blob: d376ddbf4bbd53632c9deae389419f2b5e336914 [file] [log] [blame]
/*
* Copyright 2019 The Hafnium Authors.
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/BSD-3-Clause.
*/
#include "hf/ffa_memory.h"
#include "hf/arch/memcpy_trapped.h"
#include "hf/arch/mm.h"
#include "hf/addr.h"
#include "hf/check.h"
#include "hf/dlog.h"
#include "hf/ffa.h"
#include "hf/ffa/ffa_memory.h"
#include "hf/ffa/setup_and_discovery.h"
#include "hf/ffa_internal.h"
#include "hf/ffa_memory_internal.h"
#include "hf/mm.h"
#include "hf/mpool.h"
#include "hf/panic.h"
#include "hf/plat/memory_protect.h"
#include "hf/std.h"
#include "hf/vm.h"
#include "hf/vm_ids.h"
#include "vmapi/hf/ffa_v1_0.h"
#define RECEIVERS_COUNT_IN_RETRIEVE_RESP 1
/**
* All access to members of a `struct ffa_memory_share_state` must be guarded
* by this lock.
*/
static struct spinlock share_states_lock_instance = SPINLOCK_INIT;
static struct ffa_memory_share_state share_states[MAX_MEM_SHARES];
/**
* Return the offset to the first constituent within the
* `ffa_composite_memory_region` for the given receiver from an
* `ffa_memory_region`. The caller must check that the receiver_index is within
* bounds, and that it has a composite memory region offset.
*/
static uint32_t ffa_composite_constituent_offset(
struct ffa_memory_region *memory_region, uint32_t receiver_index)
{
struct ffa_memory_access *receiver;
uint32_t composite_offset;
CHECK(receiver_index < memory_region->receiver_count);
receiver =
ffa_memory_region_get_receiver(memory_region, receiver_index);
CHECK(receiver != NULL);
composite_offset = receiver->composite_memory_region_offset;
CHECK(composite_offset != 0);
return composite_offset + sizeof(struct ffa_composite_memory_region);
}
/**
* Initialises the next available `struct ffa_memory_share_state`. If `handle`
* is `FFA_MEMORY_HANDLE_INVALID` then allocates an appropriate handle,
* otherwise uses the provided handle which is assumed to be globally unique.
*
* Returns a pointer to the allocated `ffa_memory_share_state` on success or
* `NULL` if none are available.
*/
struct ffa_memory_share_state *allocate_share_state(
struct share_states_locked share_states, uint32_t share_func,
struct ffa_memory_region *memory_region, uint32_t fragment_length,
ffa_memory_handle_t handle)
{
assert(share_states.share_states != NULL);
assert(memory_region != NULL);
for (uint64_t i = 0; i < MAX_MEM_SHARES; ++i) {
if (share_states.share_states[i].share_func == 0) {
struct ffa_memory_share_state *allocated_state =
&share_states.share_states[i];
struct ffa_composite_memory_region *composite =
ffa_memory_region_get_composite(memory_region,
0);
if (handle == FFA_MEMORY_HANDLE_INVALID) {
memory_region->handle =
ffa_memory_make_handle(i);
} else {
memory_region->handle = handle;
}
allocated_state->share_func = share_func;
allocated_state->memory_region = memory_region;
allocated_state->fragment_count = 1;
allocated_state->fragments[0] = composite->constituents;
allocated_state->fragment_constituent_counts[0] =
(fragment_length -
ffa_composite_constituent_offset(memory_region,
0)) /
sizeof(struct ffa_memory_region_constituent);
allocated_state->sending_complete = false;
for (uint32_t j = 0; j < MAX_MEM_SHARE_RECIPIENTS;
++j) {
allocated_state->retrieved_fragment_count[j] =
0;
}
return allocated_state;
}
}
return NULL;
}
/** Locks the share states lock. */
struct share_states_locked share_states_lock(void)
{
sl_lock(&share_states_lock_instance);
return (struct share_states_locked){.share_states = share_states};
}
/** Unlocks the share states lock. */
void share_states_unlock(struct share_states_locked *share_states)
{
assert(share_states->share_states != NULL);
share_states->share_states = NULL;
sl_unlock(&share_states_lock_instance);
}
/**
* If the given handle is a valid handle for an allocated share state then
* returns a pointer to the share state. Otherwise returns NULL.
*/
struct ffa_memory_share_state *get_share_state(
struct share_states_locked share_states, ffa_memory_handle_t handle)
{
struct ffa_memory_share_state *share_state;
assert(share_states.share_states != NULL);
/*
* First look for a share_state allocated by us, in which case the
* handle is based on the index.
*/
if (ffa_memory_is_handle_allocated_by_current_world(handle)) {
uint64_t index = ffa_memory_handle_index(handle);
if (index < MAX_MEM_SHARES) {
share_state = &share_states.share_states[index];
if (share_state->share_func != 0) {
return share_state;
}
}
}
/* Fall back to a linear scan. */
for (uint64_t index = 0; index < MAX_MEM_SHARES; ++index) {
share_state = &share_states.share_states[index];
if (share_state->memory_region != NULL &&
share_state->memory_region->handle == handle &&
share_state->share_func != 0) {
return share_state;
}
}
return NULL;
}
/** Marks a share state as unallocated. */
void share_state_free(struct share_states_locked share_states,
struct ffa_memory_share_state *share_state,
struct mpool *page_pool)
{
uint32_t i;
assert(share_states.share_states != NULL);
share_state->share_func = 0;
share_state->sending_complete = false;
mpool_free(page_pool, share_state->memory_region);
/*
* First fragment is part of the same page as the `memory_region`, so it
* doesn't need to be freed separately.
*/
share_state->fragments[0] = NULL;
share_state->fragment_constituent_counts[0] = 0;
for (i = 1; i < share_state->fragment_count; ++i) {
mpool_free(page_pool, share_state->fragments[i]);
share_state->fragments[i] = NULL;
share_state->fragment_constituent_counts[i] = 0;
}
share_state->fragment_count = 0;
share_state->memory_region = NULL;
share_state->hypervisor_fragment_count = 0;
}
/** Checks whether the given share state has been fully sent. */
bool share_state_sending_complete(struct share_states_locked share_states,
struct ffa_memory_share_state *share_state)
{
struct ffa_composite_memory_region *composite;
uint32_t expected_constituent_count;
uint32_t fragment_constituent_count_total = 0;
uint32_t i;
/* Lock must be held. */
assert(share_states.share_states != NULL);
/*
* Share state must already be valid, or it's not possible to get hold
* of it.
*/
CHECK(share_state->memory_region != NULL &&
share_state->share_func != 0);
composite =
ffa_memory_region_get_composite(share_state->memory_region, 0);
expected_constituent_count = composite->constituent_count;
for (i = 0; i < share_state->fragment_count; ++i) {
fragment_constituent_count_total +=
share_state->fragment_constituent_counts[i];
}
dlog_verbose(
"Checking completion: constituent count %d/%d from %d "
"fragments.\n",
fragment_constituent_count_total, expected_constituent_count,
share_state->fragment_count);
return fragment_constituent_count_total == expected_constituent_count;
}
/**
* Calculates the offset of the next fragment expected for the given share
* state.
