override;
349
350 /// Change the position of an instruction within the basic block and update
351 /// live ranges and region boundary iterators.
352 void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
353
354 const SUnit *getNextClusterPred() const { return NextClusterPred; }
355
356 const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
357
358 void viewGraph(const Twine &Name, const Twine &Title) override;
359 void viewGraph() override;
360
361protected:
362 // Top-Level entry points for the schedule() driver...
363
364 /// Apply each ScheduleDAGMutation step in order. This allows different
365 /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
366 void postprocessDAG();
367
368 /// Release ExitSU predecessors and setup scheduler queues.
369 void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
370
371 /// Update scheduler DAG and queues after scheduling an instruction.
372 void updateQueues(SUnit *SU, bool IsTopNode);
373
374 /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
375 void placeDebugValues();
376
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100377 /// dump the scheduled Sequence.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100378 void dumpSchedule() const;
379
380 // Lesser helpers...
381 bool checkSchedLimit();
382
383 void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
384 SmallVectorImpl<SUnit*> &BotRoots);
385
386 void releaseSucc(SUnit *SU, SDep *SuccEdge);
387 void releaseSuccessors(SUnit *SU);
388 void releasePred(SUnit *SU, SDep *PredEdge);
389 void releasePredecessors(SUnit *SU);
390};
391
392/// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
393/// machine instructions while updating LiveIntervals and tracking regpressure.
394class ScheduleDAGMILive : public ScheduleDAGMI {
395protected:
396 RegisterClassInfo *RegClassInfo;
397
398 /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
399 /// will be empty.
400 SchedDFSResult *DFSResult = nullptr;
401 BitVector ScheduledTrees;
402
403 MachineBasicBlock::iterator LiveRegionEnd;
404
405 /// Maps vregs to the SUnits of their uses in the current scheduling region.
406 VReg2SUnitMultiMap VRegUses;
407
408 // Map each SU to its summary of pressure changes. This array is updated for
409 // liveness during bottom-up scheduling. Top-down scheduling may proceed but
410 // has no affect on the pressure diffs.
411 PressureDiffs SUPressureDiffs;
412
413 /// Register pressure in this region computed by initRegPressure.
414 bool ShouldTrackPressure = false;
415 bool ShouldTrackLaneMasks = false;
416 IntervalPressure RegPressure;
417 RegPressureTracker RPTracker;
418
419 /// List of pressure sets that exceed the target's pressure limit before
420 /// scheduling, listed in increasing set ID order. Each pressure set is paired
421 /// with its max pressure in the currently scheduled regions.
422 std::vector<PressureChange> RegionCriticalPSets;
423
424 /// The top of the unscheduled zone.
425 IntervalPressure TopPressure;
426 RegPressureTracker TopRPTracker;
427
428 /// The bottom of the unscheduled zone.
429 IntervalPressure BotPressure;
430 RegPressureTracker BotRPTracker;
431
432 /// True if disconnected subregister components are already renamed.
433 /// The renaming is only done on demand if lane masks are tracked.
434 bool DisconnectedComponentsRenamed = false;
435
436public:
437 ScheduleDAGMILive(MachineSchedContext *C,
438 std::unique_ptr<MachineSchedStrategy> S)
439 : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
440 RegClassInfo(C->RegClassInfo), RPTracker(RegPressure),
441 TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
442
443 ~ScheduleDAGMILive() override;
444
445 /// Return true if this DAG supports VReg liveness and RegPressure.
446 bool hasVRegLiveness() const override { return true; }
447
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100448 /// Return true if register pressure tracking is enabled.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100449 bool isTrackingPressure() const { return ShouldTrackPressure; }
450
451 /// Get current register pressure for the top scheduled instructions.
452 const IntervalPressure &getTopPressure() const { return TopPressure; }
453 const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
454
455 /// Get current register pressure for the bottom scheduled instructions.
456 const IntervalPressure &getBotPressure() const { return BotPressure; }
457 const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
458
459 /// Get register pressure for the entire scheduling region before scheduling.
