blob: b5604ef35f8a19e82b1239e5ee93e580fe03cbd8 [file] [log] [blame]
Fuad Tabba5c738432019-12-02 11:02:42 +00001/*
2 * Copyright 2019 The Hafnium Authors.
3 *
Andrew Walbrane959ec12020-06-17 15:01:09 +01004 * Use of this source code is governed by a BSD-style
5 * license that can be found in the LICENSE file or at
6 * https://opensource.org/licenses/BSD-3-Clause.
Fuad Tabba5c738432019-12-02 11:02:42 +00007 */
8
9#include "hf/vcpu.h"
10
Olivier Depreze6f7b9d2021-02-01 11:55:48 +010011#include "hf/arch/cpu.h"
12
Fuad Tabba5c738432019-12-02 11:02:42 +000013#include "hf/check.h"
14#include "hf/dlog.h"
15#include "hf/std.h"
16#include "hf/vm.h"
17
J-Alves67f5ba32024-09-27 18:07:11 +010018static struct list_entry boot_list = LIST_INIT(boot_list);
Olivier Deprez181074b2023-02-02 14:53:23 +010019
J-Alves7ac49052022-02-08 17:20:53 +000020/** GP register to be used to pass the current vCPU ID, at core bring up. */
21#define PHYS_CORE_IDX_GP_REG 4
22
Fuad Tabba5c738432019-12-02 11:02:42 +000023/**
24 * Locks the given vCPU and updates `locked` to hold the newly locked vCPU.
25 */
26struct vcpu_locked vcpu_lock(struct vcpu *vcpu)
27{
28 struct vcpu_locked locked = {
29 .vcpu = vcpu,
30 };
31
32 sl_lock(&vcpu->lock);
33
34 return locked;
35}
36
37/**
Olivier Deprez0b6f10a2020-08-05 18:21:33 +020038 * Locks two vCPUs ensuring that the locking order is according to the locks'
39 * addresses.
40 */
41struct two_vcpu_locked vcpu_lock_both(struct vcpu *vcpu1, struct vcpu *vcpu2)
42{
43 struct two_vcpu_locked dual_lock;
44
45 sl_lock_both(&vcpu1->lock, &vcpu2->lock);
46 dual_lock.vcpu1.vcpu = vcpu1;
47 dual_lock.vcpu2.vcpu = vcpu2;
48
49 return dual_lock;
50}
51
52/**
Fuad Tabba5c738432019-12-02 11:02:42 +000053 * Unlocks a vCPU previously locked with vpu_lock, and updates `locked` to
54 * reflect the fact that the vCPU is no longer locked.
55 */
56void vcpu_unlock(struct vcpu_locked *locked)
57{
58 sl_unlock(&locked->vcpu->lock);
59 locked->vcpu = NULL;
60}
61
62void vcpu_init(struct vcpu *vcpu, struct vm *vm)
63{
64 memset_s(vcpu, sizeof(*vcpu), 0, sizeof(*vcpu));
65 sl_init(&vcpu->lock);
66 vcpu->regs_available = true;
67 vcpu->vm = vm;
68 vcpu->state = VCPU_STATE_OFF;
Kathleen Capellae468c112023-12-13 17:56:28 -050069 vcpu->direct_request_origin.is_ffa_req2 = false;
70 vcpu->direct_request_origin.vm_id = HF_INVALID_VM_ID;
Olivier Deprezb2808332023-02-02 15:25:40 +010071 vcpu->rt_model = RTM_SP_INIT;
J-Alves67f5ba32024-09-27 18:07:11 +010072 list_init(&vcpu->boot_list_node);
Fuad Tabba5c738432019-12-02 11:02:42 +000073}
74
75/**
76 * Initialise the registers for the given vCPU and set the state to
Madhukar Pappireddyb11e0d12021-08-02 19:44:35 -050077 * VCPU_STATE_WAITING. The caller must hold the vCPU lock while calling this.