*/
uint32_t share_state_next_fragment_offset(
struct share_states_locked share_states,
struct ffa_memory_share_state *share_state)
{
uint32_t next_fragment_offset;
uint32_t i;
/* Lock must be held. */
assert(share_states.share_states != NULL);
next_fragment_offset =
ffa_composite_constituent_offset(share_state->memory_region, 0);
for (i = 0; i < share_state->fragment_count; ++i) {
next_fragment_offset +=
share_state->fragment_constituent_counts[i] *
sizeof(struct ffa_memory_region_constituent);
}
return next_fragment_offset;
}
static void dump_memory_region(struct ffa_memory_region *memory_region)
{
uint32_t i;
if (LOG_LEVEL < LOG_LEVEL_VERBOSE) {
return;
}
dlog("from VM %#x, attributes (shareability = %s, cacheability = %s, "
"type = %s, security = %s), flags %#x, handle %#lx "
"tag %lu, memory access descriptor size %u, to %u "
"recipients [",
memory_region->sender,
ffa_memory_shareability_name(
memory_region->attributes.shareability),
ffa_memory_cacheability_name(
memory_region->attributes.cacheability),
ffa_memory_type_name(memory_region->attributes.type),
ffa_memory_security_name(memory_region->attributes.security),
memory_region->flags, memory_region->handle, memory_region->tag,
memory_region->memory_access_desc_size,
memory_region->receiver_count);
for (i = 0; i < memory_region->receiver_count; ++i) {
struct ffa_memory_access *receiver =
ffa_memory_region_get_receiver(memory_region, i);
if (i != 0) {
dlog(", ");
}
dlog("Receiver %#x: permissions (%s, %s) (offset %u)",
receiver->receiver_permissions.receiver,
ffa_data_access_name(receiver->receiver_permissions
.permissions.data_access),
ffa_instruction_access_name(
receiver->receiver_permissions.permissions
.instruction_access),
receiver->composite_memory_region_offset);
/* The impdef field is only present from v1.2 and later */
if (ffa_version_from_memory_access_desc_size(
memory_region->memory_access_desc_size) >=
FFA_VERSION_1_2) {
dlog(", impdef: %#lx %#lx", receiver->impdef.val[0],
receiver->impdef.val[1]);
}
}
dlog("] at offset %u", memory_region->receivers_offset);
}
void dump_share_states(void)
{
uint32_t i;
if (LOG_LEVEL < LOG_LEVEL_VERBOSE) {
return;
}
dlog("Current share states:\n");
sl_lock(&share_states_lock_instance);
for (i = 0; i < MAX_MEM_SHARES; ++i) {
if (share_states[i].share_func != 0) {
switch (share_states[i].share_func) {
case FFA_MEM_SHARE_64:
case FFA_MEM_SHARE_32:
dlog("SHARE");
break;
case FFA_MEM_LEND_64:
case FFA_MEM_LEND_32:
dlog("LEND");
break;
case FFA_MEM_DONATE_64:
case FFA_MEM_DONATE_32:
dlog("DONATE");
break;
default:
dlog("invalid share_func %#x",
share_states[i].share_func);
}
dlog(" %#lx (", share_states[i].memory_region->handle);
dump_memory_region(share_states[i].memory_region);
if (share_states[i].sending_complete) {
dlog("): fully sent");
} else {
dlog("): partially sent");
}
dlog(" with %d fragments, %d retrieved, "
" sender's original mode: %#x\n",
share_states[i].fragment_count,
share_states[i].retrieved_fragment_count[0],
share_states[i].sender_orig_mode);
}
}
sl_unlock(&share_states_lock_instance);
}
static inline uint32_t ffa_memory_permissions_to_mode(
ffa_memory_access_permissions_t permissions, uint32_t default_mode)
{
mm_mode_t mode = 0;
switch (permissions.data_access) {
case FFA_DATA_ACCESS_RO:
mode = MM_MODE_R;
break;
case FFA_DATA_ACCESS_RW:
mode = MM_MODE_R | MM_MODE_W;
break;
case FFA_DATA_ACCESS_NOT_SPECIFIED:
mode = (default_mode & (MM_MODE_R | MM_MODE_W));
break;
case FFA_DATA_ACCESS_RESERVED:
panic("Tried to convert FFA_DATA_ACCESS_RESERVED.");
default:
panic("Unknown data access %#x\n", permissions.data_access);
}
switch (permissions.instruction_access) {
case FFA_INSTRUCTION_ACCESS_NX:
break;
case FFA_INSTRUCTION_ACCESS_X:
mode |= MM_MODE_X;
break;
case FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED:
mode |= (default_mode & MM_MODE_X);
break;
case FFA_INSTRUCTION_ACCESS_RESERVED:
panic("Tried to convert FFA_INSTRUCTION_ACCESS_RESVERVED.");
default:
panic("Unknown instruction access %#x\n",
permissions.instruction_access);
}
/* Set the security state bit if necessary. */
if ((default_mode & ffa_memory_get_other_world_mode()) != 0) {
mode |= ffa_memory_get_other_world_mode();
}
mode |= default_mode & MM_MODE_D;
return mode;
}
/**
* Get the current mode in the stage-2 page table of the given vm of all the
* pages in the given constituents, if they all have the same mode, or return
* an appropriate FF-A error if not.
*/
static struct ffa_value constituents_get_mode(
struct vm_locked vm, mm_mode_t *orig_mode,
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts, uint32_t fragment_count)
{
uint32_t i;
uint32_t j;
if (fragment_count == 0 || fragment_constituent_counts[0] == 0) {
/*
* Fail if there are no constituents. Otherwise we would get an
* uninitialised *orig_mode.
*/
dlog_verbose("%s: no constituents\n", __func__);
return ffa_error(FFA_INVALID_PARAMETERS);
}
for (i = 0; i < fragment_count; ++i) {
for (j = 0; j < fragment_constituent_counts[i]; ++j) {
ipaddr_t begin = ipa_init(fragments[i][j].address);
size_t size = fragments[i][j].page_count * PAGE_SIZE;
ipaddr_t end = ipa_add(begin, size);
uint32_t current_mode;
/* Fail if addresses are not page-aligned. */
if (!is_aligned(ipa_addr(begin), PAGE_SIZE) ||
!is_aligned(ipa_addr(end), PAGE_SIZE)) {
dlog_verbose("%s: addresses not page-aligned\n",
__func__);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Ensure that this constituent memory range is all
* mapped with the same mode.
*/
if (!vm_mem_get_mode(vm, begin, end, &current_mode)) {
dlog_verbose(
"%s: constituent memory range "
"%#lx..%#lx "
"not mapped with the same mode\n",
__func__, begin.ipa, end.ipa);
return ffa_error(FFA_DENIED);
}
/*
* Ensure that all constituents are mapped with the same
* mode.
*/
if (i == 0) {
*orig_mode = current_mode;
} else if (current_mode != *orig_mode) {
dlog_verbose(
"%s: expected mode %#x but was %#x for "
"%d pages at %#lx.\n",
__func__, *orig_mode, current_mode,
fragments[i][j].page_count,
ipa_addr(begin));
return ffa_error(FFA_DENIED);
}
}
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
enum ffa_version ffa_version_from_memory_access_desc_size(
uint32_t memory_access_desc_size)
{
switch (memory_access_desc_size) {
/*
* v1.0 and v1.1 memory access descriptors are the same size however
* v1.1 is the first version to include the memory access descriptor
* size field so return v1.1.
*/
case sizeof(struct ffa_memory_access_v1_0):
return FFA_VERSION_1_1;
case sizeof(struct ffa_memory_access):
return FFA_VERSION_1_2;
default:
return 0;
}
}
/**
* Check if the receivers size and offset given is valid for the senders
* FF-A version.
*/
static bool receiver_size_and_offset_valid_for_version(
uint32_t receivers_size, uint32_t receivers_offset,
enum ffa_version ffa_version)
{
/*
* Check that the version that the memory access descriptor size belongs
* to is compatible with the FF-A version we believe the sender to be.
*/
enum ffa_version expected_ffa_version =
ffa_version_from_memory_access_desc_size(receivers_size);
if (!ffa_versions_are_compatible(expected_ffa_version, ffa_version)) {
return false;
}
/*
* Check the receivers_offset matches the version we found from
* memory access descriptor size.
*/
switch (expected_ffa_version) {
case FFA_VERSION_1_1:
case FFA_VERSION_1_2:
return receivers_offset == sizeof(struct ffa_memory_region);
default:
return false;
}
}
/**
* Check the values set for fields in the memory region are valid and safe.
* Offset values are within safe bounds, receiver count will not cause overflows
* and reserved fields are 0.
*/
bool ffa_memory_region_sanity_check(struct ffa_memory_region *memory_region,
enum ffa_version ffa_version,
uint32_t fragment_length,
bool send_transaction)
{
uint32_t receiver_count;
struct ffa_memory_access *receiver;
uint32_t composite_offset_0;
struct ffa_memory_region_v1_0 *memory_region_v1_0 =
(struct ffa_memory_region_v1_0 *)memory_region;
if (ffa_version == FFA_VERSION_1_0) {
/* Check the reserved fields are 0. */
if (memory_region_v1_0->reserved_0 != 0 ||
memory_region_v1_0->reserved_1 != 0) {
dlog_verbose("Reserved fields must be 0.\n");
return false;
}
receiver_count = memory_region_v1_0->receiver_count;
} else {
uint32_t receivers_size =
memory_region->memory_access_desc_size;
uint32_t receivers_offset = memory_region->receivers_offset;
/* Check the reserved field is 0. */
if (memory_region->reserved[0] != 0 ||
memory_region->reserved[1] != 0 ||
memory_region->reserved[2] != 0) {
dlog_verbose("Reserved fields must be 0.\n");
return false;
}
/*
* Check memory_access_desc_size matches the size of the struct
* for the senders FF-A version.
*/
if (!receiver_size_and_offset_valid_for_version(
receivers_size, receivers_offset, ffa_version)) {
dlog_verbose(
"Invalid memory access descriptor size %d, or "
"receiver offset %d, for FF-A version %#x\n",
receivers_size, receivers_offset, ffa_version);
return false;
}
receiver_count = memory_region->receiver_count;
}
/* Check receiver count is not too large. */
if (receiver_count > MAX_MEM_SHARE_RECIPIENTS || receiver_count < 1) {
dlog_verbose(
"Receiver count must be 0 < receiver_count < %u "
"specified %u\n",
MAX_MEM_SHARE_RECIPIENTS, receiver_count);
return false;
}
/* Check values in the memory access descriptors. */
/*
* The composite offset values must be the same for all recievers so
* check the first one is valid and then they are all the same.
