blob: a6d7e765295bb9e94dc1129eecd31d978ef52c56 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG. These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/ADT/APFloat.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/BitVector.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/ADT/GraphTraits.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/ilist_node.h"
30#include "llvm/ADT/iterator.h"
31#include "llvm/ADT/iterator_range.h"
32#include "llvm/CodeGen/ISDOpcodes.h"
33#include "llvm/CodeGen/MachineMemOperand.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DebugLoc.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/Metadata.h"
Andrew Scullcdfcccc2018-10-05 20:58:37 +010040#include "llvm/IR/Operator.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010041#include "llvm/Support/AlignOf.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/MachineValueType.h"
46#include <algorithm>
47#include <cassert>
48#include <climits>
49#include <cstddef>
50#include <cstdint>
51#include <cstring>
52#include <iterator>
53#include <string>
54#include <tuple>
55
56namespace llvm {
57
58class APInt;
59class Constant;
60template <typename T> struct DenseMapInfo;
61class GlobalValue;
62class MachineBasicBlock;
63class MachineConstantPoolValue;
64class MCSymbol;
65class raw_ostream;
66class SDNode;
67class SelectionDAG;
68class Type;
69class Value;
70
71void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
72 bool force = false);
73
74/// This represents a list of ValueType's that has been intern'd by
75/// a SelectionDAG. Instances of this simple value class are returned by
76/// SelectionDAG::getVTList(...).
77///
78struct SDVTList {
79 const EVT *VTs;
80 unsigned int NumVTs;
81};
82
83namespace ISD {
84
85 /// Node predicates
86
87 /// If N is a BUILD_VECTOR node whose elements are all the same constant or
88 /// undefined, return true and return the constant value in \p SplatValue.
89 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
90
91 /// Return true if the specified node is a BUILD_VECTOR where all of the
92 /// elements are ~0 or undef.
93 bool isBuildVectorAllOnes(const SDNode *N);
94
95 /// Return true if the specified node is a BUILD_VECTOR where all of the
96 /// elements are 0 or undef.
97 bool isBuildVectorAllZeros(const SDNode *N);
98
99 /// Return true if the specified node is a BUILD_VECTOR node of all
100 /// ConstantSDNode or undef.
101 bool isBuildVectorOfConstantSDNodes(const SDNode *N);
102
103 /// Return true if the specified node is a BUILD_VECTOR node of all
104 /// ConstantFPSDNode or undef.
105 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
106
107 /// Return true if the node has at least one operand and all operands of the
108 /// specified node are ISD::UNDEF.
109 bool allOperandsUndef(const SDNode *N);
110
111} // end namespace ISD
112
113//===----------------------------------------------------------------------===//
114/// Unlike LLVM values, Selection DAG nodes may return multiple
115/// values as the result of a computation. Many nodes return multiple values,
116/// from loads (which define a token and a return value) to ADDC (which returns
117/// a result and a carry value), to calls (which may return an arbitrary number
118/// of values).
119///
120/// As such, each use of a SelectionDAG computation must indicate the node that
121/// computes it as well as which return value to use from that node. This pair
122/// of information is represented with the SDValue value type.
123///
124class SDValue {
125 friend struct DenseMapInfo<SDValue>;
126
127 SDNode *Node = nullptr; // The node defining the value we are using.
128 unsigned ResNo = 0; // Which return value of the node we are using.
129
130public:
131 SDValue() = default;
132 SDValue(SDNode *node, unsigned resno);
133
134 /// get the index which selects a specific result in the SDNode
135 unsigned getResNo() const { return ResNo; }
136
137 /// get the SDNode which holds the desired result
138 SDNode *getNode() const { return Node; }
139
140 /// set the SDNode
141 void setNode(SDNode *N) { Node = N; }
142
143 inline SDNode *operator->() const { return Node; }
144
145 bool operator==(const SDValue &O) const {
146 return Node == O.Node && ResNo == O.ResNo;
147 }
148 bool operator!=(const SDValue &O) const {
149 return !operator==(O);
150 }
151 bool operator<(const SDValue &O) const {
152 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
153 }
154 explicit operator bool() const {
155 return Node != nullptr;
156 }
157
158 SDValue getValue(unsigned R) const {
159 return SDValue(Node, R);
160 }
161
162 /// Return true if this node is an operand of N.
163 bool isOperandOf(const SDNode *N) const;
164
165 /// Return the ValueType of the referenced return value.
166 inline EVT getValueType() const;
167
168 /// Return the simple ValueType of the referenced return value.
169 MVT getSimpleValueType() const {
170 return getValueType().getSimpleVT();
171 }
172
173 /// Returns the size of the value in bits.
174 unsigned getValueSizeInBits() const {
175 return getValueType().getSizeInBits();
176 }
177
178 unsigned getScalarValueSizeInBits() const {
179 return getValueType().getScalarType().getSizeInBits();
180 }
181
182 // Forwarding methods - These forward to the corresponding methods in SDNode.
183 inline unsigned getOpcode() const;
184 inline unsigned getNumOperands() const;
185 inline const SDValue &getOperand(unsigned i) const;
186 inline uint64_t getConstantOperandVal(unsigned i) const;
187 inline bool isTargetMemoryOpcode() const;
188 inline bool isTargetOpcode() const;
189 inline bool isMachineOpcode() const;
190 inline bool isUndef() const;
191 inline unsigned getMachineOpcode() const;
192 inline const DebugLoc &getDebugLoc() const;
193 inline void dump() const;
194 inline void dump(const SelectionDAG *G) const;
195 inline void dumpr() const;
196 inline void dumpr(const SelectionDAG *G) const;
197
198 /// Return true if this operand (which must be a chain) reaches the
199 /// specified operand without crossing any side-effecting instructions.
200 /// In practice, this looks through token factors and non-volatile loads.
201 /// In order to remain efficient, this only
202 /// looks a couple of nodes in, it does not do an exhaustive search.
203 bool reachesChainWithoutSideEffects(SDValue Dest,
204 unsigned Depth = 2) const;
205
206 /// Return true if there are no nodes using value ResNo of Node.
207 inline bool use_empty() const;
208
209 /// Return true if there is exactly one node using value ResNo of Node.
210 inline bool hasOneUse() const;
211};
212
213template<> struct DenseMapInfo<SDValue> {
214 static inline SDValue getEmptyKey() {
215 SDValue V;
216 V.ResNo = -1U;
217 return V;
218 }
219
220 static inline SDValue getTombstoneKey() {
221 SDValue V;
222 V.ResNo = -2U;
223 return V;
224 }
225
226 static unsigned getHashValue(const SDValue &Val) {
227 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
228 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
229 }
230
231 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
232 return LHS == RHS;
233 }
234};
235template <> struct isPodLike<SDValue> { static const bool value = true; };
236
237/// Allow casting operators to work directly on
238/// SDValues as if they were SDNode*'s.
239template<> struct simplify_type<SDValue> {
240 using SimpleType = SDNode *;
241
242 static SimpleType getSimplifiedValue(SDValue &Val) {
243 return Val.getNode();
244 }
245};
246template<> struct simplify_type<const SDValue> {
247 using SimpleType = /*const*/ SDNode *;
248
249 static SimpleType getSimplifiedValue(const SDValue &Val) {
250 return Val.getNode();
251 }
252};
253
254/// Represents a use of a SDNode. This class holds an SDValue,
255/// which records the SDNode being used and the result number, a
256/// pointer to the SDNode using the value, and Next and Prev pointers,
257/// which link together all the uses of an SDNode.
258///
259class SDUse {
260 /// Val - The value being used.
261 SDValue Val;
262 /// User - The user of this value.
263 SDNode *User = nullptr;
264 /// Prev, Next - Pointers to the uses list of the SDNode referred by
265 /// this operand.
266 SDUse **Prev = nullptr;
267 SDUse *Next = nullptr;
268
269public:
270 SDUse() = default;
271 SDUse(const SDUse &U) = delete;
272 SDUse &operator=(const SDUse &) = delete;
273
274 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
275 operator const SDValue&() const { return Val; }
276
277 /// If implicit conversion to SDValue doesn't work, the get() method returns
278 /// the SDValue.
279 const SDValue &get() const { return Val; }
280
281 /// This returns the SDNode that contains this Use.
282 SDNode *getUser() { return User; }
283
284 /// Get the next SDUse in the use list.
285 SDUse *getNext() const { return Next; }
286
287 /// Convenience function for get().getNode().
288 SDNode *getNode() const { return Val.getNode(); }
289 /// Convenience function for get().getResNo().
290 unsigned getResNo() const { return Val.getResNo(); }
291 /// Convenience function for get().getValueType().
292 EVT getValueType() const { return Val.getValueType(); }
293
294 /// Convenience function for get().operator==
295 bool operator==(const SDValue &V) const {
296 return Val == V;
297 }
298
299 /// Convenience function for get().operator!=
300 bool operator!=(const SDValue &V) const {
301 return Val != V;
302 }
303
304 /// Convenience function for get().operator<
305 bool operator<(const SDValue &V) const {
306 return Val < V;
307 }
308
309private:
310 friend class SelectionDAG;
311 friend class SDNode;
312 // TODO: unfriend HandleSDNode once we fix its operand handling.
313 friend class HandleSDNode;
314
315 void setUser(SDNode *p) { User = p; }
316
317 /// Remove this use from its existing use list, assign it the
318 /// given value, and add it to the new value's node's use list.
319 inline void set(const SDValue &V);
320 /// Like set, but only supports initializing a newly-allocated
321 /// SDUse with a non-null value.
322 inline void setInitial(const SDValue &V);
323 /// Like set, but only sets the Node portion of the value,
324 /// leaving the ResNo portion unmodified.