Fuad Tabba5c738432019-12-02 11:02:42 +000078 */
79void vcpu_on(struct vcpu_locked vcpu, ipaddr_t entry, uintreg_t arg)
80{
81 arch_regs_set_pc_arg(&vcpu.vcpu->regs, entry, arg);
Madhukar Pappireddyb11e0d12021-08-02 19:44:35 -050082 vcpu.vcpu->state = VCPU_STATE_WAITING;
Fuad Tabba5c738432019-12-02 11:02:42 +000083}
84
Andrew Walbranb5ab43c2020-04-30 11:32:54 +010085ffa_vcpu_index_t vcpu_index(const struct vcpu *vcpu)
Fuad Tabba5c738432019-12-02 11:02:42 +000086{
87 size_t index = vcpu - vcpu->vm->vcpus;
88
89 CHECK(index < UINT16_MAX);
90 return index;
91}
92
93/**
94 * Check whether the given vcpu_state is an off state, for the purpose of
Madhukar Pappireddyb11e0d12021-08-02 19:44:35 -050095 * turning vCPUs on and off. Note that Aborted still counts as ON for the
96 * purposes of PSCI, because according to the PSCI specification (section
Olivier Depreze7eb1682022-03-16 17:09:03 +010097 * 5.7.1) a core is only considered to be off if it has been turned off
98 * with a CPU_OFF call or hasn't yet been turned on with a CPU_ON call.
Fuad Tabba5c738432019-12-02 11:02:42 +000099 */
100bool vcpu_is_off(struct vcpu_locked vcpu)
101{
Madhukar Pappireddyb11e0d12021-08-02 19:44:35 -0500102 return (vcpu.vcpu->state == VCPU_STATE_OFF);
Fuad Tabba5c738432019-12-02 11:02:42 +0000103}
104
105/**
106 * Starts a vCPU of a secondary VM.
107 *
108 * Returns true if the secondary was reset and started, or false if it was
109 * already on and so nothing was done.
110 */
Max Shvetsov40108e72020-08-27 12:39:50 +0100111bool vcpu_secondary_reset_and_start(struct vcpu_locked vcpu_locked,
112 ipaddr_t entry, uintreg_t arg)
Fuad Tabba5c738432019-12-02 11:02:42 +0000113{
Max Shvetsov40108e72020-08-27 12:39:50 +0100114 struct vm *vm = vcpu_locked.vcpu->vm;
Fuad Tabba5c738432019-12-02 11:02:42 +0000115 bool vcpu_was_off;
116
117 CHECK(vm->id != HF_PRIMARY_VM_ID);
118
Fuad Tabba5c738432019-12-02 11:02:42 +0000119 vcpu_was_off = vcpu_is_off(vcpu_locked);
120 if (vcpu_was_off) {
121 /*
122 * Set vCPU registers to a clean state ready for boot. As this
123 * is a secondary which can migrate between pCPUs, the ID of the
124 * vCPU is defined as the index and does not match the ID of the
125 * pCPU it is running on.
126 */
Max Shvetsov40108e72020-08-27 12:39:50 +0100127 arch_regs_reset(vcpu_locked.vcpu);
Fuad Tabba5c738432019-12-02 11:02:42 +0000128 vcpu_on(vcpu_locked, entry, arg);
129 }
Fuad Tabba5c738432019-12-02 11:02:42 +0000130
131 return vcpu_was_off;
132}
133
134/**
135 * Handles a page fault. It does so by determining if it's a legitimate or
136 * spurious fault, and recovering from the latter.
137 *
Fuad Tabbaed294af2019-12-20 10:43:01 +0000138 * Returns true if the caller should resume the current vCPU, or false if its VM
Fuad Tabba5c738432019-12-02 11:02:42 +0000139 * should be aborted.
140 */
141bool vcpu_handle_page_fault(const struct vcpu *current,
142 struct vcpu_fault_info *f)
143{
144 struct vm *vm = current->vm;
145 uint32_t mode;
146 uint32_t mask = f->mode | MM_MODE_INVALID;
147 bool resume;
Raghu Krishnamurthy785d52f2021-02-13 00:02:40 -0800148 struct vm_locked locked_vm;
Fuad Tabba5c738432019-12-02 11:02:42 +0000149
Raghu Krishnamurthy785d52f2021-02-13 00:02:40 -0800150 locked_vm = vm_lock(vm);
Fuad Tabba5c738432019-12-02 11:02:42 +0000151 /*
152 * Check if this is a legitimate fault, i.e., if the page table doesn't
153 * allow the access attempted by the VM.