*/
receiver = ffa_version == FFA_VERSION_1_0
? (struct ffa_memory_access *)&memory_region_v1_0
->receivers[0]
: ffa_memory_region_get_receiver(memory_region, 0);
assert(receiver != NULL);
composite_offset_0 = receiver->composite_memory_region_offset;
if (!send_transaction) {
if (composite_offset_0 != 0) {
dlog_verbose(
"Composite offset memory region descriptor "
"offset must be 0 for retrieve requests. "
"Currently %d",
composite_offset_0);
return false;
}
} else {
bool comp_offset_is_zero = composite_offset_0 == 0U;
bool comp_offset_lt_transaction_descriptor_size =
composite_offset_0 <
(sizeof(struct ffa_memory_region) +
(size_t)(memory_region->memory_access_desc_size *
memory_region->receiver_count));
bool comp_offset_with_comp_gt_fragment_length =
composite_offset_0 +
sizeof(struct ffa_composite_memory_region) >
fragment_length;
if (comp_offset_is_zero ||
comp_offset_lt_transaction_descriptor_size ||
comp_offset_with_comp_gt_fragment_length) {
dlog_verbose(
"Invalid composite memory region descriptor "
"offset for send transaction %u\n",
composite_offset_0);
return false;
}
}
for (size_t i = 0; i < memory_region->receiver_count; i++) {
uint32_t composite_offset;
if (ffa_version == FFA_VERSION_1_0) {
struct ffa_memory_access_v1_0 *receiver_v1_0 =
&memory_region_v1_0->receivers[i];
/* Check reserved fields are 0 */
if (receiver_v1_0->reserved_0 != 0) {
dlog_verbose(
"Reserved field in the memory access "
"descriptor must be zero. Currently "
"reciever %zu has a reserved field "
"with a value of %lu\n",
i, receiver_v1_0->reserved_0);
return false;
}
/*
* We can cast to the current version receiver as the
* remaining fields we are checking have the same
* offsets for all versions since memory access
* descriptors are forwards compatible.
*/
receiver = (struct ffa_memory_access *)receiver_v1_0;
} else {
receiver = ffa_memory_region_get_receiver(memory_region,
i);
assert(receiver != NULL);
if (ffa_version == FFA_VERSION_1_1) {
/*
* Since the reserved field is at the end of the
* Endpoint Memory Access Descriptor we must
* cast to ffa_memory_access_v1_0 as they match.
* Since all fields except reserved in the
* Endpoint Memory Access Descriptor have the
* same offsets across all versions this cast is
* not required when accessing other fields in
* the future.
*/
struct ffa_memory_access_v1_0 *receiver_v1_0 =
(struct ffa_memory_access_v1_0 *)
receiver;
if (receiver_v1_0->reserved_0 != 0) {
dlog_verbose(
"Reserved field in the memory "
"access descriptor must be "
"zero. Currently reciever %zu "
"has a reserved field with a "
"value of %lu\n",
i, receiver_v1_0->reserved_0);
return false;
}
} else {
if (receiver->reserved_0 != 0) {
dlog_verbose(
"Reserved field in the memory "
"access descriptor must be "
"zero. Currently reciever %zu "
"has a reserved field with a "
"value of %lu\n",
i, receiver->reserved_0);
return false;
}
}
}
/* Check composite offset values are equal for all receivers. */
composite_offset = receiver->composite_memory_region_offset;
if (composite_offset != composite_offset_0) {
dlog_verbose(
"Composite offset %x differs from %x in "
"index\n",
composite_offset, composite_offset_0);
return false;
}
}
return true;
}
/**
* If the receivers for the memory management operation are all from the
* secure world, the memory is not device memory (as it isn't covered by the
* granule page table) and this isn't a FFA_MEM_SHARE, then request memory
* security state update by returning MAP_ACTION_CHECK_PROTECT.
*/
static enum ffa_map_action ffa_mem_send_get_map_action(
bool all_receivers_from_current_world, ffa_id_t sender_id,
uint32_t mem_func_id, bool is_normal_memory)
{
const bool is_memory_share_abi = mem_func_id == FFA_MEM_SHARE_32 ||
mem_func_id == FFA_MEM_SHARE_64;
const bool protect_memory =
(!is_memory_share_abi && all_receivers_from_current_world &&
ffa_is_vm_id(sender_id) && is_normal_memory);
return protect_memory ? MAP_ACTION_CHECK_PROTECT : MAP_ACTION_CHECK;
}
/**
* Verify that all pages have the same mode, that the starting mode
* constitutes a valid state and obtain the next mode to apply
* to the sending VM. It outputs the mapping action that needs to be
* invoked for the given memory range. On memory lend/donate there
* could be a need to protect the memory from the normal world.
*
* Returns:
* 1) FFA_DENIED if a state transition was not found;
* 2) FFA_DENIED if the pages being shared do not have the same mode within
* the <from> VM;
* 3) FFA_INVALID_PARAMETERS if the beginning and end IPAs are not page
* aligned;
* 4) FFA_INVALID_PARAMETERS if the requested share type was not handled.
* Or FFA_SUCCESS on success.
*/
static struct ffa_value ffa_send_check_transition(
struct vm_locked from, uint32_t share_func,
struct ffa_memory_region *memory_region, mm_mode_t *orig_from_mode,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
mm_mode_t *from_mode, enum ffa_map_action *map_action, bool zero)
{
const mm_mode_t state_mask =
MM_MODE_INVALID | MM_MODE_UNOWNED | MM_MODE_SHARED;
struct ffa_value ret;
bool all_receivers_from_current_world = true;
uint32_t receivers_count = memory_region->receiver_count;
const bool is_memory_lend = (share_func == FFA_MEM_LEND_32) ||
(share_func == FFA_MEM_LEND_64);
ret = constituents_get_mode(from, orig_from_mode, fragments,
fragment_constituent_counts,
fragment_count);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Inconsistent modes.\n");
return ret;
}
/*
* Check requested memory type is valid with the memory type of the
* owner. E.g. they follow the memory type precedence where Normal
* memory is more permissive than device and therefore device memory
* can only be shared as device memory.
*/
if (memory_region->attributes.type == FFA_MEMORY_NORMAL_MEM &&
(*orig_from_mode & MM_MODE_D) != 0U) {
dlog_verbose(
"Send device memory as Normal memory is not allowed\n");
return ffa_error(FFA_DENIED);
}
/* Device memory regions can only be lent a single borrower. */
if ((*orig_from_mode & MM_MODE_D) != 0U &&
!(is_memory_lend && receivers_count == 1)) {
dlog_verbose(
"Device memory can only be lent to a single borrower "
"(mode is %#x).\n",
*orig_from_mode);
return ffa_error(FFA_DENIED);
}
/*
* Ensure the sender is the owner and has exclusive access to the
* memory.
*/
if ((*orig_from_mode & state_mask) != 0) {
return ffa_error(FFA_DENIED);
}
/*
* Memory cannot be zeroed during the lend/donate operation if the
* sender only has RO access.
*/
if ((*orig_from_mode & MM_MODE_W) == 0 && zero) {
dlog_verbose(
"Cannot zero memory when the sender doesn't have "
"write access\n");
return ffa_error(FFA_DENIED);
}
assert(receivers_count > 0U);
for (uint32_t i = 0U; i < receivers_count; i++) {
struct ffa_memory_access *receiver =
ffa_memory_region_get_receiver(memory_region, i);
assert(receiver != NULL);
ffa_memory_access_permissions_t permissions =
receiver->receiver_permissions.permissions;
uint32_t required_from_mode = ffa_memory_permissions_to_mode(
permissions, *orig_from_mode);
/*
* The assumption is that at this point, the operation from
* SP to a receiver VM, should have returned an FFA_ERROR
* already.
*/
if (!ffa_is_vm_id(from.vm->id)) {
assert(!ffa_is_vm_id(
receiver->receiver_permissions.receiver));
}
/* Track if all senders are from current world. */
all_receivers_from_current_world =
all_receivers_from_current_world &&
vm_id_is_current_world(
receiver->receiver_permissions.receiver);
if ((*orig_from_mode & required_from_mode) !=
required_from_mode) {
dlog_verbose(
"Sender tried to send memory with permissions "
"which required mode %#x but only had %#x "
"itself.\n",
required_from_mode, *orig_from_mode);
return ffa_error(FFA_DENIED);
}
}
*map_action = ffa_mem_send_get_map_action(
all_receivers_from_current_world, from.vm->id, share_func,
(*orig_from_mode & MM_MODE_D) == 0U);
/* Find the appropriate new mode. */
*from_mode = ~state_mask & *orig_from_mode;
switch (share_func) {
case FFA_MEM_DONATE_64:
case FFA_MEM_DONATE_32:
*from_mode |= MM_MODE_INVALID | MM_MODE_UNOWNED;
break;
case FFA_MEM_LEND_64:
case FFA_MEM_LEND_32:
*from_mode |= MM_MODE_INVALID;
break;
case FFA_MEM_SHARE_64:
case FFA_MEM_SHARE_32:
*from_mode |= MM_MODE_SHARED;
break;
default:
return ffa_error(FFA_INVALID_PARAMETERS);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
static struct ffa_value ffa_relinquish_check_transition(
struct vm_locked from, mm_mode_t *orig_from_mode,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
mm_mode_t *from_mode, enum ffa_map_action *map_action)
{
const uint32_t state_mask =
MM_MODE_INVALID | MM_MODE_UNOWNED | MM_MODE_SHARED;
uint32_t orig_from_state;
struct ffa_value ret;
assert(map_action != NULL);
if (vm_id_is_current_world(from.vm->id)) {
*map_action = MAP_ACTION_COMMIT;
} else {
/*
* No need to check the attributes of caller.