460 const IntervalPressure &getRegPressure() const { return RegPressure; }
461
462 const std::vector<PressureChange> &getRegionCriticalPSets() const {
463 return RegionCriticalPSets;
464 }
465
466 PressureDiff &getPressureDiff(const SUnit *SU) {
467 return SUPressureDiffs[SU->NodeNum];
468 }
Andrew Scull0372a572018-11-16 15:47:06 +0000469 const PressureDiff &getPressureDiff(const SUnit *SU) const {
470 return SUPressureDiffs[SU->NodeNum];
471 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100472
473 /// Compute a DFSResult after DAG building is complete, and before any
474 /// queue comparisons.
475 void computeDFSResult();
476
477 /// Return a non-null DFS result if the scheduling strategy initialized it.
478 const SchedDFSResult *getDFSResult() const { return DFSResult; }
479
480 BitVector &getScheduledTrees() { return ScheduledTrees; }
481
482 /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
483 /// region. This covers all instructions in a block, while schedule() may only
484 /// cover a subset.
485 void enterRegion(MachineBasicBlock *bb,
486 MachineBasicBlock::iterator begin,
487 MachineBasicBlock::iterator end,
488 unsigned regioninstrs) override;
489
490 /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
491 /// reorderable instructions.
492 void schedule() override;
493
494 /// Compute the cyclic critical path through the DAG.
495 unsigned computeCyclicCriticalPath();
496
Andrew Scull0372a572018-11-16 15:47:06 +0000497 void dump() const override;
498
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100499protected:
500 // Top-Level entry points for the schedule() driver...
501
502 /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
503 /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
504 /// region, TopTracker and BottomTracker will be initialized to the top and
505 /// bottom of the DAG region without covereing any unscheduled instruction.
506 void buildDAGWithRegPressure();
507
508 /// Release ExitSU predecessors and setup scheduler queues. Re-position
509 /// the Top RP tracker in case the region beginning has changed.
510 void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
511
512 /// Move an instruction and update register pressure.
513 void scheduleMI(SUnit *SU, bool IsTopNode);
514
515 // Lesser helpers...
516
517 void initRegPressure();
518
519 void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses);
520
521 void updateScheduledPressure(const SUnit *SU,
522 const std::vector<unsigned> &NewMaxPressure);
523
524 void collectVRegUses(SUnit &SU);
525};
526
527//===----------------------------------------------------------------------===//
528///
529/// Helpers for implementing custom MachineSchedStrategy classes. These take
530/// care of the book-keeping associated with list scheduling heuristics.
531///
532//===----------------------------------------------------------------------===//
533
534/// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
535/// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
536/// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
537///
538/// This is a convenience class that may be used by implementations of
539/// MachineSchedStrategy.
540class ReadyQueue {
541 unsigned ID;
542 std::string Name;
543 std::vector<SUnit*> Queue;
544
545public:
546 ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
547
548 unsigned getID() const { return ID; }
549
550 StringRef getName() const { return Name; }
551
552 // SU is in this queue if it's NodeQueueID is a superset of this ID.
553 bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
554
555 bool empty() const { return Queue.empty(); }
556
557 void clear() { Queue.clear(); }
558
559 unsigned size() const { return Queue.size(); }
560
561 using iterator = std::vector<SUnit*>::iterator;
562
563 iterator begin() { return Queue.begin(); }
564
565 iterator end() { return Queue.end(); }
566
567 ArrayRef<SUnit*> elements() { return Queue; }
568
569 iterator find(SUnit *SU) { return llvm::find(Queue, SU); }
570
571 void push(SUnit *SU) {
572 Queue.push_back(SU);
573 SU->NodeQueueId |= ID;
574 }
575
576 iterator remove(iterator I) {
577 (*I)->NodeQueueId &= ~ID;
578 *I = Queue.back();
579 unsigned idx = I - Queue.begin();
580 Queue.pop_back();
581 return Queue.begin() + idx;
582 }
583
584 void dump() const;
585};
586
587/// Summarize the unscheduled region.
588struct SchedRemainder {
589 // Critical path through the DAG in expected latency.
590 unsigned CriticalPath;
591 unsigned CyclicCritPath;
592
593 // Scaled count of micro-ops left to schedule.