154 *
155 * Otherwise, this is a spurious fault, likely because another CPU is
156 * updating the page table. It is responsible for issuing global TLB
157 * invalidations while holding the VM lock, so we don't need to do
158 * anything else to recover from it. (Acquiring/releasing the lock
159 * ensured that the invalidations have completed.)
160 */
Raghu Krishnamurthyb5775d22021-02-26 18:54:40 -0800161 if (!locked_vm.vm->el0_partition) {
162 resume = vm_mem_get_mode(locked_vm, f->ipaddr,
163 ipa_add(f->ipaddr, 1), &mode) &&
164 (mode & mask) == f->mode;
165 } else {
166 /*
167 * For EL0 partitions we need to get the mode for the faulting
168 * vaddr.
169 */
170 resume =
171 vm_mem_get_mode(locked_vm, ipa_init(va_addr(f->vaddr)),
172 ipa_add(ipa_init(va_addr(f->vaddr)), 1),
173 &mode) &&
174 (mode & mask) == f->mode;
Raghu Krishnamurthyf16b2ce2021-11-02 07:48:38 -0700175
176 /*
177 * For EL0 partitions, if there is an instruction abort and the
178 * mode of the page is RWX, we don't resume since Hafnium does
179 * not allow write and executable pages.
180 */
181 if ((f->mode == MM_MODE_X) &&
182 ((mode & MM_MODE_W) == MM_MODE_W)) {
183 resume = false;
184 }
Raghu Krishnamurthyb5775d22021-02-26 18:54:40 -0800185 }
Fuad Tabba5c738432019-12-02 11:02:42 +0000186
Raghu Krishnamurthy785d52f2021-02-13 00:02:40 -0800187 vm_unlock(&locked_vm);
Fuad Tabba5c738432019-12-02 11:02:42 +0000188
189 if (!resume) {
Andrew Walbran17eebf92020-02-05 16:35:49 +0000190 dlog_warning(
Karl Meakine8937d92024-03-19 16:04:25 +0000191 "Stage-%d page fault: pc=%#lx, vmid=%#x, vcpu=%u, "
192 "vaddr=%#lx, ipaddr=%#lx, mode=%#x %#x\n",
193 current->vm->el0_partition ? 1 : 2, va_addr(f->pc),
194 vm->id, vcpu_index(current), va_addr(f->vaddr),
195 ipa_addr(f->ipaddr), f->mode, mode);
Fuad Tabba5c738432019-12-02 11:02:42 +0000196 }
197
198 return resume;
199}
Olivier Deprez2ebae3a2020-06-11 16:34:30 +0200200
J-Alves7ac49052022-02-08 17:20:53 +0000201void vcpu_set_phys_core_idx(struct vcpu *vcpu)
202{
203 arch_regs_set_gp_reg(&vcpu->regs, cpu_index(vcpu->cpu),
204 PHYS_CORE_IDX_GP_REG);
205}
Olivier Deprez181074b2023-02-02 14:53:23 +0100206
207/**
Olivier Deprez632249e2022-09-26 09:18:31 +0200208 * Sets the designated GP register through which the vCPU expects to receive the
209 * boot info's address.
210 */
211void vcpu_set_boot_info_gp_reg(struct vcpu *vcpu)
212{
213 struct vm *vm = vcpu->vm;
214 uint32_t gp_register_num = vm->boot_info.gp_register_num;
215
216 if (vm->boot_info.blob_addr.ipa != 0U) {
217 arch_regs_set_gp_reg(&vcpu->regs,
218 ipa_addr(vm->boot_info.blob_addr),
219 gp_register_num);
220 }
221}
222
223/**
J-Alves67f5ba32024-09-27 18:07:11 +0100224 * The 'boot_list' is used as the start and end of the list.
225 * Start: the nodes it points to is the first vCPU to boot.
226 * End: the last node's next points to the entry.