* The assumption is that the retrieve request of the receiver
* also used the MAP_ACTION_NONE, and no update was done to the
* page tables. When the receiver is not at the secure virtual
* instance SPMC doesn't manage its S2 translation (i.e. when
* the receiver is a VM).
*/
*map_action = MAP_ACTION_NONE;
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
ret = constituents_get_mode(from, orig_from_mode, fragments,
fragment_constituent_counts,
fragment_count);
if (ret.func != FFA_SUCCESS_32) {
return ret;
}
/*
* Ensure the relinquishing VM is not the owner but has access to the
* memory.
*/
orig_from_state = *orig_from_mode & state_mask;
if ((orig_from_state & ~MM_MODE_SHARED) != MM_MODE_UNOWNED) {
dlog_verbose(
"Tried to relinquish memory in state %#x (masked %#x "
"but should be %#x).\n",
*orig_from_mode, orig_from_state, MM_MODE_UNOWNED);
return ffa_error(FFA_DENIED);
}
/* Find the appropriate new mode. */
*from_mode = (~state_mask & *orig_from_mode) | MM_MODE_UNMAPPED_MASK;
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Verify that all pages have the same mode, that the starting mode
* constitutes a valid state and obtain the next mode to apply
* to the retrieving VM.
*
* Returns:
* 1) FFA_DENIED if a state transition was not found;
* 2) FFA_DENIED if the pages being shared do not have the same mode within
* the <to> VM;
* 3) FFA_INVALID_PARAMETERS if the beginning and end IPAs are not page
* aligned;
* 4) FFA_INVALID_PARAMETERS if the requested share type was not handled.
* Or FFA_SUCCESS on success.
*/
struct ffa_value ffa_retrieve_check_transition(
struct vm_locked to, uint32_t share_func,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
mm_mode_t sender_orig_mode, mm_mode_t *to_mode, bool memory_protected,
enum ffa_map_action *map_action)
{
mm_mode_t orig_to_mode;
struct ffa_value ret;
ret = constituents_get_mode(to, &orig_to_mode, fragments,
fragment_constituent_counts,
fragment_count);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Inconsistent modes.\n");
return ret;
}
/* Find the appropriate new mode. */
*to_mode = sender_orig_mode;
if (share_func == FFA_MEM_RECLAIM_32) {
/*
* If the original ffa memory send call has been processed
* successfully, it is expected the orig_to_mode would overlay
* with `state_mask`, as a result of the function
* `ffa_send_check_transition`.
*
* If Hafnium is the SPMC:
* - Caller of the reclaim interface is an SP, the memory shall
* have been protected throughout the flow.
* - Caller of the reclaim is from the NWd, the memory may have
* been protected at the time of lending/donating the memory.
* In such case, set action to unprotect memory in the
* handling of reclaim operation.
* - If Hafnium is the hypervisor memory shall never have been
* protected in memory lend/share/donate.
*
* More details in the doc comment of the function
* `ffa_region_group_identity_map`.
*/
if (vm_id_is_current_world(to.vm->id)) {
assert((orig_to_mode &
(MM_MODE_INVALID | MM_MODE_UNOWNED |
MM_MODE_SHARED)) != 0U);
assert(!memory_protected);
} else if (to.vm->id == HF_OTHER_WORLD_ID &&
map_action != NULL && memory_protected) {
*map_action = MAP_ACTION_COMMIT_UNPROTECT;
}
} else {
if (!vm_id_is_current_world(to.vm->id)) {
assert(map_action != NULL);
*map_action = MAP_ACTION_NONE;
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/*
* If the retriever is from virtual FF-A instance:
* Ensure the retriever has the expected state. We don't care
* about the MM_MODE_SHARED bit; either with or without it set
* are both valid representations of the !O-NA state.
*/
if (vm_id_is_current_world(to.vm->id) &&
!vm_is_primary(to.vm) &&
(orig_to_mode & MM_MODE_UNMAPPED_MASK) !=
MM_MODE_UNMAPPED_MASK) {
return ffa_error(FFA_DENIED);
}
/*
* If memory has been protected before, clear the NS bit to
* allow the secure access from the SP.
*/
if (memory_protected) {
*to_mode &= ~ffa_memory_get_other_world_mode();
}
}
switch (share_func) {
case FFA_MEM_DONATE_64:
case FFA_MEM_DONATE_32:
*to_mode |= 0;
break;
case FFA_MEM_LEND_64:
case FFA_MEM_LEND_32:
*to_mode |= MM_MODE_UNOWNED;
break;
case FFA_MEM_SHARE_64:
case FFA_MEM_SHARE_32:
*to_mode |= MM_MODE_UNOWNED | MM_MODE_SHARED;
break;
case FFA_MEM_RECLAIM_32:
*to_mode |= 0;
break;
default:
dlog_error("Invalid share_func %#x.\n", share_func);
return ffa_error(FFA_INVALID_PARAMETERS);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/*
* Performs the operations related to the `action` MAP_ACTION_CHECK*.
* Returns:
* - FFA_SUCCESS_32: if all goes well.
* - FFA_ERROR_32: with FFA_NO_MEMORY, if there is no memory to manage
* the page table update. Or error code provided by the function
* `arch_memory_protect`.
*/
static struct ffa_value ffa_region_group_check_actions(
struct vm_locked vm_locked, paddr_t pa_begin, paddr_t pa_end,
struct mpool *ppool, mm_mode_t mode, enum ffa_map_action action,
bool *memory_protected)
{
struct ffa_value ret;
bool is_memory_protected;
if (!vm_identity_prepare(vm_locked, pa_begin, pa_end, mode, ppool)) {
dlog_verbose(
"%s: memory can't be mapped to %x due to lack of "
"memory. Base: %lx end: %lx\n",
__func__, vm_locked.vm->id, pa_addr(pa_begin),
pa_addr(pa_end));
return ffa_error(FFA_NO_MEMORY);
}
switch (action) {
case MAP_ACTION_CHECK:
/* No protect requested. */
is_memory_protected = false;
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
break;
case MAP_ACTION_CHECK_PROTECT: {
paddr_t last_protected_pa = pa_init(0);
ret = arch_memory_protect(pa_begin, pa_end, &last_protected_pa);
is_memory_protected = (ret.func == FFA_SUCCESS_32);
/*
* - If protect memory has failed with FFA_DENIED, means some
* range of memory was in the wrong state. In such case, SPM
* reverts the state of the pages that were successfully
* updated.
* - If protect memory has failed with FFA_NOT_SUPPORTED, it
* means the platform doesn't support the protection mechanism.
* That said, it still permits the page table update to go
* through. The variable
* `is_memory_protected` will be equal to false.
* - If protect memory has failed with FFA_INVALID_PARAMETERS,
* break from switch and return the error.
*/
if (ret.func == FFA_ERROR_32) {
assert(!is_memory_protected);
if (ffa_error_code(ret) == FFA_DENIED &&
pa_addr(last_protected_pa) != (uintptr_t)0) {
CHECK(arch_memory_unprotect(
pa_begin,
pa_add(last_protected_pa, PAGE_SIZE)));
} else if (ffa_error_code(ret) == FFA_NOT_SUPPORTED) {
ret = (struct ffa_value){
.func = FFA_SUCCESS_32,
};
}
}
} break;
default:
panic("%s: invalid action to process %x\n", __func__, action);
}
if (memory_protected != NULL) {
*memory_protected = is_memory_protected;
}
return ret;
}
static void ffa_region_group_commit_actions(struct vm_locked vm_locked,
paddr_t pa_begin, paddr_t pa_end,
struct mpool *ppool, mm_mode_t mode,
enum ffa_map_action action)
{
switch (action) {
case MAP_ACTION_COMMIT_UNPROTECT:
/*
* Checking that it should succeed because SPM should be
* unprotecting memory that it had protected before.
*/
CHECK(arch_memory_unprotect(pa_begin, pa_end));
[[fallthrough]];
case MAP_ACTION_COMMIT:
vm_identity_commit(vm_locked, pa_begin, pa_end, mode, ppool,
NULL);
break;
default:
panic("%s: invalid action to process %x\n", __func__, action);
}
}
/**
* Helper function to revert a failed "Protect" action from the SPMC:
* - `fragment_count`: should specify the number of fragments to traverse from
* `fragments`. This may not be the full amount of fragments that are part of
* the share_state structure.
* - `fragment_constituent_counts`: array holding the amount of constituents
* per fragment.
* - `end`: pointer to the constituent that failed the "protect" action. It
* shall be part of the last fragment, and it shall make the loop below break.
*/
static void ffa_region_group_fragments_revert_protect(
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts, uint32_t fragment_count,
const struct ffa_memory_region_constituent *end)
{
for (uint32_t i = 0; i < fragment_count; ++i) {
for (uint32_t j = 0; j < fragment_constituent_counts[i]; ++j) {
struct ffa_memory_region_constituent *constituent =
&fragments[i][j];
size_t size = constituent->page_count * PAGE_SIZE;
paddr_t pa_begin =
pa_from_ipa(ipa_init(constituent->address));
paddr_t pa_end = pa_add(pa_begin, size);
dlog_verbose("%s: reverting fragment %lx size %zx\n",
__func__, pa_addr(pa_begin), size);
if (constituent == end) {
/*
* The last constituent is expected to be in the
* last fragment.