325 inline void setNode(SDNode *N);
326
327 void addToList(SDUse **List) {
328 Next = *List;
329 if (Next) Next->Prev = &Next;
330 Prev = List;
331 *List = this;
332 }
333
334 void removeFromList() {
335 *Prev = Next;
336 if (Next) Next->Prev = Prev;
337 }
338};
339
340/// simplify_type specializations - Allow casting operators to work directly on
341/// SDValues as if they were SDNode*'s.
342template<> struct simplify_type<SDUse> {
343 using SimpleType = SDNode *;
344
345 static SimpleType getSimplifiedValue(SDUse &Val) {
346 return Val.getNode();
347 }
348};
349
350/// These are IR-level optimization flags that may be propagated to SDNodes.
351/// TODO: This data structure should be shared by the IR optimizer and the
352/// the backend.
353struct SDNodeFlags {
354private:
355 // This bit is used to determine if the flags are in a defined state.
356 // Flag bits can only be masked out during intersection if the masking flags
357 // are defined.
358 bool AnyDefined : 1;
359
360 bool NoUnsignedWrap : 1;
361 bool NoSignedWrap : 1;
362 bool Exact : 1;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100363 bool NoNaNs : 1;
364 bool NoInfs : 1;
365 bool NoSignedZeros : 1;
366 bool AllowReciprocal : 1;
367 bool VectorReduction : 1;
368 bool AllowContract : 1;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100369 bool ApproximateFuncs : 1;
370 bool AllowReassociation : 1;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100371
372public:
373 /// Default constructor turns off all optimization flags.
374 SDNodeFlags()
375 : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100376 Exact(false), NoNaNs(false), NoInfs(false),
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100377 NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100378 AllowContract(false), ApproximateFuncs(false),
379 AllowReassociation(false) {}
380
381 /// Propagate the fast-math-flags from an IR FPMathOperator.
382 void copyFMF(const FPMathOperator &FPMO) {
383 setNoNaNs(FPMO.hasNoNaNs());
384 setNoInfs(FPMO.hasNoInfs());
385 setNoSignedZeros(FPMO.hasNoSignedZeros());
386 setAllowReciprocal(FPMO.hasAllowReciprocal());
387 setAllowContract(FPMO.hasAllowContract());
388 setApproximateFuncs(FPMO.hasApproxFunc());
389 setAllowReassociation(FPMO.hasAllowReassoc());
390 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100391
392 /// Sets the state of the flags to the defined state.
393 void setDefined() { AnyDefined = true; }
394 /// Returns true if the flags are in a defined state.
395 bool isDefined() const { return AnyDefined; }
396
397 // These are mutators for each flag.
398 void setNoUnsignedWrap(bool b) {
399 setDefined();
400 NoUnsignedWrap = b;
401 }
402 void setNoSignedWrap(bool b) {
403 setDefined();
404 NoSignedWrap = b;
405 }
406 void setExact(bool b) {
407 setDefined();
408 Exact = b;
409 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100410 void setNoNaNs(bool b) {
411 setDefined();
412 NoNaNs = b;
413 }
414 void setNoInfs(bool b) {
415 setDefined();
416 NoInfs = b;
417 }
418 void setNoSignedZeros(bool b) {
419 setDefined();
420 NoSignedZeros = b;
421 }
422 void setAllowReciprocal(bool b) {
423 setDefined();
424 AllowReciprocal = b;
425 }
426 void setVectorReduction(bool b) {
427 setDefined();
428 VectorReduction = b;
429 }
430 void setAllowContract(bool b) {
431 setDefined();
432 AllowContract = b;
433 }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100434 void setApproximateFuncs(bool b) {
435 setDefined();
436 ApproximateFuncs = b;
437 }
438 void setAllowReassociation(bool b) {
439 setDefined();
440 AllowReassociation = b;
441 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100442
443 // These are accessors for each flag.
444 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
445 bool hasNoSignedWrap() const { return NoSignedWrap; }
446 bool hasExact() const { return Exact; }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100447 bool hasNoNaNs() const { return NoNaNs; }
448 bool hasNoInfs() const { return NoInfs; }
449 bool hasNoSignedZeros() const { return NoSignedZeros; }
450 bool hasAllowReciprocal() const { return AllowReciprocal; }
451 bool hasVectorReduction() const { return VectorReduction; }
452 bool hasAllowContract() const { return AllowContract; }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100453 bool hasApproximateFuncs() const { return ApproximateFuncs; }
454 bool hasAllowReassociation() const { return AllowReassociation; }
455
456 bool isFast() const {
457 return NoSignedZeros && AllowReciprocal && NoNaNs && NoInfs &&
458 AllowContract && ApproximateFuncs && AllowReassociation;
459 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100460
461 /// Clear any flags in this flag set that aren't also set in Flags.
462 /// If the given Flags are undefined then don't do anything.
463 void intersectWith(const SDNodeFlags Flags) {
464 if (!Flags.isDefined())
465 return;
466 NoUnsignedWrap &= Flags.NoUnsignedWrap;
467 NoSignedWrap &= Flags.NoSignedWrap;
468 Exact &= Flags.Exact;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100469 NoNaNs &= Flags.NoNaNs;
470 NoInfs &= Flags.NoInfs;
471 NoSignedZeros &= Flags.NoSignedZeros;
472 AllowReciprocal &= Flags.AllowReciprocal;
473 VectorReduction &= Flags.VectorReduction;
474 AllowContract &= Flags.AllowContract;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100475 ApproximateFuncs &= Flags.ApproximateFuncs;
476 AllowReassociation &= Flags.AllowReassociation;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100477 }
478};
479
480/// Represents one node in the SelectionDAG.
481///
482class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
483private:
484 /// The operation that this node performs.
485 int16_t NodeType;
486
487protected:
488 // We define a set of mini-helper classes to help us interpret the bits in our
489 // SubclassData. These are designed to fit within a uint16_t so they pack
490 // with NodeType.
491
492 class SDNodeBitfields {
493 friend class SDNode;
494 friend class MemIntrinsicSDNode;
495 friend class MemSDNode;
496 friend class SelectionDAG;
497
498 uint16_t HasDebugValue : 1;
499 uint16_t IsMemIntrinsic : 1;
500 uint16_t IsDivergent : 1;
501 };
502 enum { NumSDNodeBits = 3 };
503
504 class ConstantSDNodeBitfields {
505 friend class ConstantSDNode;
506
507 uint16_t : NumSDNodeBits;
508
509 uint16_t IsOpaque : 1;
510 };
511
512 class MemSDNodeBitfields {
513 friend class MemSDNode;
514 friend class MemIntrinsicSDNode;
515 friend class AtomicSDNode;
516
517 uint16_t : NumSDNodeBits;
518
519 uint16_t IsVolatile : 1;
520 uint16_t IsNonTemporal : 1;
521 uint16_t IsDereferenceable : 1;
522 uint16_t IsInvariant : 1;
523 };
524 enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
525
526 class LSBaseSDNodeBitfields {
527 friend class LSBaseSDNode;
528
529 uint16_t : NumMemSDNodeBits;
530
531 uint16_t AddressingMode : 3; // enum ISD::MemIndexedMode
532 };
533 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
534
535 class LoadSDNodeBitfields {
536 friend class LoadSDNode;
537 friend class MaskedLoadSDNode;
538
539 uint16_t : NumLSBaseSDNodeBits;
540
541 uint16_t ExtTy : 2; // enum ISD::LoadExtType
542 uint16_t IsExpanding : 1;
543 };
544
545 class StoreSDNodeBitfields {
546 friend class StoreSDNode;
547 friend class MaskedStoreSDNode;
548
549 uint16_t : NumLSBaseSDNodeBits;
550
551 uint16_t IsTruncating : 1;
552 uint16_t IsCompressing : 1;
553 };
554
555 union {
556 char RawSDNodeBits[sizeof(uint16_t)];
557 SDNodeBitfields SDNodeBits;
558 ConstantSDNodeBitfields ConstantSDNodeBits;
559 MemSDNodeBitfields MemSDNodeBits;
560 LSBaseSDNodeBitfields LSBaseSDNodeBits;
561 LoadSDNodeBitfields LoadSDNodeBits;
562 StoreSDNodeBitfields StoreSDNodeBits;
563 };
564
565 // RawSDNodeBits must cover the entirety of the union. This means that all of
566 // the union's members must have size <= RawSDNodeBits. We write the RHS as
567 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
568 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
569 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
570 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
571 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100572 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100573 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
574
575private:
576 friend class SelectionDAG;
577 // TODO: unfriend HandleSDNode once we fix its operand handling.
578 friend class HandleSDNode;
579
580 /// Unique id per SDNode in the DAG.
581 int NodeId = -1;
582
583 /// The values that are used by this operation.
584 SDUse *OperandList = nullptr;
585
586 /// The types of the values this node defines. SDNode's may
587 /// define multiple values simultaneously.
588 const EVT *ValueList;
589
590 /// List of uses for this SDNode.
591 SDUse *UseList = nullptr;
592
593 /// The number of entries in the Operand/Value list.
594 unsigned short NumOperands = 0;
595 unsigned short NumValues;
596
597 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
598 // original LLVM instructions.
599 // This is used for turning off scheduling, because we'll forgo
600 // the normal scheduling algorithms and output the instructions according to
601 // this ordering.
602 unsigned IROrder;
603
604 /// Source line information.
605 DebugLoc debugLoc;
606
607 /// Return a pointer to the specified value type.
608 static const EVT *getValueTypeList(EVT VT);
609
610 SDNodeFlags Flags;
611
612public:
613 /// Unique and persistent id per SDNode in the DAG.
614 /// Used for debug printing.