227 */
228static bool vcpu_is_boot_list_end(struct vcpu *vcpu)
229{
230 return vcpu->boot_list_node.next == &boot_list;
231}
232
233/**
Olivier Deprez181074b2023-02-02 14:53:23 +0100234 * Gets the first partition to boot, according to Boot Protocol from FFA spec.
235 */
236struct vcpu *vcpu_get_boot_vcpu(void)
237{
J-Alves67f5ba32024-09-27 18:07:11 +0100238 assert(!list_empty(&boot_list));
239
240 return CONTAINER_OF(boot_list.next, struct vcpu, boot_list_node);
241}
242
243/**
244 * Returns the next element in the boot order list, if there is one.
245 */
246struct vcpu *vcpu_get_next_boot(struct vcpu *vcpu)
247{
248 return vcpu_is_boot_list_end(vcpu)
249 ? NULL
250 : CONTAINER_OF(vcpu->boot_list_node.next, struct vcpu,
251 boot_list_node);
Olivier Deprez181074b2023-02-02 14:53:23 +0100252}
253
254/**
255 * Insert in boot list, sorted by `boot_order` parameter in the vm structure
256 * and rooted in `first_boot_vm`.
257 */
258void vcpu_update_boot(struct vcpu *vcpu)
259{
260 struct vcpu *current = NULL;
Olivier Deprez181074b2023-02-02 14:53:23 +0100261
J-Alves67f5ba32024-09-27 18:07:11 +0100262 if (list_empty(&boot_list)) {
263 list_prepend(&boot_list, &vcpu->boot_list_node);
Olivier Deprez181074b2023-02-02 14:53:23 +0100264 return;
265 }
266
J-Alves67f5ba32024-09-27 18:07:11 +0100267 /*
268 * When getting to this point the first insertion should have
269 * been done.
270 */
271 current = vcpu_get_boot_vcpu();
272 assert(current != NULL);
Olivier Deprez181074b2023-02-02 14:53:23 +0100273
J-Alves67f5ba32024-09-27 18:07:11 +0100274 /*
275 * Iterate until the position is found according to boot order, or
276 * until we reach end of the list.
277 */
278 while (!vcpu_is_boot_list_end(current) &&
Olivier Deprez181074b2023-02-02 14:53:23 +0100279 current->vm->boot_order <= vcpu->vm->boot_order) {
J-Alves67f5ba32024-09-27 18:07:11 +0100280 current = vcpu_get_next_boot(current);
Olivier Deprez181074b2023-02-02 14:53:23 +0100281 }
282
J-Alves67f5ba32024-09-27 18:07:11 +0100283 current->vm->boot_order > vcpu->vm->boot_order
284 ? list_prepend(&current->boot_list_node, &vcpu->boot_list_node)
285 : list_append(&current->boot_list_node, &vcpu->boot_list_node);
Olivier Deprez181074b2023-02-02 14:53:23 +0100286}
J-Alves12cedae2023-08-04 14:37:37 +0100287
J-Alvesb8730e92024-08-07 18:28:55 +0100288void vcpu_interrupt_clear_decrement(struct vcpu_locked vcpu_locked,
289 uint32_t intid)
290{
291 struct interrupts *interrupts = &(vcpu_locked.vcpu->interrupts);
292
293 vcpu_virt_interrupt_clear_pending(interrupts, intid);
294 vcpu_interrupt_count_decrement(vcpu_locked, interrupts, intid);
295}
296
J-Alves0247fe62024-02-23 10:21:46 +0000297/**
298 * Sets the vcpu in the VCPU_STATE_RUNNING.
J-Alves67a79262024-07-17 12:01:39 +0100299 * With that, its register are set as "not available".
300 * If there are registers to be written to vCPU's context, do so.
301 * However, this action is restricted to WAITING and BLOCKED states,
302 * as such, assert accordingly.