*/
assert(i == fragment_count - 1);
break;
}
CHECK(arch_memory_unprotect(pa_begin, pa_end));
}
}
}
/**
* Updates a VM's page table such that the given set of physical address ranges
* are mapped in the address space at the corresponding address ranges, in the
* mode provided.
*
* The enum ffa_map_action determines the action taken from a call to the
* function below:
* - If action is MAP_ACTION_CHECK, the page tables will be allocated from the
* mpool but no mappings will actually be updated. This function must always
* be called first with action set to MAP_ACTION_CHECK to check that it will
* succeed before calling ffa_region_group_identity_map with whichever one of
* the remaining actions, to avoid leaving the page table in a half-updated
* state.
* - The action MAP_ACTION_COMMIT allocates the page tables from the mpool, and
* changes the memory mappings.
* - The action MAP_ACTION_CHECK_PROTECT extends the MAP_ACTION_CHECK with an
* invocation to the monitor to update the security state of the memory,
* to that of the SPMC.
* - The action MAP_ACTION_COMMIT_UNPROTECT extends the MAP_ACTION_COMMIT
* with a call into the monitor, to reset the security state of memory
* that has priorly been mapped with the MAP_ACTION_CHECK_PROTECT action.
* vm_ptable_defrag should always be called after a series of page table
* updates, whether they succeed or fail.
*
* If all goes well, returns FFA_SUCCESS_32; or FFA_ERROR, with following
* error codes:
* - FFA_INVALID_PARAMETERS: invalid range of memory.
* - FFA_DENIED:
*
* made to memory mappings.
*/
struct ffa_value ffa_region_group_identity_map(
struct vm_locked vm_locked,
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts, uint32_t fragment_count,
mm_mode_t mode, struct mpool *ppool, enum ffa_map_action action,
bool *memory_protected)
{
uint32_t i;
uint32_t j;
struct ffa_value ret;
if (vm_locked.vm->el0_partition) {
mode |= MM_MODE_USER | MM_MODE_NG;
}
/* Iterate over the memory region constituents within each fragment. */
for (i = 0; i < fragment_count; ++i) {
for (j = 0; j < fragment_constituent_counts[i]; ++j) {
struct ffa_memory_region_constituent *constituent =
&fragments[i][j];
size_t size = constituent->page_count * PAGE_SIZE;
paddr_t pa_begin =
pa_from_ipa(ipa_init(constituent->address));
paddr_t pa_end = pa_add(pa_begin, size);
uint32_t pa_bits =
arch_mm_get_pa_bits(arch_mm_get_pa_range());
/*
* Ensure the requested region falls into system's PA
* range.
*/
if (((pa_addr(pa_begin) >> pa_bits) > 0) ||
((pa_addr(pa_end) >> pa_bits) > 0)) {
dlog_error("Region is outside of PA Range\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (action <= MAP_ACTION_CHECK_PROTECT) {
ret = ffa_region_group_check_actions(
vm_locked, pa_begin, pa_end, ppool,
mode, action, memory_protected);
if (ret.func == FFA_ERROR_32 &&
ffa_error_code(ret) == FFA_DENIED) {
if (memory_protected != NULL) {
assert(!*memory_protected);
}
ffa_region_group_fragments_revert_protect(
fragments,
fragment_constituent_counts,
i + 1, constituent);
break;
}
} else if (action >= MAP_ACTION_COMMIT &&
action < MAP_ACTION_MAX) {
ffa_region_group_commit_actions(
vm_locked, pa_begin, pa_end, ppool,
mode, action);
ret = (struct ffa_value){
.func = FFA_SUCCESS_32};
} else {
panic("%s: Unknown ffa_map_action.\n",
__func__);
}
}
}
return ret;
}
/**
* Clears a region of physical memory by overwriting it with zeros. The data is
* flushed from the cache so the memory has been cleared across the system.
*/
static bool clear_memory(paddr_t begin, paddr_t end, struct mpool *ppool,
mm_mode_t extra_mode)
{
/*
* TODO: change this to a CPU local single page window rather than a
* global mapping of the whole range. Such an approach will limit
* the changes to stage-1 tables and will allow only local
* invalidation.
*/
bool ret;
struct mm_stage1_locked stage1_locked = mm_lock_stage1();
void *ptr = mm_identity_map(
stage1_locked, begin, end,
MM_MODE_W | (extra_mode & ffa_memory_get_other_world_mode()),
ppool);
size_t size = pa_difference(begin, end);
if (!ptr) {
goto fail;
}
memset_s(ptr, size, 0, size);
arch_mm_flush_dcache(ptr, size);
mm_unmap(stage1_locked, begin, end, ppool);
ret = true;
goto out;
fail:
ret = false;
out:
mm_unlock_stage1(&stage1_locked);
return ret;
}
/**
* Clears a region of physical memory by overwriting it with zeros. The data is
* flushed from the cache so the memory has been cleared across the system.
*/
static bool ffa_clear_memory_constituents(
mm_mode_t security_state_mode,
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts, uint32_t fragment_count,
struct mpool *page_pool)
{
struct mpool local_page_pool;
uint32_t i;
bool ret = false;
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure each constituent that is mapped can be
* unmapped again afterwards.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/* Iterate over the memory region constituents within each fragment. */
for (i = 0; i < fragment_count; ++i) {
uint32_t j;
for (j = 0; j < fragment_constituent_counts[i]; ++j) {
size_t size = fragments[i][j].page_count * PAGE_SIZE;
paddr_t begin =
pa_from_ipa(ipa_init(fragments[i][j].address));
paddr_t end = pa_add(begin, size);
if (!clear_memory(begin, end, &local_page_pool,
security_state_mode)) {
/*
* api_clear_memory will defrag on failure, so
* no need to do it here.
*/
goto out;
}
}
}
ret = true;
out:
mpool_fini(&local_page_pool);
return ret;
}
static bool is_memory_range_within(ipaddr_t begin, ipaddr_t end,
ipaddr_t in_begin, ipaddr_t in_end)
{
return (ipa_addr(begin) >= ipa_addr(in_begin) &&
ipa_addr(begin) < ipa_addr(in_end)) ||
(ipa_addr(end) <= ipa_addr(in_end) &&
ipa_addr(end) > ipa_addr(in_begin));
}
/**
* Receives a memory range and looks for overlaps with the remainder
* constituents of the memory share/lend/donate operation. Assumes they are
* passed in order to avoid having to loop over all the elements at each call.
* The function only compares the received memory ranges with those that follow
* within the same fragment, and subsequent fragments from the same operation.
*/
static bool ffa_memory_check_overlap(
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts,
const uint32_t fragment_count, const uint32_t current_fragment,
const uint32_t current_constituent)
{
uint32_t i = current_fragment;
uint32_t j = current_constituent;
ipaddr_t current_begin = ipa_init(fragments[i][j].address);
const uint32_t current_page_count = fragments[i][j].page_count;
size_t current_size = current_page_count * PAGE_SIZE;
ipaddr_t current_end = ipa_add(current_begin, current_size - 1);
if (current_size == 0 ||
current_size > UINT64_MAX - ipa_addr(current_begin)) {
dlog_verbose("Invalid page count. Addr: %zx page_count: %x\n",
current_begin.ipa, current_page_count);
return false;
}
for (; i < fragment_count; i++) {
j = (i == current_fragment) ? j + 1 : 0;
for (; j < fragment_constituent_counts[i]; j++) {
ipaddr_t begin = ipa_init(fragments[i][j].address);
const uint32_t page_count = fragments[i][j].page_count;
size_t size = page_count * PAGE_SIZE;
ipaddr_t end = ipa_add(begin, size - 1);
if (size == 0 || size > UINT64_MAX - ipa_addr(begin)) {
dlog_verbose(
"Invalid page count. Addr: %lx "
"page_count: %x\n",
begin.ipa, page_count);
return false;
}
/*
* Check if current ranges is within begin and end, as
* well as the reverse. This should help optimize the
* loop, and reduce the number of iterations.
*/
if (is_memory_range_within(begin, end, current_begin,
current_end) ||
is_memory_range_within(current_begin, current_end,
begin, end)) {
dlog_verbose(
"Overlapping memory ranges: %#lx - "
"%#lx with %#lx - %#lx\n",
ipa_addr(begin), ipa_addr(end),
ipa_addr(current_begin),
ipa_addr(current_end));
return true;
}
}
}
return false;
}
/**
* Validates and prepares memory to be sent from the calling VM to another.
*
* This function requires the calling context to hold the <from> VM lock.
*
* Returns:
* In case of error, one of the following values is returned:
* 1) FFA_INVALID_PARAMETERS - The endpoint provided parameters were
* erroneous;
* 2) FFA_NO_MEMORY - Hafnium did not have sufficient memory to complete the
* request.
* 3) FFA_DENIED - The sender doesn't have sufficient access to send the
* memory with the given permissions.
* Success is indicated by FFA_SUCCESS.