615 uint16_t PersistentId;
616
617 //===--------------------------------------------------------------------===//
618 // Accessors
619 //
620
621 /// Return the SelectionDAG opcode value for this node. For
622 /// pre-isel nodes (those for which isMachineOpcode returns false), these
623 /// are the opcode values in the ISD and <target>ISD namespaces. For
624 /// post-isel opcodes, see getMachineOpcode.
625 unsigned getOpcode() const { return (unsigned short)NodeType; }
626
627 /// Test if this node has a target-specific opcode (in the
628 /// \<target\>ISD namespace).
629 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
630
631 /// Test if this node has a target-specific
632 /// memory-referencing opcode (in the \<target\>ISD namespace and
633 /// greater than FIRST_TARGET_MEMORY_OPCODE).
634 bool isTargetMemoryOpcode() const {
635 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
636 }
637
638 /// Return true if the type of the node type undefined.
639 bool isUndef() const { return NodeType == ISD::UNDEF; }
640
641 /// Test if this node is a memory intrinsic (with valid pointer information).
642 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
643 /// non-memory intrinsics (with chains) that are not really instances of
644 /// MemSDNode. For such nodes, we need some extra state to determine the
645 /// proper classof relationship.
646 bool isMemIntrinsic() const {
647 return (NodeType == ISD::INTRINSIC_W_CHAIN ||
648 NodeType == ISD::INTRINSIC_VOID) &&
649 SDNodeBits.IsMemIntrinsic;
650 }
651
652 /// Test if this node is a strict floating point pseudo-op.
653 bool isStrictFPOpcode() {
654 switch (NodeType) {
655 default:
656 return false;
657 case ISD::STRICT_FADD:
658 case ISD::STRICT_FSUB:
659 case ISD::STRICT_FMUL:
660 case ISD::STRICT_FDIV:
661 case ISD::STRICT_FREM:
662 case ISD::STRICT_FMA:
663 case ISD::STRICT_FSQRT:
664 case ISD::STRICT_FPOW:
665 case ISD::STRICT_FPOWI:
666 case ISD::STRICT_FSIN:
667 case ISD::STRICT_FCOS:
668 case ISD::STRICT_FEXP:
669 case ISD::STRICT_FEXP2:
670 case ISD::STRICT_FLOG:
671 case ISD::STRICT_FLOG10:
672 case ISD::STRICT_FLOG2:
673 case ISD::STRICT_FRINT:
674 case ISD::STRICT_FNEARBYINT:
675 return true;
676 }
677 }
678
679 /// Test if this node has a post-isel opcode, directly
680 /// corresponding to a MachineInstr opcode.
681 bool isMachineOpcode() const { return NodeType < 0; }
682
683 /// This may only be called if isMachineOpcode returns
684 /// true. It returns the MachineInstr opcode value that the node's opcode
685 /// corresponds to.
686 unsigned getMachineOpcode() const {
687 assert(isMachineOpcode() && "Not a MachineInstr opcode!");
688 return ~NodeType;
689 }
690
691 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
692 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
693
694 bool isDivergent() const { return SDNodeBits.IsDivergent; }
695
696 /// Return true if there are no uses of this node.
697 bool use_empty() const { return UseList == nullptr; }
698
699 /// Return true if there is exactly one use of this node.
700 bool hasOneUse() const {
701 return !use_empty() && std::next(use_begin()) == use_end();
702 }
703
704 /// Return the number of uses of this node. This method takes
705 /// time proportional to the number of uses.
706 size_t use_size() const { return std::distance(use_begin(), use_end()); }
707
708 /// Return the unique node id.
709 int getNodeId() const { return NodeId; }
710
711 /// Set unique node id.
712 void setNodeId(int Id) { NodeId = Id; }
713
714 /// Return the node ordering.
715 unsigned getIROrder() const { return IROrder; }
716
717 /// Set the node ordering.
718 void setIROrder(unsigned Order) { IROrder = Order; }
719
720 /// Return the source location info.
721 const DebugLoc &getDebugLoc() const { return debugLoc; }
722
723 /// Set source location info. Try to avoid this, putting
724 /// it in the constructor is preferable.
725 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
726
727 /// This class provides iterator support for SDUse
728 /// operands that use a specific SDNode.
729 class use_iterator
730 : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
731 friend class SDNode;
732
733 SDUse *Op = nullptr;
734
735 explicit use_iterator(SDUse *op) : Op(op) {}
736
737 public:
738 using reference = std::iterator<std::forward_iterator_tag,
739 SDUse, ptrdiff_t>::reference;
740 using pointer = std::iterator<std::forward_iterator_tag,
741 SDUse, ptrdiff_t>::pointer;
742
743 use_iterator() = default;
744 use_iterator(const use_iterator &I) : Op(I.Op) {}
745
746 bool operator==(const use_iterator &x) const {
747 return Op == x.Op;
748 }
749 bool operator!=(const use_iterator &x) const {
750 return !operator==(x);
751 }
752
753 /// Return true if this iterator is at the end of uses list.
754 bool atEnd() const { return Op == nullptr; }
755
756 // Iterator traversal: forward iteration only.
757 use_iterator &operator++() { // Preincrement
758 assert(Op && "Cannot increment end iterator!");
759 Op = Op->getNext();
760 return *this;
761 }
762
763 use_iterator operator++(int) { // Postincrement
764 use_iterator tmp = *this; ++*this; return tmp;
765 }
766
767 /// Retrieve a pointer to the current user node.
768 SDNode *operator*() const {
769 assert(Op && "Cannot dereference end iterator!");
770 return Op->getUser();
771 }
772
773 SDNode *operator->() const { return operator*(); }
774
775 SDUse &getUse() const { return *Op; }
776
777 /// Retrieve the operand # of this use in its user.
778 unsigned getOperandNo() const {
779 assert(Op && "Cannot dereference end iterator!");
780 return (unsigned)(Op - Op->getUser()->OperandList);
781 }
782 };
783
784 /// Provide iteration support to walk over all uses of an SDNode.
785 use_iterator use_begin() const {
786 return use_iterator(UseList);
787 }
788
789 static use_iterator use_end() { return use_iterator(nullptr); }
790
791 inline iterator_range<use_iterator> uses() {
792 return make_range(use_begin(), use_end());
793 }
794 inline iterator_range<use_iterator> uses() const {
795 return make_range(use_begin(), use_end());
796 }
797
798 /// Return true if there are exactly NUSES uses of the indicated value.
799 /// This method ignores uses of other values defined by this operation.
800 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
801
802 /// Return true if there are any use of the indicated value.
803 /// This method ignores uses of other values defined by this operation.
804 bool hasAnyUseOfValue(unsigned Value) const;
805
806 /// Return true if this node is the only use of N.
807 bool isOnlyUserOf(const SDNode *N) const;
808
809 /// Return true if this node is an operand of N.
810 bool isOperandOf(const SDNode *N) const;
811
812 /// Return true if this node is a predecessor of N.
813 /// NOTE: Implemented on top of hasPredecessor and every bit as
814 /// expensive. Use carefully.
815 bool isPredecessorOf(const SDNode *N) const {
816 return N->hasPredecessor(this);
817 }
818
819 /// Return true if N is a predecessor of this node.
820 /// N is either an operand of this node, or can be reached by recursively
821 /// traversing up the operands.
822 /// NOTE: This is an expensive method. Use it carefully.
823 bool hasPredecessor(const SDNode *N) const;
824
825 /// Returns true if N is a predecessor of any node in Worklist. This
826 /// helper keeps Visited and Worklist sets externally to allow unions
827 /// searches to be performed in parallel, caching of results across
828 /// queries and incremental addition to Worklist. Stops early if N is
829 /// found but will resume. Remember to clear Visited and Worklists
830 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
831 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
832 /// topologically ordered (Operands have strictly smaller node id) and search
833 /// can be pruned leveraging this.
834 static bool hasPredecessorHelper(const SDNode *N,
835 SmallPtrSetImpl<const SDNode *> &Visited,
836 SmallVectorImpl<const SDNode *> &Worklist,
837 unsigned int MaxSteps = 0,
838 bool TopologicalPrune = false) {
839 SmallVector<const SDNode *, 8> DeferredNodes;
840 if (Visited.count(N))
841 return true;
842
843 // Node Id's are assigned in three places: As a topological
844 // ordering (> 0), during legalization (results in values set to
845 // 0), new nodes (set to -1). If N has a topolgical id then we
846 // know that all nodes with ids smaller than it cannot be
847 // successors and we need not check them. Filter out all node
848 // that can't be matches. We add them to the worklist before exit
849 // in case of multiple calls. Note that during selection the topological id
850 // may be violated if a node's predecessor is selected before it. We mark
851 // this at selection negating the id of unselected successors and
852 // restricting topological pruning to positive ids.
853
854 int NId = N->getNodeId();
855 // If we Invalidated the Id, reconstruct original NId.
856 if (NId < -1)
857 NId = -(NId + 1);
858
859 bool Found = false;
860 while (!Worklist.empty()) {
861 const SDNode *M = Worklist.pop_back_val();
862 int MId = M->getNodeId();
863 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
864 (MId > 0) && (MId < NId)) {
865 DeferredNodes.push_back(M);
866 continue;
867 }
868 for (const SDValue &OpV : M->op_values()) {
869 SDNode *Op = OpV.getNode();
870 if (Visited.insert(Op).second)
871 Worklist.push_back(Op);
872 if (Op == N)
873 Found = true;
874 }
875 if (Found)
876 break;
877 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
878 break;
879 }
880 // Push deferred nodes back on worklist.
881 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
882 // If we bailed early, conservatively return found.
883 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
884 return true;
885 return Found;
886 }
887
888 /// Return true if all the users of N are contained in Nodes.
889 /// NOTE: Requires at least one match, but doesn't require them all.
890 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
891
892 /// Return the number of values used by this operation.