594 unsigned RemIssueCount;
595
596 bool IsAcyclicLatencyLimited;
597
598 // Unscheduled resources
599 SmallVector<unsigned, 16> RemainingCounts;
600
601 SchedRemainder() { reset(); }
602
603 void reset() {
604 CriticalPath = 0;
605 CyclicCritPath = 0;
606 RemIssueCount = 0;
607 IsAcyclicLatencyLimited = false;
608 RemainingCounts.clear();
609 }
610
611 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
612};
613
614/// Each Scheduling boundary is associated with ready queues. It tracks the
615/// current cycle in the direction of movement, and maintains the state
616/// of "hazards" and other interlocks at the current cycle.
617class SchedBoundary {
618public:
619 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
620 enum {
621 TopQID = 1,
622 BotQID = 2,
623 LogMaxQID = 2
624 };
625
626 ScheduleDAGMI *DAG = nullptr;
627 const TargetSchedModel *SchedModel = nullptr;
628 SchedRemainder *Rem = nullptr;
629
630 ReadyQueue Available;
631 ReadyQueue Pending;
632
633 ScheduleHazardRecognizer *HazardRec = nullptr;
634
635private:
636 /// True if the pending Q should be checked/updated before scheduling another
637 /// instruction.
638 bool CheckPending;
639
640 /// Number of cycles it takes to issue the instructions scheduled in this
641 /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
642 /// See getStalls().
643 unsigned CurrCycle;
644
645 /// Micro-ops issued in the current cycle
646 unsigned CurrMOps;
647
648 /// MinReadyCycle - Cycle of the soonest available instruction.
649 unsigned MinReadyCycle;
650
651 // The expected latency of the critical path in this scheduled zone.
652 unsigned ExpectedLatency;
653
654 // The latency of dependence chains leading into this zone.
655 // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
656 // For each cycle scheduled: DLat -= 1.
657 unsigned DependentLatency;
658
659 /// Count the scheduled (issued) micro-ops that can be retired by
660 /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
661 unsigned RetiredMOps;
662
663 // Count scheduled resources that have been executed. Resources are
664 // considered executed if they become ready in the time that it takes to
665 // saturate any resource including the one in question. Counts are scaled
666 // for direct comparison with other resources. Counts can be compared with
667 // MOps * getMicroOpFactor and Latency * getLatencyFactor.
668 SmallVector<unsigned, 16> ExecutedResCounts;
669
670 /// Cache the max count for a single resource.
671 unsigned MaxExecutedResCount;
672
673 // Cache the critical resources ID in this scheduled zone.
674 unsigned ZoneCritResIdx;
675
676 // Is the scheduled region resource limited vs. latency limited.
677 bool IsResourceLimited;
678
679 // Record the highest cycle at which each resource has been reserved by a
680 // scheduled instruction.
681 SmallVector<unsigned, 16> ReservedCycles;
682
683#ifndef NDEBUG
684 // Remember the greatest possible stall as an upper bound on the number of
685 // times we should retry the pending queue because of a hazard.
686 unsigned MaxObservedStall;
687#endif
688
689public:
690 /// Pending queues extend the ready queues with the same ID and the
691 /// PendingFlag set.
692 SchedBoundary(unsigned ID, const Twine &Name):
693 Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") {
694 reset();
695 }
696
697 ~SchedBoundary();
698
699 void reset();
700
701 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
702 SchedRemainder *rem);
703
704 bool isTop() const {
705 return Available.getID() == TopQID;
706 }
707
708 /// Number of cycles to issue the instructions scheduled in this zone.
709 unsigned getCurrCycle() const { return CurrCycle; }
710
711 /// Micro-ops issued in the current cycle
712 unsigned getCurrMOps() const { return CurrMOps; }
713
714 // The latency of dependence chains leading into this zone.
715 unsigned getDependentLatency() const { return DependentLatency; }
716
717 /// Get the number of latency cycles "covered" by the scheduled
718 /// instructions. This is the larger of the critical path within the zone
719 /// and the number of cycles required to issue the instructions.