*/
static struct ffa_value ffa_send_check_update(
struct vm_locked from_locked,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t composite_total_page_count, uint32_t share_func,
struct ffa_memory_region *memory_region, struct mpool *page_pool,
mm_mode_t *orig_from_mode_ret, bool *memory_protected)
{
uint32_t i;
uint32_t j;
mm_mode_t orig_from_mode;
mm_mode_t clean_mode;
mm_mode_t from_mode = 0;
struct mpool local_page_pool;
struct ffa_value ret;
uint32_t constituents_total_page_count = 0;
enum ffa_map_action map_action = MAP_ACTION_CHECK;
bool clear = memory_region->flags & FFA_MEMORY_REGION_FLAG_CLEAR;
/*
* Make sure constituents are properly aligned to a 64-bit boundary. If
* not we would get alignment faults trying to read (64-bit) values.
*/
for (i = 0; i < fragment_count; ++i) {
if (!is_aligned(fragments[i], 8)) {
dlog_verbose("Constituents not aligned.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
for (j = 0; j < fragment_constituent_counts[i]; ++j) {
constituents_total_page_count +=
fragments[i][j].page_count;
if (ffa_memory_check_overlap(
fragments, fragment_constituent_counts,
fragment_count, i, j)) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
}
if (constituents_total_page_count != composite_total_page_count) {
dlog_verbose(
"Composite page count differs from calculated page "
"count from constituents.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Check if the state transition is lawful for the sender, ensure that
* all constituents of a memory region being shared are at the same
* state.
*/
ret = ffa_send_check_transition(
from_locked, share_func, memory_region, &orig_from_mode,
fragments, fragment_constituent_counts, fragment_count,
&from_mode, &map_action, clear);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Invalid transition for send.\n");
return ret;
}
if (orig_from_mode_ret != NULL) {
*orig_from_mode_ret = orig_from_mode;
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if the
* clear fails.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/*
* First reserve all required memory for the new page table entries
* without committing, to make sure the entire operation will succeed
* without exhausting the page pool.
* Provide the map_action as populated by 'ffa_send_check_transition'.
* It may request memory to be protected.
*/
ret = ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, page_pool, map_action,
memory_protected);
if (ret.func == FFA_ERROR_32) {
goto out;
}
/*
* Update the mapping for the sender. This won't allocate because the
* transaction was already prepared above, but may free pages in the
* case that a whole block is being unmapped that was previously
* partially mapped.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, &local_page_pool,
MAP_ACTION_COMMIT, NULL)
.func == FFA_SUCCESS_32);
/*
* If memory has been protected, it is now part of the secure PAS
* (happens for lend/donate from NWd to SWd), and the `orig_from_mode`
* should have the MM_MODE_NS set, as such mask it in `clean_mode` for
* SPM's S1 translation.
* In case memory hasn't been protected, and it is in the non-secure
* PAS (e.g. memory share from NWd to SWd), as such the SPM needs to
* perform a non-secure memory access. In such case `clean_mode` takes
* the same mode as `orig_from_mode`.
*/
clean_mode =
(memory_protected != NULL && *memory_protected)
? orig_from_mode & ~ffa_memory_get_other_world_mode()
: orig_from_mode;
/* Clear the memory so no VM or device can see the previous contents. */
if (clear && !ffa_clear_memory_constituents(
clean_mode, fragments, fragment_constituent_counts,
fragment_count, page_pool)) {
map_action = (memory_protected != NULL && *memory_protected)
? MAP_ACTION_COMMIT_UNPROTECT
: MAP_ACTION_COMMIT;
/*
* On failure, roll back by returning memory to the sender. This
* may allocate pages which were previously freed into
* `local_page_pool` by the call above, but will never allocate
* more pages than that so can never fail.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments,
fragment_constituent_counts, fragment_count,
orig_from_mode, &local_page_pool,
MAP_ACTION_COMMIT, NULL)
.func == FFA_SUCCESS_32);
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
/*
* Tidy up the page table by reclaiming failed mappings (if there was an
* error) or merging entries into blocks where possible (on success).
*/
vm_ptable_defrag(from_locked, page_pool);
return ret;
}
/**
* Validates and maps memory shared from one VM to another.
*
* This function requires the calling context to hold the <to> lock.
*
* Returns:
* In case of error, one of the following values is returned:
* 1) FFA_INVALID_PARAMETERS - The endpoint provided parameters were
* erroneous;
* 2) FFA_NO_MEMORY - Hafnium did not have sufficient memory to complete
* the request.
* Success is indicated by FFA_SUCCESS.
*/
struct ffa_value ffa_retrieve_check_update(
struct vm_locked to_locked,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
mm_mode_t sender_orig_mode, uint32_t share_func, bool clear,
struct mpool *page_pool, mm_mode_t *response_mode,
bool memory_protected)
{
uint32_t i;
mm_mode_t to_mode;
struct mpool local_page_pool;
struct ffa_value ret;
enum ffa_map_action map_action = MAP_ACTION_COMMIT;
/*
* Make sure constituents are properly aligned to a 64-bit boundary. If
* not we would get alignment faults trying to read (64-bit) values.
*/
for (i = 0; i < fragment_count; ++i) {
if (!is_aligned(fragments[i], 8)) {
dlog_verbose("Fragment not properly aligned.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
/*
* Ensure the sender has write permissions if the memory needs to be
* cleared.
*/
if ((sender_orig_mode & MM_MODE_W) == 0 && clear) {
dlog_verbose(
"Cannot zero memory when the sender does not have "
"write access\n");
return ffa_error(FFA_DENIED);
}
/*
* Check if the state transition is lawful for the recipient, and ensure
* that all constituents of the memory region being retrieved are at the
* same state.
*/
ret = ffa_retrieve_check_transition(
to_locked, share_func, fragments, fragment_constituent_counts,
fragment_count, sender_orig_mode, &to_mode, memory_protected,
&map_action);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Invalid transition for retrieve.\n");
return ret;
}
/*
* Create a local pool so any freed memory can't be used by
* another thread. This is to ensure the original mapping can be
* restored if the clear fails.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/*
* Memory retrieves from the NWd VMs don't require update to S2 PTs on
* retrieve request.
*/
if (map_action != MAP_ACTION_NONE) {
/*
* First reserve all required memory for the new page table
* entries in the recipient page tables without committing, to
* make sure the entire operation will succeed without
* exhausting the page pool.
*/
ret = ffa_region_group_identity_map(
to_locked, fragments, fragment_constituent_counts,
fragment_count, to_mode, page_pool, MAP_ACTION_CHECK,
NULL);
if (ret.func == FFA_ERROR_32) {
/* TODO: partial defrag of failed range. */
goto out;
}
}
/* Clear the memory so no VM or device can see the previous contents. */
if (clear &&
!ffa_clear_memory_constituents(sender_orig_mode, fragments,
fragment_constituent_counts,
fragment_count, page_pool)) {
dlog_verbose("Couldn't clear constituents.\n");
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
if (map_action != MAP_ACTION_NONE) {
/*
* Complete the transfer by mapping the memory into the
* recipient. This won't allocate because the transaction was
* already prepared above, so it doesn't need to use the
* `local_page_pool`.
*/
CHECK(ffa_region_group_identity_map(to_locked, fragments,
fragment_constituent_counts,
fragment_count, to_mode,
page_pool, map_action, NULL)
.func == FFA_SUCCESS_32);
/*
* Return the mode used in mapping the memory in retriever's PT.
*/
if (response_mode != NULL) {
*response_mode = to_mode;
}
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
/*
* Tidy up the page table by reclaiming failed mappings (if there was an
* error) or merging entries into blocks where possible (on success).
*/
vm_ptable_defrag(to_locked, page_pool);
return ret;
}
static struct ffa_value ffa_relinquish_check_update(
struct vm_locked from_locked,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
mm_mode_t sender_orig_mode, struct mpool *page_pool, bool clear)
{
mm_mode_t orig_from_mode;
mm_mode_t clearing_mode;
mm_mode_t from_mode = 0;
struct mpool local_page_pool;
struct ffa_value ret;
enum ffa_map_action map_action;
ret = ffa_relinquish_check_transition(
from_locked, &orig_from_mode, fragments,
fragment_constituent_counts, fragment_count, &from_mode,
&map_action);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Invalid transition for relinquish.\n");
return ret;
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if the
* clear fails.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
if (map_action != MAP_ACTION_NONE) {
clearing_mode = orig_from_mode;
/*
* First reserve all required memory for the new page table
* entries without committing, to make sure the entire operation
* will succeed without exhausting the page pool.
*/
ret = ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, page_pool, MAP_ACTION_CHECK,
NULL);
if (ret.func == FFA_ERROR_32) {
goto out;
}
/*
* Update the mapping for the sender. This won't allocate
* because the transaction was already prepared above, but may
* free pages in the case that a whole block is being unmapped
* that was previously partially mapped.
*/
CHECK(ffa_region_group_identity_map(from_locked, fragments,
fragment_constituent_counts,
fragment_count, from_mode,
&local_page_pool,
MAP_ACTION_COMMIT, NULL)
.func == FFA_SUCCESS_32);
} else {
/*
* If the `map_action` is set to `MAP_ACTION_NONE`, S2 PTs
* were not updated on retrieve/relinquish. These were updating
* only the `share_state` structures. As such, use the sender's
* original mode.