893 unsigned getNumOperands() const { return NumOperands; }
894
895 /// Helper method returns the integer value of a ConstantSDNode operand.
896 inline uint64_t getConstantOperandVal(unsigned Num) const;
897
898 const SDValue &getOperand(unsigned Num) const {
899 assert(Num < NumOperands && "Invalid child # of SDNode!");
900 return OperandList[Num];
901 }
902
903 using op_iterator = SDUse *;
904
905 op_iterator op_begin() const { return OperandList; }
906 op_iterator op_end() const { return OperandList+NumOperands; }
907 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
908
909 /// Iterator for directly iterating over the operand SDValue's.
910 struct value_op_iterator
911 : iterator_adaptor_base<value_op_iterator, op_iterator,
912 std::random_access_iterator_tag, SDValue,
913 ptrdiff_t, value_op_iterator *,
914 value_op_iterator *> {
915 explicit value_op_iterator(SDUse *U = nullptr)
916 : iterator_adaptor_base(U) {}
917
918 const SDValue &operator*() const { return I->get(); }
919 };
920
921 iterator_range<value_op_iterator> op_values() const {
922 return make_range(value_op_iterator(op_begin()),
923 value_op_iterator(op_end()));
924 }
925
926 SDVTList getVTList() const {
927 SDVTList X = { ValueList, NumValues };
928 return X;
929 }
930
931 /// If this node has a glue operand, return the node
932 /// to which the glue operand points. Otherwise return NULL.
933 SDNode *getGluedNode() const {
934 if (getNumOperands() != 0 &&
935 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
936 return getOperand(getNumOperands()-1).getNode();
937 return nullptr;
938 }
939
940 /// If this node has a glue value with a user, return
941 /// the user (there is at most one). Otherwise return NULL.
942 SDNode *getGluedUser() const {
943 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
944 if (UI.getUse().get().getValueType() == MVT::Glue)
945 return *UI;
946 return nullptr;
947 }
948
949 const SDNodeFlags getFlags() const { return Flags; }
950 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100951 bool isFast() { return Flags.isFast(); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100952
953 /// Clear any flags in this node that aren't also set in Flags.
954 /// If Flags is not in a defined state then this has no effect.
955 void intersectFlagsWith(const SDNodeFlags Flags);
956
957 /// Return the number of values defined/returned by this operator.
958 unsigned getNumValues() const { return NumValues; }
959
960 /// Return the type of a specified result.
961 EVT getValueType(unsigned ResNo) const {
962 assert(ResNo < NumValues && "Illegal result number!");
963 return ValueList[ResNo];
964 }
965
966 /// Return the type of a specified result as a simple type.
967 MVT getSimpleValueType(unsigned ResNo) const {
968 return getValueType(ResNo).getSimpleVT();
969 }
970
971 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
972 unsigned getValueSizeInBits(unsigned ResNo) const {
973 return getValueType(ResNo).getSizeInBits();
974 }
975
976 using value_iterator = const EVT *;
977
978 value_iterator value_begin() const { return ValueList; }
979 value_iterator value_end() const { return ValueList+NumValues; }
980
981 /// Return the opcode of this operation for printing.
982 std::string getOperationName(const SelectionDAG *G = nullptr) const;
983 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
984 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
985 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
986 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
987 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
988
989 /// Print a SelectionDAG node and all children down to
990 /// the leaves. The given SelectionDAG allows target-specific nodes
991 /// to be printed in human-readable form. Unlike printr, this will
992 /// print the whole DAG, including children that appear multiple
993 /// times.
994 ///
995 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
996
997 /// Print a SelectionDAG node and children up to
998 /// depth "depth." The given SelectionDAG allows target-specific
999 /// nodes to be printed in human-readable form. Unlike printr, this
1000 /// will print children that appear multiple times wherever they are
1001 /// used.
1002 ///
1003 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1004 unsigned depth = 100) const;
1005
1006 /// Dump this node, for debugging.
1007 void dump() const;
1008
1009 /// Dump (recursively) this node and its use-def subgraph.
1010 void dumpr() const;
1011
1012 /// Dump this node, for debugging.
1013 /// The given SelectionDAG allows target-specific nodes to be printed
1014 /// in human-readable form.
1015 void dump(const SelectionDAG *G) const;
1016
1017 /// Dump (recursively) this node and its use-def subgraph.
1018 /// The given SelectionDAG allows target-specific nodes to be printed
1019 /// in human-readable form.
1020 void dumpr(const SelectionDAG *G) const;
1021
1022 /// printrFull to dbgs(). The given SelectionDAG allows
1023 /// target-specific nodes to be printed in human-readable form.
1024 /// Unlike dumpr, this will print the whole DAG, including children
1025 /// that appear multiple times.
1026 void dumprFull(const SelectionDAG *G = nullptr) const;
1027
1028 /// printrWithDepth to dbgs(). The given
1029 /// SelectionDAG allows target-specific nodes to be printed in
1030 /// human-readable form. Unlike dumpr, this will print children
1031 /// that appear multiple times wherever they are used.
1032 ///
1033 void dumprWithDepth(const SelectionDAG *G = nullptr,
1034 unsigned depth = 100) const;
1035
1036 /// Gather unique data for the node.
1037 void Profile(FoldingSetNodeID &ID) const;
1038
1039 /// This method should only be used by the SDUse class.
1040 void addUse(SDUse &U) { U.addToList(&UseList); }
1041
1042protected:
1043 static SDVTList getSDVTList(EVT VT) {
1044 SDVTList Ret = { getValueTypeList(VT), 1 };
1045 return Ret;
1046 }
1047
1048 /// Create an SDNode.
1049 ///
1050 /// SDNodes are created without any operands, and never own the operand
1051 /// storage. To add operands, see SelectionDAG::createOperands.
1052 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1053 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1054 IROrder(Order), debugLoc(std::move(dl)) {
1055 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1056 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1057 assert(NumValues == VTs.NumVTs &&
1058 "NumValues wasn't wide enough for its operands!");
1059 }
1060
1061 /// Release the operands and set this node to have zero operands.
1062 void DropOperands();
1063};
1064
1065/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1066/// into SDNode creation functions.
1067/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1068/// from the original Instruction, and IROrder is the ordinal position of
1069/// the instruction.
1070/// When an SDNode is created after the DAG is being built, both DebugLoc and
1071/// the IROrder are propagated from the original SDNode.
1072/// So SDLoc class provides two constructors besides the default one, one to
1073/// be used by the DAGBuilder, the other to be used by others.
1074class SDLoc {
1075private:
1076 DebugLoc DL;
1077 int IROrder = 0;
1078
1079public:
1080 SDLoc() = default;
1081 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1082 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1083 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1084 assert(Order >= 0 && "bad IROrder");
1085 if (I)
1086 DL = I->getDebugLoc();
1087 }
1088
1089 unsigned getIROrder() const { return IROrder; }
1090 const DebugLoc &getDebugLoc() const { return DL; }
1091};
1092
1093// Define inline functions from the SDValue class.
1094
1095inline SDValue::SDValue(SDNode *node, unsigned resno)
1096 : Node(node), ResNo(resno) {
1097 // Explicitly check for !ResNo to avoid use-after-free, because there are
1098 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1099 // combines.
1100 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1101 "Invalid result number for the given node!");
1102 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1103}
1104
1105inline unsigned SDValue::getOpcode() const {
1106 return Node->getOpcode();
1107}
1108
1109inline EVT SDValue::getValueType() const {
1110 return Node->getValueType(ResNo);
1111}
1112
1113inline unsigned SDValue::getNumOperands() const {
1114 return Node->getNumOperands();
1115}
1116
1117inline const SDValue &SDValue::getOperand(unsigned i) const {
1118 return Node->getOperand(i);
1119}
1120
1121inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1122 return Node->getConstantOperandVal(i);
1123}
1124
1125inline bool SDValue::isTargetOpcode() const {
1126 return Node->isTargetOpcode();
1127}
1128
1129inline bool SDValue::isTargetMemoryOpcode() const {
1130 return Node->isTargetMemoryOpcode();
1131}
1132
1133inline bool SDValue::isMachineOpcode() const {
1134 return Node->isMachineOpcode();
1135}
1136
1137inline unsigned SDValue::getMachineOpcode() const {
1138 return Node->getMachineOpcode();
1139}
1140
1141inline bool SDValue::isUndef() const {
1142 return Node->isUndef();
1143}
1144
1145inline bool SDValue::use_empty() const {
1146 return !Node->hasAnyUseOfValue(ResNo);
1147}
1148
1149inline bool SDValue::hasOneUse() const {
1150 return Node->hasNUsesOfValue(1, ResNo);
1151}
1152
1153inline const DebugLoc &SDValue::getDebugLoc() const {
1154 return Node->getDebugLoc();
1155}
1156
1157inline void SDValue::dump() const {
1158 return Node->dump();
1159}
1160
1161inline void SDValue::dump(const SelectionDAG *G) const {
1162 return Node->dump(G);
1163}
1164
1165inline void SDValue::dumpr() const {
1166 return Node->dumpr();
1167}
1168
1169inline void SDValue::dumpr(const SelectionDAG *G) const {
1170 return Node->dumpr(G);
1171}
1172
1173// Define inline functions from the SDUse class.
1174
1175inline void SDUse::set(const SDValue &V) {
1176 if (Val.getNode()) removeFromList();
1177 Val = V;
1178 if (V.getNode()) V.getNode()->addUse(*this);
1179}
1180
1181inline void SDUse::setInitial(const SDValue &V) {
1182 Val = V;
1183 V.getNode()->addUse(*this);
1184}
1185
1186inline void SDUse::setNode(SDNode *N) {
1187 if (Val.getNode()) removeFromList();
1188 Val.setNode(N);
1189 if (N) N->addUse(*this);
1190}
1191
1192/// This class is used to form a handle around another node that
1193/// is persistent and is updated across invocations of replaceAllUsesWith on its
1194/// operand. This node should be directly created by end-users and not added to
1195/// the AllNodes list.