720 unsigned getScheduledLatency() const {
721 return std::max(ExpectedLatency, CurrCycle);
722 }
723
724 unsigned getUnscheduledLatency(SUnit *SU) const {
725 return isTop() ? SU->getHeight() : SU->getDepth();
726 }
727
728 unsigned getResourceCount(unsigned ResIdx) const {
729 return ExecutedResCounts[ResIdx];
730 }
731
732 /// Get the scaled count of scheduled micro-ops and resources, including
733 /// executed resources.
734 unsigned getCriticalCount() const {
735 if (!ZoneCritResIdx)
736 return RetiredMOps * SchedModel->getMicroOpFactor();
737 return getResourceCount(ZoneCritResIdx);
738 }
739
740 /// Get a scaled count for the minimum execution time of the scheduled
741 /// micro-ops that are ready to execute by getExecutedCount. Notice the
742 /// feedback loop.
743 unsigned getExecutedCount() const {
744 return std::max(CurrCycle * SchedModel->getLatencyFactor(),
745 MaxExecutedResCount);
746 }
747
748 unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
749
750 // Is the scheduled region resource limited vs. latency limited.
751 bool isResourceLimited() const { return IsResourceLimited; }
752
753 /// Get the difference between the given SUnit's ready time and the current
754 /// cycle.
755 unsigned getLatencyStallCycles(SUnit *SU);
756
757 unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
758
759 bool checkHazard(SUnit *SU);
760
761 unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
762
763 unsigned getOtherResourceCount(unsigned &OtherCritIdx);
764
765 void releaseNode(SUnit *SU, unsigned ReadyCycle);
766
767 void bumpCycle(unsigned NextCycle);
768
769 void incExecutedResources(unsigned PIdx, unsigned Count);
770
771 unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
772
773 void bumpNode(SUnit *SU);
774
775 void releasePending();
776
777 void removeReady(SUnit *SU);
778
779 /// Call this before applying any other heuristics to the Available queue.
780 /// Updates the Available/Pending Q's if necessary and returns the single
781 /// available instruction, or NULL if there are multiple candidates.
782 SUnit *pickOnlyChoice();
783
784 void dumpScheduledState() const;
785};
786
787/// Base class for GenericScheduler. This class maintains information about
788/// scheduling candidates based on TargetSchedModel making it easy to implement
789/// heuristics for either preRA or postRA scheduling.
790class GenericSchedulerBase : public MachineSchedStrategy {
791public:
792 /// Represent the type of SchedCandidate found within a single queue.
793 /// pickNodeBidirectional depends on these listed by decreasing priority.
794 enum CandReason : uint8_t {
795 NoCand, Only1, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak,
796 RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
797 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
798
799#ifndef NDEBUG
800 static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
801#endif
802
803 /// Policy for scheduling the next instruction in the candidate's zone.
804 struct CandPolicy {
805 bool ReduceLatency = false;
806 unsigned ReduceResIdx = 0;
807 unsigned DemandResIdx = 0;
808
809 CandPolicy() = default;
810
811 bool operator==(const CandPolicy &RHS) const {
812 return ReduceLatency == RHS.ReduceLatency &&
813 ReduceResIdx == RHS.ReduceResIdx &&
814 DemandResIdx == RHS.DemandResIdx;
815 }
816 bool operator!=(const CandPolicy &RHS) const {
817 return !(*this == RHS);
818 }
819 };
820
821 /// Status of an instruction's critical resource consumption.
822 struct SchedResourceDelta {
823 // Count critical resources in the scheduled region required by SU.
824 unsigned CritResources = 0;
825
826 // Count critical resources from another region consumed by SU.
827 unsigned DemandedResources = 0;
828
829 SchedResourceDelta() = default;
830
831 bool operator==(const SchedResourceDelta &RHS) const {
832 return CritResources == RHS.CritResources
833 && DemandedResources == RHS.DemandedResources;
834 }
835 bool operator!=(const SchedResourceDelta &RHS) const {
836 return !operator==(RHS);
837 }
838 };
839
840 /// Store the state used by GenericScheduler heuristics, required for the
841 /// lifetime of one invocation of pickNode().
842 struct SchedCandidate {
843 CandPolicy Policy;
844
845 // The best SUnit candidate.