J-Alves0247fe62024-02-23 10:21:46 +0000303 */
J-Alves478faac2024-10-23 10:35:57 +0100304void vcpu_set_running(struct vcpu_locked target_locked,
305 const struct ffa_value *args)
J-Alves12cedae2023-08-04 14:37:37 +0100306{
307 struct vcpu *target_vcpu = target_locked.vcpu;
308
J-Alves67a79262024-07-17 12:01:39 +0100309 if (args != NULL) {
J-Alves0247fe62024-02-23 10:21:46 +0000310 CHECK(target_vcpu->regs_available);
J-Alves67a79262024-07-17 12:01:39 +0100311 assert(target_vcpu->state == VCPU_STATE_WAITING ||
312 target_vcpu->state == VCPU_STATE_BLOCKED);
J-Alves0247fe62024-02-23 10:21:46 +0000313
314 arch_regs_set_retval(&target_vcpu->regs, *args);
315 }
J-Alves12cedae2023-08-04 14:37:37 +0100316
317 /* Mark the registers as unavailable now. */
318 target_vcpu->regs_available = false;
319
320 /* We are about to resume target vCPU. */
321 target_vcpu->state = VCPU_STATE_RUNNING;
322}
323
324/**
325 * Saves the current interrupt priority.
326 */
327void vcpu_save_interrupt_priority(struct vcpu_locked vcpu_locked,
328 uint8_t priority)
329{
330 vcpu_locked.vcpu->priority_mask = priority;
331}
332
333/**
334 * It injects a virtual interrupt in the vcpu if is enabled and is not pending.
335 */
336void vcpu_interrupt_inject(struct vcpu_locked target_locked, uint32_t intid)
337{
338 struct vcpu *target_vcpu = target_locked.vcpu;
339 struct interrupts *interrupts = &target_vcpu->interrupts;
340
341 /*
342 * We only need to change state and (maybe) trigger a virtual interrupt
343 * if it is enabled and was not previously pending. Otherwise we can
344 * skip everything except setting the pending bit.
345 */
346 if (!(vcpu_is_virt_interrupt_enabled(interrupts, intid) &&
347 !vcpu_is_virt_interrupt_pending(interrupts, intid))) {
348 goto out;
349 }
350
351 /* Increment the count. */
352 vcpu_interrupt_count_increment(target_locked, interrupts, intid);
353
354 /*
355 * Only need to update state if there was not already an
356 * interrupt enabled and pending.
357 */
358 if (vcpu_interrupt_count_get(target_locked) != 1) {
359 goto out;
360 }
361
362out:
363 /* Either way, make it pending. */
364 vcpu_virt_interrupt_set_pending(interrupts, intid);
365}
366
J-Alves12cedae2023-08-04 14:37:37 +0100367void vcpu_enter_secure_interrupt_rtm(struct vcpu_locked vcpu_locked)
368{
369 struct vcpu *target_vcpu = vcpu_locked.vcpu;
370
371 assert(target_vcpu->scheduling_mode == NONE);
372 assert(target_vcpu->call_chain.prev_node == NULL);
373 assert(target_vcpu->call_chain.next_node == NULL);
374 assert(target_vcpu->rt_model == RTM_NONE);
375
376 target_vcpu->scheduling_mode = SPMC_MODE;
377 target_vcpu->rt_model = RTM_SEC_INTERRUPT;
378}
Madhukar Pappireddy32913cb2024-07-19 13:04:05 -0500379
380static uint16_t queue_increment_index(uint16_t current_idx)
381{
382 /* Look at the next index. Wrap around if necessary. */
383 if (current_idx == VINT_QUEUE_MAX - 1) {
384 return 0;
385 }
386
387 return current_idx + 1;
388}
389
390static bool is_queue_empty(struct interrupt_queue *q)
391{
392 if (q->head == q->tail) {
393 return true;
394 }
395
396 return false;
397}
398
399/**
400 * Queue the pending virtual interrupt for target vCPU.
401 *
402 * Returns true if successful in pushing a new entry to the queue, or false
403 * otherwise.
404 */
405bool vcpu_interrupt_queue_push(struct vcpu_locked vcpu_locked, uint32_t vint_id)
406{
407 struct interrupt_queue *q;
408 uint16_t new_tail;
409
410 assert(vint_id != HF_INVALID_INTID);
411
412 q = &vcpu_locked.vcpu->interrupts.vint_q;
413
414 /*
415 * A new entry is pushed at the tail of the queue. Upon successful
416 * push operation, the tail increments or wraps around.