1196class HandleSDNode : public SDNode {
1197 SDUse Op;
1198
1199public:
1200 explicit HandleSDNode(SDValue X)
1201 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1202 // HandleSDNodes are never inserted into the DAG, so they won't be
1203 // auto-numbered. Use ID 65535 as a sentinel.
1204 PersistentId = 0xffff;
1205
1206 // Manually set up the operand list. This node type is special in that it's
1207 // always stack allocated and SelectionDAG does not manage its operands.
1208 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1209 // be so special.
1210 Op.setUser(this);
1211 Op.setInitial(X);
1212 NumOperands = 1;
1213 OperandList = &Op;
1214 }
1215 ~HandleSDNode();
1216
1217 const SDValue &getValue() const { return Op; }
1218};
1219
1220class AddrSpaceCastSDNode : public SDNode {
1221private:
1222 unsigned SrcAddrSpace;
1223 unsigned DestAddrSpace;
1224
1225public:
1226 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1227 unsigned SrcAS, unsigned DestAS);
1228
1229 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1230 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1231
1232 static bool classof(const SDNode *N) {
1233 return N->getOpcode() == ISD::ADDRSPACECAST;
1234 }
1235};
1236
1237/// This is an abstract virtual class for memory operations.
1238class MemSDNode : public SDNode {
1239private:
1240 // VT of in-memory value.
1241 EVT MemoryVT;
1242
1243protected:
1244 /// Memory reference information.
1245 MachineMemOperand *MMO;
1246
1247public:
1248 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001249 EVT memvt, MachineMemOperand *MMO);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001250
1251 bool readMem() const { return MMO->isLoad(); }
1252 bool writeMem() const { return MMO->isStore(); }
1253
1254 /// Returns alignment and volatility of the memory access
1255 unsigned getOriginalAlignment() const {
1256 return MMO->getBaseAlignment();
1257 }
1258 unsigned getAlignment() const {
1259 return MMO->getAlignment();
1260 }
1261
1262 /// Return the SubclassData value, without HasDebugValue. This contains an
1263 /// encoding of the volatile flag, as well as bits used by subclasses. This
1264 /// function should only be used to compute a FoldingSetNodeID value.
1265 /// The HasDebugValue bit is masked out because CSE map needs to match
1266 /// nodes with debug info with nodes without debug info. Same is about
1267 /// isDivergent bit.
1268 unsigned getRawSubclassData() const {
1269 uint16_t Data;
1270 union {
1271 char RawSDNodeBits[sizeof(uint16_t)];
1272 SDNodeBitfields SDNodeBits;
1273 };
1274 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1275 SDNodeBits.HasDebugValue = 0;
1276 SDNodeBits.IsDivergent = false;
1277 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1278 return Data;
1279 }
1280
1281 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1282 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1283 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1284 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1285
1286 // Returns the offset from the location of the access.
1287 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1288
1289 /// Returns the AA info that describes the dereference.
1290 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1291
1292 /// Returns the Ranges that describes the dereference.
1293 const MDNode *getRanges() const { return MMO->getRanges(); }
1294
1295 /// Returns the synchronization scope ID for this memory operation.
1296 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1297
1298 /// Return the atomic ordering requirements for this memory operation. For
1299 /// cmpxchg atomic operations, return the atomic ordering requirements when
1300 /// store occurs.
1301 AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
1302
1303 /// Return the type of the in-memory value.
1304 EVT getMemoryVT() const { return MemoryVT; }
1305
1306 /// Return a MachineMemOperand object describing the memory
1307 /// reference performed by operation.
1308 MachineMemOperand *getMemOperand() const { return MMO; }
1309
1310 const MachinePointerInfo &getPointerInfo() const {
1311 return MMO->getPointerInfo();
1312 }
1313
1314 /// Return the address space for the associated pointer
1315 unsigned getAddressSpace() const {
1316 return getPointerInfo().getAddrSpace();
1317 }
1318
1319 /// Update this MemSDNode's MachineMemOperand information
1320 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1321 /// This must only be used when the new alignment applies to all users of
1322 /// this MachineMemOperand.
1323 void refineAlignment(const MachineMemOperand *NewMMO) {
1324 MMO->refineAlignment(NewMMO);
1325 }
1326
1327 const SDValue &getChain() const { return getOperand(0); }
1328 const SDValue &getBasePtr() const {
1329 return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1330 }
1331
1332 // Methods to support isa and dyn_cast
1333 static bool classof(const SDNode *N) {
1334 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1335 // with either an intrinsic or a target opcode.
1336 return N->getOpcode() == ISD::LOAD ||
1337 N->getOpcode() == ISD::STORE ||
1338 N->getOpcode() == ISD::PREFETCH ||
1339 N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1340 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1341 N->getOpcode() == ISD::ATOMIC_SWAP ||
1342 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1343 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1344 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1345 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1346 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1347 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1348 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1349 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1350 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1351 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1352 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1353 N->getOpcode() == ISD::ATOMIC_LOAD ||
1354 N->getOpcode() == ISD::ATOMIC_STORE ||
1355 N->getOpcode() == ISD::MLOAD ||
1356 N->getOpcode() == ISD::MSTORE ||
1357 N->getOpcode() == ISD::MGATHER ||
1358 N->getOpcode() == ISD::MSCATTER ||
1359 N->isMemIntrinsic() ||
1360 N->isTargetMemoryOpcode();
1361 }
1362};
1363
1364/// This is an SDNode representing atomic operations.
1365class AtomicSDNode : public MemSDNode {
1366public:
1367 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1368 EVT MemVT, MachineMemOperand *MMO)
1369 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {}
1370
1371 const SDValue &getBasePtr() const { return getOperand(1); }
1372 const SDValue &getVal() const { return getOperand(2); }
1373
1374 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1375 /// otherwise.
1376 bool isCompareAndSwap() const {
1377 unsigned Op = getOpcode();
1378 return Op == ISD::ATOMIC_CMP_SWAP ||
1379 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1380 }
1381
1382 /// For cmpxchg atomic operations, return the atomic ordering requirements
1383 /// when store does not occur.
1384 AtomicOrdering getFailureOrdering() const {
1385 assert(isCompareAndSwap() && "Must be cmpxchg operation");
1386 return MMO->getFailureOrdering();
1387 }
1388
1389 // Methods to support isa and dyn_cast
1390 static bool classof(const SDNode *N) {
1391 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1392 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1393 N->getOpcode() == ISD::ATOMIC_SWAP ||
1394 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1395 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1396 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1397 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1398 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1399 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1400 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1401 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1402 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1403 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1404 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1405 N->getOpcode() == ISD::ATOMIC_LOAD ||
1406 N->getOpcode() == ISD::ATOMIC_STORE;
1407 }
1408};
1409
1410/// This SDNode is used for target intrinsics that touch
1411/// memory and need an associated MachineMemOperand. Its opcode may be
1412/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1413/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1414class MemIntrinsicSDNode : public MemSDNode {
1415public:
1416 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1417 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1418 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1419 SDNodeBits.IsMemIntrinsic = true;
1420 }
1421
1422 // Methods to support isa and dyn_cast
1423 static bool classof(const SDNode *N) {
1424 // We lower some target intrinsics to their target opcode
1425 // early a node with a target opcode can be of this class
1426 return N->isMemIntrinsic() ||
1427 N->getOpcode() == ISD::PREFETCH ||
1428 N->isTargetMemoryOpcode();
1429 }
1430};
1431
1432/// This SDNode is used to implement the code generator
1433/// support for the llvm IR shufflevector instruction. It combines elements
1434/// from two input vectors into a new input vector, with the selection and
1435/// ordering of elements determined by an array of integers, referred to as
1436/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1437/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1438/// An index of -1 is treated as undef, such that the code generator may put
1439/// any value in the corresponding element of the result.
1440class ShuffleVectorSDNode : public SDNode {
1441 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1442 // is freed when the SelectionDAG object is destroyed.
1443 const int *Mask;
1444
1445protected:
1446 friend class SelectionDAG;
1447
1448 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1449 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1450
1451public:
1452 ArrayRef<int> getMask() const {
1453 EVT VT = getValueType(0);
1454 return makeArrayRef(Mask, VT.getVectorNumElements());
1455 }
1456
1457 int getMaskElt(unsigned Idx) const {
1458 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1459 return Mask[Idx];
1460 }
1461
1462 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1463
1464 int getSplatIndex() const {
1465 assert(isSplat() && "Cannot get splat index for non-splat!");
1466 EVT VT = getValueType(0);
1467 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
1468 if (Mask[i] >= 0)
1469 return Mask[i];
1470 }
1471 llvm_unreachable("Splat with all undef indices?");
1472 }
1473
1474 static bool isSplatMask(const int *Mask, EVT VT);
1475
1476 /// Change values in a shuffle permute mask assuming
1477 /// the two vector operands have swapped position.