846 SUnit *SU;
847
848 // The reason for this candidate.
849 CandReason Reason;
850
851 // Whether this candidate should be scheduled at top/bottom.
852 bool AtTop;
853
854 // Register pressure values for the best candidate.
855 RegPressureDelta RPDelta;
856
857 // Critical resource consumption of the best candidate.
858 SchedResourceDelta ResDelta;
859
860 SchedCandidate() { reset(CandPolicy()); }
861 SchedCandidate(const CandPolicy &Policy) { reset(Policy); }
862
863 void reset(const CandPolicy &NewPolicy) {
864 Policy = NewPolicy;
865 SU = nullptr;
866 Reason = NoCand;
867 AtTop = false;
868 RPDelta = RegPressureDelta();
869 ResDelta = SchedResourceDelta();
870 }
871
872 bool isValid() const { return SU; }
873
874 // Copy the status of another candidate without changing policy.
875 void setBest(SchedCandidate &Best) {
876 assert(Best.Reason != NoCand && "uninitialized Sched candidate");
877 SU = Best.SU;
878 Reason = Best.Reason;
879 AtTop = Best.AtTop;
880 RPDelta = Best.RPDelta;
881 ResDelta = Best.ResDelta;
882 }
883
884 void initResourceDelta(const ScheduleDAGMI *DAG,
885 const TargetSchedModel *SchedModel);
886 };
887
888protected:
889 const MachineSchedContext *Context;
890 const TargetSchedModel *SchedModel = nullptr;
891 const TargetRegisterInfo *TRI = nullptr;
892
893 SchedRemainder Rem;
894
895 GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {}
896
897 void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
898 SchedBoundary *OtherZone);
899
900#ifndef NDEBUG
901 void traceCandidate(const SchedCandidate &Cand);
902#endif
Andrew Scull0372a572018-11-16 15:47:06 +0000903
904private:
905 bool shouldReduceLatency(const CandPolicy &Policy, SchedBoundary &CurrZone,
906 bool ComputeRemLatency, unsigned &RemLatency) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100907};
908
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100909// Utility functions used by heuristics in tryCandidate().
910bool tryLess(int TryVal, int CandVal,
911 GenericSchedulerBase::SchedCandidate &TryCand,
912 GenericSchedulerBase::SchedCandidate &Cand,
913 GenericSchedulerBase::CandReason Reason);
914bool tryGreater(int TryVal, int CandVal,
915 GenericSchedulerBase::SchedCandidate &TryCand,
916 GenericSchedulerBase::SchedCandidate &Cand,
917 GenericSchedulerBase::CandReason Reason);
918bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
919 GenericSchedulerBase::SchedCandidate &Cand,
920 SchedBoundary &Zone);
921bool tryPressure(const PressureChange &TryP,
922 const PressureChange &CandP,
923 GenericSchedulerBase::SchedCandidate &TryCand,
924 GenericSchedulerBase::SchedCandidate &Cand,
925 GenericSchedulerBase::CandReason Reason,
926 const TargetRegisterInfo *TRI,
927 const MachineFunction &MF);
928unsigned getWeakLeft(const SUnit *SU, bool isTop);
929int biasPhysRegCopy(const SUnit *SU, bool isTop);
930
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100931/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
932/// the schedule.
933class GenericScheduler : public GenericSchedulerBase {
934public:
935 GenericScheduler(const MachineSchedContext *C):
936 GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"),
937 Bot(SchedBoundary::BotQID, "BotQ") {}
938
939 void initPolicy(MachineBasicBlock::iterator Begin,
940 MachineBasicBlock::iterator End,
941 unsigned NumRegionInstrs) override;
942
943 void dumpPolicy() const override;
944
945 bool shouldTrackPressure() const override {
946 return RegionPolicy.ShouldTrackPressure;
947 }
948
949 bool shouldTrackLaneMasks() const override {
950 return RegionPolicy.ShouldTrackLaneMasks;
951 }
952
953 void initialize(ScheduleDAGMI *dag) override;
954
955 SUnit *pickNode(bool &IsTopNode) override;
956
957 void schedNode(SUnit *SU, bool IsTopNode) override;
958
959 void releaseTopNode(SUnit *SU) override {
960 if (SU->isScheduled)
961 return;
962
963 Top.releaseNode(SU, SU->TopReadyCycle);
964 TopCand.SU = nullptr;
965 }
966
967 void releaseBottomNode(SUnit *SU) override {
968 if (SU->isScheduled)
969 return;
970
971 Bot.releaseNode(SU, SU->BotReadyCycle);
972 BotCand.SU = nullptr;
973 }
974
975 void registerRoots() override;
976
977protected:
978 ScheduleDAGMILive *DAG = nullptr;
979
980 MachineSchedPolicy RegionPolicy;
981
982 // State of the top and bottom scheduled instruction boundaries.