*/
clearing_mode = sender_orig_mode;
}
/* Clear the memory so no VM or device can see the previous contents. */
if (clear &&
!ffa_clear_memory_constituents(clearing_mode, fragments,
fragment_constituent_counts,
fragment_count, page_pool)) {
if (map_action != MAP_ACTION_NONE) {
/*
* On failure, roll back by returning memory to the
* sender. This may allocate pages which were previously
* freed into `local_page_pool` by the call above, but
* will never allocate more pages than that so can never
* fail.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments,
fragment_constituent_counts,
fragment_count, orig_from_mode,
&local_page_pool, MAP_ACTION_COMMIT, NULL)
.func == FFA_SUCCESS_32);
}
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
/*
* Tidy up the page table by reclaiming failed mappings (if there was an
* error) or merging entries into blocks where possible (on success).
*/
vm_ptable_defrag(from_locked, page_pool);
return ret;
}
/**
* Complete a memory sending operation by checking that it is valid, updating
* the sender page table, and then either marking the share state as having
* completed sending (on success) or freeing it (on failure).
*
* Returns FFA_SUCCESS with the handle encoded, or the relevant FFA_ERROR.
*/
struct ffa_value ffa_memory_send_complete(
struct vm_locked from_locked, struct share_states_locked share_states,
struct ffa_memory_share_state *share_state, struct mpool *page_pool,
mm_mode_t *orig_from_mode_ret)
{
struct ffa_memory_region *memory_region = share_state->memory_region;
struct ffa_composite_memory_region *composite;
struct ffa_value ret;
/* Lock must be held. */
assert(share_states.share_states != NULL);
assert(memory_region != NULL);
composite = ffa_memory_region_get_composite(memory_region, 0);
assert(composite != NULL);
/* Check that state is valid in sender page table and update. */
ret = ffa_send_check_update(
from_locked, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, composite->page_count,
share_state->share_func, memory_region, page_pool,
orig_from_mode_ret, &share_state->memory_protected);
if (ret.func != FFA_SUCCESS_32) {
/*
* Free share state, it failed to send so it can't be retrieved.
*/
dlog_verbose("%s: failed to send check update: %s(%s)\n",
__func__, ffa_func_name(ret.func),
ffa_error_name(ffa_error_code(ret)));
share_state_free(share_states, share_state, page_pool);
return ret;
}
share_state->sending_complete = true;
dlog_verbose("%s: marked sending complete.\n", __func__);
return ffa_mem_success(share_state->memory_region->handle);
}
/**
* Check that the memory attributes match Hafnium expectations.
* Cacheability:
* - Normal Memory as `FFA_MEMORY_CACHE_WRITE_BACK`.
* - Device memory as `FFA_MEMORY_DEV_NGNRNE`.
*
* Shareability:
* - Inner Shareable.
*/
static struct ffa_value ffa_memory_attributes_validate(
ffa_memory_attributes_t attributes)
{
enum ffa_memory_type memory_type;
enum ffa_memory_cacheability cacheability;
enum ffa_memory_shareability shareability;
memory_type = attributes.type;
cacheability = attributes.cacheability;
if (memory_type == FFA_MEMORY_NORMAL_MEM &&
cacheability != FFA_MEMORY_CACHE_WRITE_BACK) {
dlog_verbose(
"Normal Memory: Invalid cacheability %s, "
"expected %s.\n",
ffa_memory_cacheability_name(cacheability),
ffa_memory_cacheability_name(
FFA_MEMORY_CACHE_WRITE_BACK));
return ffa_error(FFA_DENIED);
}
if (memory_type == FFA_MEMORY_DEVICE_MEM &&
cacheability != FFA_MEMORY_DEV_NGNRNE) {
dlog_verbose(
"Device Memory: Invalid cacheability %s, "
"expected %s.\n",
ffa_device_memory_cacheability_name(cacheability),
ffa_device_memory_cacheability_name(
FFA_MEMORY_DEV_NGNRNE));
return ffa_error(FFA_DENIED);
}
shareability = attributes.shareability;
if (shareability != FFA_MEMORY_INNER_SHAREABLE) {
dlog_verbose("Invalid shareability %s, expected %s.\n",
ffa_memory_shareability_name(shareability),
ffa_memory_shareability_name(
FFA_MEMORY_INNER_SHAREABLE));
return ffa_error(FFA_DENIED);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Check that the given `memory_region` represents a valid memory send request
* of the given `share_func` type, return the clear flag and permissions via the
* respective output parameters, and update the permissions if necessary.
*
* Returns FFA_SUCCESS if the request was valid, or the relevant FFA_ERROR if
* not.
*/
struct ffa_value ffa_memory_send_validate(
struct vm_locked from_locked, struct ffa_memory_region *memory_region,
uint32_t memory_share_length, uint32_t fragment_length,
uint32_t share_func)
{
struct ffa_composite_memory_region *composite;
struct ffa_memory_access *receiver =
ffa_memory_region_get_receiver(memory_region, 0);
uint64_t receivers_end;
uint64_t min_length;
uint32_t composite_memory_region_offset;
uint32_t constituents_start;
uint32_t constituents_length;
enum ffa_data_access data_access;
enum ffa_instruction_access instruction_access;
enum ffa_memory_security security_state;
enum ffa_memory_type type;
struct ffa_value ret;
const size_t minimum_first_fragment_length =
memory_region->receivers_offset +
memory_region->memory_access_desc_size +
sizeof(struct ffa_composite_memory_region);
if (fragment_length < minimum_first_fragment_length) {
dlog_verbose("Fragment length %u too short (min %zu).\n",
fragment_length, minimum_first_fragment_length);
return ffa_error(FFA_INVALID_PARAMETERS);
}
static_assert(sizeof(struct ffa_memory_region_constituent) == 16,
"struct ffa_memory_region_constituent must be 16 bytes");
if (!is_aligned(fragment_length,
sizeof(struct ffa_memory_region_constituent)) ||
!is_aligned(memory_share_length,
sizeof(struct ffa_memory_region_constituent))) {
dlog_verbose(
"Fragment length %u or total length %u"
" is not 16-byte aligned.\n",
fragment_length, memory_share_length);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (fragment_length > memory_share_length) {
dlog_verbose(
"Fragment length %zu greater than total length %zu.\n",
(size_t)fragment_length, (size_t)memory_share_length);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* The sender must match the caller. */
if ((!vm_id_is_current_world(from_locked.vm->id) &&
vm_id_is_current_world(memory_region->sender)) ||
(vm_id_is_current_world(from_locked.vm->id) &&
memory_region->sender != from_locked.vm->id)) {
dlog_verbose("Invalid memory sender ID.\n");
return ffa_error(FFA_DENIED);
}
if (memory_region->receiver_count <= 0) {
dlog_verbose("No receivers!\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Ensure that the composite header is within the memory bounds and
* doesn't overlap the first part of the message. Cast to uint64_t
* to prevent overflow.
*/
receivers_end = ((uint64_t)memory_region->memory_access_desc_size *
(uint64_t)memory_region->receiver_count) +
memory_region->receivers_offset;
min_length = receivers_end +
sizeof(struct ffa_composite_memory_region) +
sizeof(struct ffa_memory_region_constituent);
if (min_length > memory_share_length) {
dlog_verbose("Share too short: got %zu but minimum is %zu.\n",
(size_t)memory_share_length, (size_t)min_length);
return ffa_error(FFA_INVALID_PARAMETERS);
}
composite_memory_region_offset =
receiver->composite_memory_region_offset;
/*
* Check that the composite memory region descriptor is after the access
* descriptors, is at least 16-byte aligned, and fits in the first
* fragment.
*/
if ((composite_memory_region_offset < receivers_end) ||
(composite_memory_region_offset % 16 != 0) ||
(composite_memory_region_offset >
fragment_length - sizeof(struct ffa_composite_memory_region))) {
dlog_verbose(
"Invalid composite memory region descriptor offset "
"%zu.\n",
(size_t)composite_memory_region_offset);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Compute the start of the constituent regions. Already checked
* to be not more than fragment_length and thus not more than
* memory_share_length.
*/
constituents_start = composite_memory_region_offset +
sizeof(struct ffa_composite_memory_region);
constituents_length = memory_share_length - constituents_start;
/*
* Check that the number of constituents is consistent with the length
* of the constituent region.
*/
composite = ffa_memory_region_get_composite(memory_region, 0);
if ((constituents_length %
sizeof(struct ffa_memory_region_constituent) !=
0) ||
((constituents_length /
sizeof(struct ffa_memory_region_constituent)) !=
composite->constituent_count)) {
dlog_verbose("Invalid length %zu or composite offset %zu.\n",
(size_t)memory_share_length,
(size_t)composite_memory_region_offset);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (fragment_length < memory_share_length &&
fragment_length < HF_MAILBOX_SIZE) {
dlog_warning(
"Initial fragment length %d smaller than mailbox "
"size.\n",
fragment_length);
}
/*
* Clear is not allowed for memory sharing, as the sender still has
* access to the memory.