417 */
418 new_tail = queue_increment_index(q->tail);
419
420 /* If new_tail reaches head of the queue, then the queue is full. */
421 if (new_tail == q->head) {
422 return false;
423 }
424
425 /* Add the virtual interrupt to the queue. */
426 q->vint_buffer[q->tail] = vint_id;
427 q->tail = new_tail;
428
429 return true;
430}
431
432/**
433 * Remove an entry from the specified vCPU's queue at the head.
434 *
435 * Returns true if successful in removing the entry, or false otherwise.
436 */
437bool vcpu_interrupt_queue_pop(struct vcpu_locked vcpu_locked, uint32_t *vint_id)
438{
439 struct interrupt_queue *q;
440 uint16_t new_head;
441
442 assert(vint_id != NULL);
443
444 q = &vcpu_locked.vcpu->interrupts.vint_q;
445
446 /* Check if queue is empty. */
447 if (is_queue_empty(q)) {
448 return false;
449 }
450
451 /*
452 * An entry is removed from the head of the queue. Once successful, the
453 * head is incremented or wrapped around if needed.
454 */
455 new_head = queue_increment_index(q->head);
456 *vint_id = q->vint_buffer[q->head];
457 q->head = new_head;
458
459 return true;
460}
461
462/**
463 * Look for the first pending virtual interrupt from the vcpu's queue. Note
464 * that the entry is not removed from the queue.
465 *
466 * Returns true if a valid entry exists in the queue, or false otherwise.
467 */
468bool vcpu_interrupt_queue_peek(struct vcpu_locked vcpu_locked,
469 uint32_t *vint_id)
470{
471 struct interrupt_queue *q;
472 uint32_t queued_vint;
473
474 assert(vint_id != NULL);
475
476 q = &vcpu_locked.vcpu->interrupts.vint_q;
477
478 /* Check if queue is empty. */
479 if (is_queue_empty(q)) {
480 return false;
481 }
482
483 queued_vint = q->vint_buffer[q->head];
484 assert(queued_vint != HF_INVALID_INTID);
485
486 *vint_id = queued_vint;
487 return true;
488}
489
490/**
491 * Find if a specific virtual interrupt exists in the specified vCPU's queue.
492 *
493 * Returns true if such an entry exists in the queue, or false otherwise.
494 */
495bool vcpu_is_interrupt_in_queue(struct vcpu_locked vcpu_locked,
496 uint32_t vint_id)
497{
498 struct interrupt_queue *q;
499 uint16_t next;
500
501 assert(vint_id != HF_INVALID_INTID);
502
503 q = &vcpu_locked.vcpu->interrupts.vint_q;
504
505 /* Check if the queue is empty. */
506 if (is_queue_empty(q)) {
507 return false;
508 }
509
510 next = q->head;
511 while (true) {
512 /* Match found. */
513 if (q->vint_buffer[next] == vint_id) {
514 return true;
515 }
516
517 next = queue_increment_index(next);
518
519 /* Reached the end of queue. */
520 if (next == q->tail) {
521 break;
522 }
523 }
524
525 return false;
526}
527
528/**
529 * Check if there are any entries in the interrupt queue.
530 *
531 * Returns true if queue is empty, or false otherwise.
532 */
533bool vcpu_is_interrupt_queue_empty(struct vcpu_locked vcpu_locked)
534{
535 struct interrupt_queue *q;
536
537 q = &vcpu_locked.vcpu->interrupts.vint_q;
538
539 if (is_queue_empty(q)) {
540 return true;
541 }
542
543 return false;
544}
J-Alves3b31f092024-08-07 13:26:29 +0100545
546/**
547 * When interrupt handling is complete the preempted_vcpu field should go back
548 * to NULL.
549 */
550void vcpu_secure_interrupt_complete(struct vcpu_locked vcpu_locked)
551{
552 struct vcpu *vcpu;
553
554 vcpu = vcpu_locked.vcpu;
555 vcpu->preempted_vcpu = NULL;
J-Alvesac940752024-08-07 14:02:51 +0100556 vcpu->requires_deactivate_call = false;
J-Alves3b31f092024-08-07 13:26:29 +0100557}