1478 static void commuteMask(MutableArrayRef<int> Mask) {
1479 unsigned NumElems = Mask.size();
1480 for (unsigned i = 0; i != NumElems; ++i) {
1481 int idx = Mask[i];
1482 if (idx < 0)
1483 continue;
1484 else if (idx < (int)NumElems)
1485 Mask[i] = idx + NumElems;
1486 else
1487 Mask[i] = idx - NumElems;
1488 }
1489 }
1490
1491 static bool classof(const SDNode *N) {
1492 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1493 }
1494};
1495
1496class ConstantSDNode : public SDNode {
1497 friend class SelectionDAG;
1498
1499 const ConstantInt *Value;
1500
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001501 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1502 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001503 getSDVTList(VT)),
1504 Value(val) {
1505 ConstantSDNodeBits.IsOpaque = isOpaque;
1506 }
1507
1508public:
1509 const ConstantInt *getConstantIntValue() const { return Value; }
1510 const APInt &getAPIntValue() const { return Value->getValue(); }
1511 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1512 int64_t getSExtValue() const { return Value->getSExtValue(); }
1513 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1514 return Value->getLimitedValue(Limit);
1515 }
1516
1517 bool isOne() const { return Value->isOne(); }
1518 bool isNullValue() const { return Value->isZero(); }
1519 bool isAllOnesValue() const { return Value->isMinusOne(); }
1520
1521 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1522
1523 static bool classof(const SDNode *N) {
1524 return N->getOpcode() == ISD::Constant ||
1525 N->getOpcode() == ISD::TargetConstant;
1526 }
1527};
1528
1529uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1530 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1531}
1532
1533class ConstantFPSDNode : public SDNode {
1534 friend class SelectionDAG;
1535
1536 const ConstantFP *Value;
1537
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001538 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1539 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1540 DebugLoc(), getSDVTList(VT)),
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001541 Value(val) {}
1542
1543public:
1544 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1545 const ConstantFP *getConstantFPValue() const { return Value; }
1546
1547 /// Return true if the value is positive or negative zero.
1548 bool isZero() const { return Value->isZero(); }
1549
1550 /// Return true if the value is a NaN.
1551 bool isNaN() const { return Value->isNaN(); }
1552
1553 /// Return true if the value is an infinity
1554 bool isInfinity() const { return Value->isInfinity(); }
1555
1556 /// Return true if the value is negative.
1557 bool isNegative() const { return Value->isNegative(); }
1558
1559 /// We don't rely on operator== working on double values, as
1560 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1561 /// As such, this method can be used to do an exact bit-for-bit comparison of
1562 /// two floating point values.
1563
1564 /// We leave the version with the double argument here because it's just so
1565 /// convenient to write "2.0" and the like. Without this function we'd
1566 /// have to duplicate its logic everywhere it's called.
1567 bool isExactlyValue(double V) const {
1568 return Value->getValueAPF().isExactlyValue(V);
1569 }
1570 bool isExactlyValue(const APFloat& V) const;
1571
1572 static bool isValueValidForType(EVT VT, const APFloat& Val);
1573
1574 static bool classof(const SDNode *N) {
1575 return N->getOpcode() == ISD::ConstantFP ||
1576 N->getOpcode() == ISD::TargetConstantFP;
1577 }
1578};
1579
1580/// Returns true if \p V is a constant integer zero.
1581bool isNullConstant(SDValue V);
1582
1583/// Returns true if \p V is an FP constant with a value of positive zero.
1584bool isNullFPConstant(SDValue V);
1585
1586/// Returns true if \p V is an integer constant with all bits set.
1587bool isAllOnesConstant(SDValue V);
1588
1589/// Returns true if \p V is a constant integer one.
1590bool isOneConstant(SDValue V);
1591
1592/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1593/// constant is canonicalized to be operand 1.
1594bool isBitwiseNot(SDValue V);
1595
1596/// Returns the SDNode if it is a constant splat BuildVector or constant int.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001597ConstantSDNode *isConstOrConstSplat(SDValue N);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001598
1599/// Returns the SDNode if it is a constant splat BuildVector or constant float.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001600ConstantFPSDNode *isConstOrConstSplatFP(SDValue N);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001601
1602class GlobalAddressSDNode : public SDNode {
1603 friend class SelectionDAG;
1604
1605 const GlobalValue *TheGlobal;
1606 int64_t Offset;
1607 unsigned char TargetFlags;
1608
1609 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1610 const GlobalValue *GA, EVT VT, int64_t o,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001611 unsigned char TF);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001612
1613public:
1614 const GlobalValue *getGlobal() const { return TheGlobal; }
1615 int64_t getOffset() const { return Offset; }
1616 unsigned char getTargetFlags() const { return TargetFlags; }
1617 // Return the address space this GlobalAddress belongs to.
1618 unsigned getAddressSpace() const;
1619
1620 static bool classof(const SDNode *N) {
1621 return N->getOpcode() == ISD::GlobalAddress ||
1622 N->getOpcode() == ISD::TargetGlobalAddress ||
1623 N->getOpcode() == ISD::GlobalTLSAddress ||
1624 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1625 }
1626};
1627
1628class FrameIndexSDNode : public SDNode {
1629 friend class SelectionDAG;
1630
1631 int FI;
1632
1633 FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1634 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1635 0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1636 }
1637
1638public:
1639 int getIndex() const { return FI; }
1640
1641 static bool classof(const SDNode *N) {
1642 return N->getOpcode() == ISD::FrameIndex ||
1643 N->getOpcode() == ISD::TargetFrameIndex;
1644 }
1645};
1646
1647class JumpTableSDNode : public SDNode {
1648 friend class SelectionDAG;
1649
1650 int JTI;
1651 unsigned char TargetFlags;
1652
1653 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1654 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1655 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1656 }
1657
1658public:
1659 int getIndex() const { return JTI; }
1660 unsigned char getTargetFlags() const { return TargetFlags; }
1661
1662 static bool classof(const SDNode *N) {
1663 return N->getOpcode() == ISD::JumpTable ||
1664 N->getOpcode() == ISD::TargetJumpTable;
1665 }
1666};
1667
1668class ConstantPoolSDNode : public SDNode {
1669 friend class SelectionDAG;
1670
1671 union {
1672 const Constant *ConstVal;
1673 MachineConstantPoolValue *MachineCPVal;
1674 } Val;
1675 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1676 unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
1677 unsigned char TargetFlags;
1678
1679 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1680 unsigned Align, unsigned char TF)
1681 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1682 DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1683 TargetFlags(TF) {
1684 assert(Offset >= 0 && "Offset is too large");
1685 Val.ConstVal = c;
1686 }
1687
1688 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1689 EVT VT, int o, unsigned Align, unsigned char TF)
1690 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1691 DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1692 TargetFlags(TF) {
1693 assert(Offset >= 0 && "Offset is too large");
1694 Val.MachineCPVal = v;
1695 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1696 }
1697
1698public:
1699 bool isMachineConstantPoolEntry() const {
1700 return Offset < 0;
1701 }
1702
1703 const Constant *getConstVal() const {
1704 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1705 return Val.ConstVal;
1706 }
1707
1708 MachineConstantPoolValue *getMachineCPVal() const {
1709 assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1710 return Val.MachineCPVal;
1711 }
1712
1713 int getOffset() const {
1714 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1715 }
1716
1717 // Return the alignment of this constant pool object, which is either 0 (for
1718 // default alignment) or the desired value.
1719 unsigned getAlignment() const { return Alignment; }
1720 unsigned char getTargetFlags() const { return TargetFlags; }
1721
1722 Type *getType() const;
1723
1724 static bool classof(const SDNode *N) {
1725 return N->getOpcode() == ISD::ConstantPool ||
1726 N->getOpcode() == ISD::TargetConstantPool;
1727 }
1728};
1729
1730/// Completely target-dependent object reference.
1731class TargetIndexSDNode : public SDNode {
1732 friend class SelectionDAG;
1733
1734 unsigned char TargetFlags;
1735 int Index;
1736 int64_t Offset;
1737
1738public:
1739 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
1740 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1741 TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1742
1743 unsigned char getTargetFlags() const { return TargetFlags; }
1744 int getIndex() const { return Index; }
1745 int64_t getOffset() const { return Offset; }
1746
1747 static bool classof(const SDNode *N) {
1748 return N->getOpcode() == ISD::TargetIndex;
1749 }
1750};
1751
1752class BasicBlockSDNode : public SDNode {
1753 friend class SelectionDAG;
1754
1755 MachineBasicBlock *MBB;
1756
1757 /// Debug info is meaningful and potentially useful here, but we create
1758 /// blocks out of order when they're jumped to, which makes it a bit
1759 /// harder. Let's see if we need it first.
1760 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1761 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1762 {}
1763
1764public:
1765 MachineBasicBlock *getBasicBlock() const { return MBB; }
1766
1767 static bool classof(const SDNode *N) {
1768 return N->getOpcode() == ISD::BasicBlock;
1769 }
1770};
1771
1772/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1773class BuildVectorSDNode : public SDNode {
1774public:
1775 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1776 explicit BuildVectorSDNode() = delete;
1777
1778 /// Check if this is a constant splat, and if so, find the
1779 /// smallest element size that splats the vector. If MinSplatBits is
1780 /// nonzero, the element size must be at least that large. Note that the
1781 /// splat element may be the entire vector (i.e., a one element vector).
1782 /// Returns the splat element value in SplatValue. Any undefined bits in
1783 /// that value are zero, and the corresponding bits in the SplatUndef mask
1784 /// are set. The SplatBitSize value is set to the splat element size in
1785 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1786 /// undefined. isBigEndian describes the endianness of the target.
1787 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1788 unsigned &SplatBitSize, bool &HasAnyUndefs,
1789 unsigned MinSplatBits = 0,
1790 bool isBigEndian = false) const;
1791
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001792 /// Returns the splatted value or a null value if this is not a splat.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001793 ///
1794 /// If passed a non-null UndefElements bitvector, it will resize it to match
1795 /// the vector width and set the bits where elements are undef.
1796 SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1797
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001798 /// Returns the splatted constant or null if this is not a constant
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001799 /// splat.
1800 ///
1801 /// If passed a non-null UndefElements bitvector, it will resize it to match
1802 /// the vector width and set the bits where elements are undef.
1803 ConstantSDNode *
1804 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
1805
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001806 /// Returns the splatted constant FP or null if this is not a constant
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001807 /// FP splat.