983 SchedBoundary Top;
984 SchedBoundary Bot;
985
986 /// Candidate last picked from Top boundary.
987 SchedCandidate TopCand;
988 /// Candidate last picked from Bot boundary.
989 SchedCandidate BotCand;
990
991 void checkAcyclicLatency();
992
993 void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop,
994 const RegPressureTracker &RPTracker,
995 RegPressureTracker &TempTracker);
996
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100997 virtual void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand,
998 SchedBoundary *Zone) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100999
1000 SUnit *pickNodeBidirectional(bool &IsTopNode);
1001
1002 void pickNodeFromQueue(SchedBoundary &Zone,
1003 const CandPolicy &ZonePolicy,
1004 const RegPressureTracker &RPTracker,
1005 SchedCandidate &Candidate);
1006
1007 void reschedulePhysRegCopies(SUnit *SU, bool isTop);
1008};
1009
1010/// PostGenericScheduler - Interface to the scheduling algorithm used by
1011/// ScheduleDAGMI.
1012///
1013/// Callbacks from ScheduleDAGMI:
1014/// initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
1015class PostGenericScheduler : public GenericSchedulerBase {
1016 ScheduleDAGMI *DAG;
1017 SchedBoundary Top;
1018 SmallVector<SUnit*, 8> BotRoots;
1019
1020public:
1021 PostGenericScheduler(const MachineSchedContext *C):
1022 GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
1023
1024 ~PostGenericScheduler() override = default;
1025
1026 void initPolicy(MachineBasicBlock::iterator Begin,
1027 MachineBasicBlock::iterator End,
1028 unsigned NumRegionInstrs) override {
1029 /* no configurable policy */
1030 }
1031
1032 /// PostRA scheduling does not track pressure.
1033 bool shouldTrackPressure() const override { return false; }
1034
1035 void initialize(ScheduleDAGMI *Dag) override;
1036
1037 void registerRoots() override;
1038
1039 SUnit *pickNode(bool &IsTopNode) override;
1040
1041 void scheduleTree(unsigned SubtreeID) override {
1042 llvm_unreachable("PostRA scheduler does not support subtree analysis.");
1043 }
1044
1045 void schedNode(SUnit *SU, bool IsTopNode) override;
1046
1047 void releaseTopNode(SUnit *SU) override {
1048 if (SU->isScheduled)
1049 return;
1050 Top.releaseNode(SU, SU->TopReadyCycle);
1051 }
1052
1053 // Only called for roots.
1054 void releaseBottomNode(SUnit *SU) override {
1055 BotRoots.push_back(SU);
1056 }
1057
1058protected:
1059 void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
1060
1061 void pickNodeFromQueue(SchedCandidate &Cand);
1062};
1063
1064/// Create the standard converging machine scheduler. This will be used as the
1065/// default scheduler if the target does not set a default.
1066/// Adds default DAG mutations.
1067ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C);
1068
1069/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
1070ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C);
1071
1072std::unique_ptr<ScheduleDAGMutation>
1073createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1074 const TargetRegisterInfo *TRI);
1075
1076std::unique_ptr<ScheduleDAGMutation>
1077createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1078 const TargetRegisterInfo *TRI);
1079
1080std::unique_ptr<ScheduleDAGMutation>
1081createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1082 const TargetRegisterInfo *TRI);
1083
1084} // end namespace llvm
1085
1086#endif // LLVM_CODEGEN_MACHINESCHEDULER_H