1808 ///
1809 /// If passed a non-null UndefElements bitvector, it will resize it to match
1810 /// the vector width and set the bits where elements are undef.
1811 ConstantFPSDNode *
1812 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
1813
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001814 /// If this is a constant FP splat and the splatted constant FP is an
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001815 /// exact power or 2, return the log base 2 integer value. Otherwise,
1816 /// return -1.
1817 ///
1818 /// The BitWidth specifies the necessary bit precision.
1819 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
1820 uint32_t BitWidth) const;
1821
1822 bool isConstant() const;
1823
1824 static bool classof(const SDNode *N) {
1825 return N->getOpcode() == ISD::BUILD_VECTOR;
1826 }
1827};
1828
1829/// An SDNode that holds an arbitrary LLVM IR Value. This is
1830/// used when the SelectionDAG needs to make a simple reference to something
1831/// in the LLVM IR representation.
1832///
1833class SrcValueSDNode : public SDNode {
1834 friend class SelectionDAG;
1835
1836 const Value *V;
1837
1838 /// Create a SrcValue for a general value.
1839 explicit SrcValueSDNode(const Value *v)
1840 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
1841
1842public:
1843 /// Return the contained Value.
1844 const Value *getValue() const { return V; }
1845
1846 static bool classof(const SDNode *N) {
1847 return N->getOpcode() == ISD::SRCVALUE;
1848 }
1849};
1850
1851class MDNodeSDNode : public SDNode {
1852 friend class SelectionDAG;
1853
1854 const MDNode *MD;
1855
1856 explicit MDNodeSDNode(const MDNode *md)
1857 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
1858 {}
1859
1860public:
1861 const MDNode *getMD() const { return MD; }
1862
1863 static bool classof(const SDNode *N) {
1864 return N->getOpcode() == ISD::MDNODE_SDNODE;
1865 }
1866};
1867
1868class RegisterSDNode : public SDNode {
1869 friend class SelectionDAG;
1870
1871 unsigned Reg;
1872
1873 RegisterSDNode(unsigned reg, EVT VT)
1874 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
1875
1876public:
1877 unsigned getReg() const { return Reg; }
1878
1879 static bool classof(const SDNode *N) {
1880 return N->getOpcode() == ISD::Register;
1881 }
1882};
1883
1884class RegisterMaskSDNode : public SDNode {
1885 friend class SelectionDAG;
1886
1887 // The memory for RegMask is not owned by the node.
1888 const uint32_t *RegMask;
1889
1890 RegisterMaskSDNode(const uint32_t *mask)
1891 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
1892 RegMask(mask) {}
1893
1894public:
1895 const uint32_t *getRegMask() const { return RegMask; }
1896
1897 static bool classof(const SDNode *N) {
1898 return N->getOpcode() == ISD::RegisterMask;
1899 }
1900};
1901
1902class BlockAddressSDNode : public SDNode {
1903 friend class SelectionDAG;
1904
1905 const BlockAddress *BA;
1906 int64_t Offset;
1907 unsigned char TargetFlags;
1908
1909 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
1910 int64_t o, unsigned char Flags)
1911 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
1912 BA(ba), Offset(o), TargetFlags(Flags) {}
1913
1914public:
1915 const BlockAddress *getBlockAddress() const { return BA; }
1916 int64_t getOffset() const { return Offset; }
1917 unsigned char getTargetFlags() const { return TargetFlags; }
1918
1919 static bool classof(const SDNode *N) {
1920 return N->getOpcode() == ISD::BlockAddress ||
1921 N->getOpcode() == ISD::TargetBlockAddress;
1922 }
1923};
1924
1925class LabelSDNode : public SDNode {
1926 friend class SelectionDAG;
1927
1928 MCSymbol *Label;
1929
1930 LabelSDNode(unsigned Order, const DebugLoc &dl, MCSymbol *L)
1931 : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {}
1932
1933public:
1934 MCSymbol *getLabel() const { return Label; }
1935
1936 static bool classof(const SDNode *N) {
1937 return N->getOpcode() == ISD::EH_LABEL ||
1938 N->getOpcode() == ISD::ANNOTATION_LABEL;
1939 }
1940};
1941
1942class ExternalSymbolSDNode : public SDNode {
1943 friend class SelectionDAG;
1944
1945 const char *Symbol;
1946 unsigned char TargetFlags;
1947
1948 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
1949 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1950 0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {}
1951
1952public:
1953 const char *getSymbol() const { return Symbol; }
1954 unsigned char getTargetFlags() const { return TargetFlags; }
1955
1956 static bool classof(const SDNode *N) {
1957 return N->getOpcode() == ISD::ExternalSymbol ||
1958 N->getOpcode() == ISD::TargetExternalSymbol;
1959 }
1960};
1961
1962class MCSymbolSDNode : public SDNode {
1963 friend class SelectionDAG;
1964
1965 MCSymbol *Symbol;
1966
1967 MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
1968 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
1969
1970public:
1971 MCSymbol *getMCSymbol() const { return Symbol; }
1972
1973 static bool classof(const SDNode *N) {
1974 return N->getOpcode() == ISD::MCSymbol;
1975 }
1976};
1977
1978class CondCodeSDNode : public SDNode {
1979 friend class SelectionDAG;
1980
1981 ISD::CondCode Condition;
1982
1983 explicit CondCodeSDNode(ISD::CondCode Cond)
1984 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
1985 Condition(Cond) {}
1986
1987public:
1988 ISD::CondCode get() const { return Condition; }
1989
1990 static bool classof(const SDNode *N) {
1991 return N->getOpcode() == ISD::CONDCODE;
1992 }
1993};
1994
1995/// This class is used to represent EVT's, which are used
1996/// to parameterize some operations.
1997class VTSDNode : public SDNode {
1998 friend class SelectionDAG;
1999
2000 EVT ValueType;
2001
2002 explicit VTSDNode(EVT VT)
2003 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2004 ValueType(VT) {}
2005
2006public:
2007 EVT getVT() const { return ValueType; }
2008
2009 static bool classof(const SDNode *N) {
2010 return N->getOpcode() == ISD::VALUETYPE;
2011 }
2012};
2013
2014/// Base class for LoadSDNode and StoreSDNode
2015class LSBaseSDNode : public MemSDNode {
2016public:
2017 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2018 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2019 MachineMemOperand *MMO)
2020 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2021 LSBaseSDNodeBits.AddressingMode = AM;
2022 assert(getAddressingMode() == AM && "Value truncated");
2023 }
2024
2025 const SDValue &getOffset() const {
2026 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2027 }
2028
2029 /// Return the addressing mode for this load or store:
2030 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2031 ISD::MemIndexedMode getAddressingMode() const {
2032 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2033 }
2034
2035 /// Return true if this is a pre/post inc/dec load/store.
2036 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2037
2038 /// Return true if this is NOT a pre/post inc/dec load/store.
2039 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2040
2041 static bool classof(const SDNode *N) {
2042 return N->getOpcode() == ISD::LOAD ||
2043 N->getOpcode() == ISD::STORE;
2044 }
2045};
2046
2047/// This class is used to represent ISD::LOAD nodes.
2048class LoadSDNode : public LSBaseSDNode {
2049 friend class SelectionDAG;
2050
2051 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2052 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2053 MachineMemOperand *MMO)
2054 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2055 LoadSDNodeBits.ExtTy = ETy;
2056 assert(readMem() && "Load MachineMemOperand is not a load!");
2057 assert(!writeMem() && "Load MachineMemOperand is a store!");
2058 }
2059
2060public:
2061 /// Return whether this is a plain node,
2062 /// or one of the varieties of value-extending loads.
2063 ISD::LoadExtType getExtensionType() const {
2064 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2065 }
2066
2067 const SDValue &getBasePtr() const { return getOperand(1); }
2068 const SDValue &getOffset() const { return getOperand(2); }
2069
2070 static bool classof(const SDNode *N) {
2071 return N->getOpcode() == ISD::LOAD;
2072 }
2073};
2074
2075/// This class is used to represent ISD::STORE nodes.
2076class StoreSDNode : public LSBaseSDNode {
2077 friend class SelectionDAG;
2078
2079 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2080 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2081 MachineMemOperand *MMO)
2082 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2083 StoreSDNodeBits.IsTruncating = isTrunc;
2084 assert(!readMem() && "Store MachineMemOperand is a load!");
2085 assert(writeMem() && "Store MachineMemOperand is not a store!");
2086 }
2087
2088public:
2089 /// Return true if the op does a truncation before store.
2090 /// For integers this is the same as doing a TRUNCATE and storing the result.
2091 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2092 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2093 void setTruncatingStore(bool Truncating) {
2094 StoreSDNodeBits.IsTruncating = Truncating;
2095 }
2096
2097 const SDValue &getValue() const { return getOperand(1); }
2098 const SDValue &getBasePtr() const { return getOperand(2); }
2099 const SDValue &getOffset() const { return getOperand(3); }
2100
2101 static bool classof(const SDNode *N) {
2102 return N->getOpcode() == ISD::STORE;
2103 }
2104};
2105
2106/// This base class is used to represent MLOAD and MSTORE nodes
2107class MaskedLoadStoreSDNode : public MemSDNode {
2108public:
2109 friend class SelectionDAG;
2110
2111 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2112 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2113 MachineMemOperand *MMO)
2114 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
2115
2116 // In the both nodes address is Op1, mask is Op2:
2117 // MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
2118 // MaskedStoreSDNode (Chain, ptr, mask, data)
2119 // Mask is a vector of i1 elements
2120 const SDValue &getBasePtr() const { return getOperand(1); }
2121 const SDValue &getMask() const { return getOperand(2); }
2122
2123 static bool classof(const SDNode *N) {
2124 return N->getOpcode() == ISD::MLOAD ||
2125 N->getOpcode() == ISD::MSTORE;
2126 }
2127};
2128
2129/// This class is used to represent an MLOAD node
2130class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2131public:
2132 friend class SelectionDAG;
2133
2134 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2135 ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT,
2136 MachineMemOperand *MMO)
2137 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, MemVT, MMO) {
2138 LoadSDNodeBits.ExtTy = ETy;
2139 LoadSDNodeBits.IsExpanding = IsExpanding;
2140 }
2141
2142 ISD::LoadExtType getExtensionType() const {
2143 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2144 }
2145
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002146 const SDValue &getPassThru() const { return getOperand(3); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002147 static bool classof(const SDNode *N) {
2148 return N->getOpcode() == ISD::MLOAD;
2149 }
2150
2151 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2152};
2153
2154/// This class is used to represent an MSTORE node
2155class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2156public:
2157 friend class SelectionDAG;
2158
2159 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2160 bool isTrunc, bool isCompressing, EVT MemVT,
2161 MachineMemOperand *MMO)
2162 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, MemVT, MMO) {
2163 StoreSDNodeBits.IsTruncating = isTrunc;
2164 StoreSDNodeBits.IsCompressing = isCompressing;
2165 }
2166
2167 /// Return true if the op does a truncation before store.
2168 /// For integers this is the same as doing a TRUNCATE and storing the result.
2169 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2170 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2171
2172 /// Returns true if the op does a compression to the vector before storing.
2173 /// The node contiguously stores the active elements (integers or floats)
2174 /// in src (those with their respective bit set in writemask k) to unaligned
2175 /// memory at base_addr.
2176 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2177
2178 const SDValue &getValue() const { return getOperand(3); }
2179
2180 static bool classof(const SDNode *N) {
2181 return N->getOpcode() == ISD::MSTORE;
2182 }
2183};
2184
2185/// This is a base class used to represent
2186/// MGATHER and MSCATTER nodes
2187///
2188class MaskedGatherScatterSDNode : public MemSDNode {
2189public:
2190 friend class SelectionDAG;
2191
2192 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2193 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2194 MachineMemOperand *MMO)
2195 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
2196
2197 // In the both nodes address is Op1, mask is Op2:
2198 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2199 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2200 // Mask is a vector of i1 elements
2201 const SDValue &getBasePtr() const { return getOperand(3); }
2202 const SDValue &getIndex() const { return getOperand(4); }
2203 const SDValue &getMask() const { return getOperand(2); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002204 const SDValue &getScale() const { return getOperand(5); }
2205
2206 static bool classof(const SDNode *N) {
2207 return N->getOpcode() == ISD::MGATHER ||
2208 N->getOpcode() == ISD::MSCATTER;
2209 }
2210};
2211
2212/// This class is used to represent an MGATHER node
2213///
2214class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2215public:
2216 friend class SelectionDAG;
2217
2218 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2219 EVT MemVT, MachineMemOperand *MMO)
2220 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO) {}
2221
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002222 const SDValue &getPassThru() const { return getOperand(1); }
2223
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002224 static bool classof(const SDNode *N) {
2225 return N->getOpcode() == ISD::MGATHER;
2226 }
2227};
2228
2229/// This class is used to represent an MSCATTER node
2230///
2231class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2232public:
2233 friend class SelectionDAG;
2234
2235 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2236 EVT MemVT, MachineMemOperand *MMO)
2237 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO) {}
2238
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002239 const SDValue &getValue() const { return getOperand(1); }
2240
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002241 static bool classof(const SDNode *N) {
2242 return N->getOpcode() == ISD::MSCATTER;
2243 }
2244};
2245
2246/// An SDNode that represents everything that will be needed
2247/// to construct a MachineInstr. These nodes are created during the
2248/// instruction selection proper phase.
2249class MachineSDNode : public SDNode {
2250public:
2251 using mmo_iterator = MachineMemOperand **;
2252
2253private:
2254 friend class SelectionDAG;
2255
2256 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2257 : SDNode(Opc, Order, DL, VTs) {}
2258
2259 /// Memory reference descriptions for this instruction.
2260 mmo_iterator MemRefs = nullptr;
2261 mmo_iterator MemRefsEnd = nullptr;
2262
2263public:
2264 mmo_iterator memoperands_begin() const { return MemRefs; }
2265 mmo_iterator memoperands_end() const { return MemRefsEnd; }
2266 bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
2267
2268 /// Assign this MachineSDNodes's memory reference descriptor
2269 /// list. This does not transfer ownership.
2270 void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
2271 for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
2272 assert(*MMI && "Null mem ref detected!");
2273 MemRefs = NewMemRefs;
2274 MemRefsEnd = NewMemRefsEnd;
2275 }
2276
2277 static bool classof(const SDNode *N) {
2278 return N->isMachineOpcode();
2279 }
2280};
2281
2282class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2283 SDNode, ptrdiff_t> {
2284 const SDNode *Node;
2285 unsigned Operand;
2286
2287 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2288
2289public:
2290 bool operator==(const SDNodeIterator& x) const {
2291 return Operand == x.Operand;
2292 }
2293 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2294
2295 pointer operator*() const {
2296 return Node->getOperand(Operand).getNode();
2297 }
2298 pointer operator->() const { return operator*(); }
2299
2300 SDNodeIterator& operator++() { // Preincrement
2301 ++Operand;
2302 return *this;
2303 }
2304 SDNodeIterator operator++(int) { // Postincrement
2305 SDNodeIterator tmp = *this; ++*this; return tmp;
2306 }
2307 size_t operator-(SDNodeIterator Other) const {
2308 assert(Node == Other.Node &&
2309 "Cannot compare iterators of two different nodes!");
2310 return Operand - Other.Operand;
2311 }
2312
2313 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2314 static SDNodeIterator end (const SDNode *N) {
2315 return SDNodeIterator(N, N->getNumOperands());
2316 }
2317
2318 unsigned getOperand() const { return Operand; }
2319 const SDNode *getNode() const { return Node; }
2320};
2321
2322template <> struct GraphTraits<SDNode*> {
2323 using NodeRef = SDNode *;
2324 using ChildIteratorType = SDNodeIterator;
2325
2326 static NodeRef getEntryNode(SDNode *N) { return N; }
2327
2328 static ChildIteratorType child_begin(NodeRef N) {
2329 return SDNodeIterator::begin(N);
2330 }
2331
2332 static ChildIteratorType child_end(NodeRef N) {
2333 return SDNodeIterator::end(N);
2334 }
2335};
2336
2337/// A representation of the largest SDNode, for use in sizeof().
2338///
2339/// This needs to be a union because the largest node differs on 32 bit systems
2340/// with 4 and 8 byte pointer alignment, respectively.
2341using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2342 BlockAddressSDNode,
2343 GlobalAddressSDNode>;
2344
2345/// The SDNode class with the greatest alignment requirement.
2346using MostAlignedSDNode = GlobalAddressSDNode;
2347
2348namespace ISD {
2349
2350 /// Returns true if the specified node is a non-extending and unindexed load.
2351 inline bool isNormalLoad(const SDNode *N) {
2352 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2353 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2354 Ld->getAddressingMode() == ISD::UNINDEXED;
2355 }
2356
2357 /// Returns true if the specified node is a non-extending load.
2358 inline bool isNON_EXTLoad(const SDNode *N) {
2359 return isa<LoadSDNode>(N) &&
2360 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2361 }
2362
2363 /// Returns true if the specified node is a EXTLOAD.
2364 inline bool isEXTLoad(const SDNode *N) {
2365 return isa<LoadSDNode>(N) &&
2366 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2367 }
2368
2369 /// Returns true if the specified node is a SEXTLOAD.
2370 inline bool isSEXTLoad(const SDNode *N) {
2371 return isa<LoadSDNode>(N) &&
2372 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2373 }
2374
2375 /// Returns true if the specified node is a ZEXTLOAD.
2376 inline bool isZEXTLoad(const SDNode *N) {
2377 return isa<LoadSDNode>(N) &&
2378 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2379 }
2380
2381 /// Returns true if the specified node is an unindexed load.
2382 inline bool isUNINDEXEDLoad(const SDNode *N) {
2383 return isa<LoadSDNode>(N) &&
2384 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2385 }
2386
2387 /// Returns true if the specified node is a non-truncating
2388 /// and unindexed store.
2389 inline bool isNormalStore(const SDNode *N) {
2390 const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2391 return St && !St->isTruncatingStore() &&
2392 St->getAddressingMode() == ISD::UNINDEXED;
2393 }
2394
2395 /// Returns true if the specified node is a non-truncating store.
2396 inline bool isNON_TRUNCStore(const SDNode *N) {
2397 return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2398 }
2399
2400 /// Returns true if the specified node is a truncating store.
2401 inline bool isTRUNCStore(const SDNode *N) {
2402 return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2403 }
2404
2405 /// Returns true if the specified node is an unindexed store.
2406 inline bool isUNINDEXEDStore(const SDNode *N) {
2407 return isa<StoreSDNode>(N) &&
2408 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2409 }
2410
2411 /// Attempt to match a unary predicate against a scalar/splat constant or
2412 /// every element of a constant BUILD_VECTOR.
2413 bool matchUnaryPredicate(SDValue Op,
2414 std::function<bool(ConstantSDNode *)> Match);
2415
2416 /// Attempt to match a binary predicate against a pair of scalar/splat
2417 /// constants or every element of a pair of constant BUILD_VECTORs.
2418 bool matchBinaryPredicate(
2419 SDValue LHS, SDValue RHS,
2420 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match);
2421
2422} // end namespace ISD
2423
2424} // end namespace llvm
2425
2426#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H