*/
if ((memory_region->flags & FFA_MEMORY_REGION_FLAG_CLEAR) &&
(share_func == FFA_MEM_SHARE_32 ||
share_func == FFA_MEM_SHARE_64)) {
dlog_verbose("Memory can't be cleared while being shared.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* No other flags are allowed/supported here. */
if (memory_region->flags & ~FFA_MEMORY_REGION_FLAG_CLEAR) {
dlog_verbose("Invalid flags %#x.\n", memory_region->flags);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* Check that the permissions are valid, for each specified receiver. */
for (uint32_t i = 0U; i < memory_region->receiver_count; i++) {
struct ffa_memory_region_attributes receiver_permissions;
receiver = ffa_memory_region_get_receiver(memory_region, i);
assert(receiver != NULL);
receiver_permissions = receiver->receiver_permissions;
ffa_memory_access_permissions_t permissions =
receiver_permissions.permissions;
ffa_id_t receiver_id = receiver_permissions.receiver;
if (memory_region->sender == receiver_id) {
dlog_verbose("Can't share memory with itself.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
for (uint32_t j = i + 1; j < memory_region->receiver_count;
j++) {
struct ffa_memory_access *other_receiver =
ffa_memory_region_get_receiver(memory_region,
j);
assert(other_receiver != NULL);
if (receiver_id ==
other_receiver->receiver_permissions.receiver) {
dlog_verbose(
"Repeated receiver(%x) in memory send "
"operation.\n",
other_receiver->receiver_permissions
.receiver);
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
if (composite_memory_region_offset !=
receiver->composite_memory_region_offset) {
dlog_verbose(
"All ffa_memory_access should point to the "
"same composite memory region offset.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
data_access = permissions.data_access;
instruction_access = permissions.instruction_access;
if (data_access == FFA_DATA_ACCESS_RESERVED ||
instruction_access == FFA_INSTRUCTION_ACCESS_RESERVED) {
dlog_verbose(
"Reserved value for receiver permissions "
"(data_access = %s, instruction_access = %s)\n",
ffa_data_access_name(data_access),
ffa_instruction_access_name(
instruction_access));
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (instruction_access !=
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid instruction access permissions %s "
"for sending memory, expected %s.\n",
ffa_instruction_access_name(instruction_access),
ffa_instruction_access_name(
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED));
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_func == FFA_MEM_SHARE_32 ||
share_func == FFA_MEM_SHARE_64) {
if (data_access == FFA_DATA_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid data access permissions %s "
"for sharing memory, expected %s.\n",
ffa_data_access_name(data_access),
ffa_data_access_name(
FFA_DATA_ACCESS_NOT_SPECIFIED));
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* According to section 10.10.3 of the FF-A v1.1 EAC0
* spec, NX is required for share operations (but must
* not be specified by the sender) so set it in the
* copy that we store, ready to be returned to the
* retriever.
*/
if (vm_id_is_current_world(receiver_id)) {
permissions.instruction_access =
FFA_INSTRUCTION_ACCESS_NX;
receiver_permissions.permissions = permissions;
}
}
if ((share_func == FFA_MEM_LEND_32 ||
share_func == FFA_MEM_LEND_64) &&
data_access == FFA_DATA_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid data access permissions %s for "
"lending memory, expected %s.\n",
ffa_data_access_name(data_access),
ffa_data_access_name(
FFA_DATA_ACCESS_NOT_SPECIFIED));
return ffa_error(FFA_INVALID_PARAMETERS);
}
if ((share_func == FFA_MEM_DONATE_32 ||
share_func == FFA_MEM_DONATE_64) &&
data_access != FFA_DATA_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid data access permissions %s for "
"donating memory, expected %s.\n",
ffa_data_access_name(data_access),
ffa_data_access_name(
FFA_DATA_ACCESS_NOT_SPECIFIED));
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
/* Memory region attributes NS-Bit MBZ for FFA_MEM_SHARE/LEND/DONATE. */
security_state = memory_region->attributes.security;
if (security_state != FFA_MEMORY_SECURITY_UNSPECIFIED) {
dlog_verbose(
"Invalid security state %s for memory share operation, "
"expected %s.\n",
ffa_memory_security_name(security_state),
ffa_memory_security_name(
FFA_MEMORY_SECURITY_UNSPECIFIED));
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* If a memory donate or lend with single borrower, the memory type
* shall not be specified by the sender.
*/
type = memory_region->attributes.type;
if (share_func == FFA_MEM_DONATE_32 ||
share_func == FFA_MEM_DONATE_64 ||
((share_func == FFA_MEM_LEND_32 || share_func == FFA_MEM_LEND_64) &&
memory_region->receiver_count == 1)) {
if (type != FFA_MEMORY_NOT_SPECIFIED_MEM) {
dlog_verbose(
"Invalid memory type %s for memory share "
"operation, expected %s.\n",
ffa_memory_type_name(type),
ffa_memory_type_name(
FFA_MEMORY_NOT_SPECIFIED_MEM));
return ffa_error(FFA_INVALID_PARAMETERS);
}
} else {
/*
* Check that sender's memory attributes match Hafnium
* expectations: Normal Memory, Inner shareable, Write-Back
* Read-Allocate Write-Allocate Cacheable.
*/
ret = ffa_memory_attributes_validate(memory_region->attributes);
if (ret.func != FFA_SUCCESS_32) {
return ret;
}
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Gets the share state for continuing an operation to donate, lend or share
* memory, and checks that it is a valid request.
*
* Returns FFA_SUCCESS if the request was valid, or the relevant FFA_ERROR if
* not.
*/
struct ffa_value ffa_memory_send_continue_validate(
struct share_states_locked share_states, ffa_memory_handle_t handle,
struct ffa_memory_share_state **share_state_ret, ffa_id_t from_vm_id,
struct mpool *page_pool)
{
struct ffa_memory_share_state *share_state;
struct ffa_memory_region *memory_region;
assert(share_state_ret != NULL);
/*
* Look up the share state by handle and make sure that the VM ID
* matches.
*/
share_state = get_share_state(share_states, handle);
if (share_state == NULL) {
dlog_verbose(
"Invalid handle %#lx for memory send continuation.\n",
handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
memory_region = share_state->memory_region;
if (vm_id_is_current_world(from_vm_id) &&
memory_region->sender != from_vm_id) {
dlog_verbose("Invalid sender %d.\n", memory_region->sender);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_state->sending_complete) {
dlog_verbose(
"Sending of memory handle %#lx is already complete.\n",
handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_state->fragment_count == MAX_FRAGMENTS) {
/*
* Log a warning as this is a sign that MAX_FRAGMENTS should
* probably be increased.
*/
dlog_warning(
"Too many fragments for memory share with handle %#lx; "
"only %d supported.\n",
handle, MAX_FRAGMENTS);
/* Free share state, as it's not possible to complete it. */
share_state_free(share_states, share_state, page_pool);
return ffa_error(FFA_NO_MEMORY);
}
*share_state_ret = share_state;
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Checks if there is at least one receiver from the other world.
*/
bool memory_region_receivers_from_other_world(
struct ffa_memory_region *memory_region)
{
for (uint32_t i = 0; i < memory_region->receiver_count; i++) {
struct ffa_memory_access *receiver =
ffa_memory_region_get_receiver(memory_region, i);
assert(receiver != NULL);
ffa_id_t receiver_id = receiver->receiver_permissions.receiver;
if (!vm_id_is_current_world(receiver_id)) {
return true;
}
}
return false;
}
/**
* Validates a call to donate, lend or share memory in which Hafnium is the
* designated allocator of the memory handle. In practice, this also means
* Hafnium is responsible for managing the state structures for the transaction.
* If Hafnium is the SPMC, it should allocate the memory handle when either the
* sender is an SP or there is at least one borrower that is an SP.
* If Hafnium is the hypervisor, it should allocate the memory handle when
* operation involves only NWd VMs.
*
* If validation goes well, Hafnium updates the stage-2 page tables of the
* sender. Validation consists of checking if the message length and number of
* memory region constituents match, and if the transition is valid for the
* type of memory sending operation.
*
* Assumes that the caller has already found and locked the sender VM and copied
* the memory region descriptor from the sender's TX buffer to a freshly
* allocated page from Hafnium's internal pool. The caller must have also
* validated that the receiver VM ID is valid.
*
* This function takes ownership of the `memory_region` passed in and will free
* it when necessary; it must not be freed by the caller.
*/
struct ffa_value ffa_memory_send(struct vm_locked from_locked,
struct ffa_memory_region *memory_region,
uint32_t memory_share_length,
uint32_t fragment_length, uint32_t share_func,
struct mpool *page_pool)
{
struct ffa_value ret;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
/*
* If there is an error validating the `memory_region` then we need to
* free it because we own it but we won't be storing it in a share state
* after all.
*/
ret = ffa_memory_send_validate(from_locked, memory_region,
memory_share_length, fragment_length,
share_func);
if (ret.func != FFA_SUCCESS_32) {
mpool_free(page_pool, memory_region);
return ret;
}
/* Set flag for share function, ready to be retrieved later. */
switch (share_func) {
case FFA_MEM_SHARE_64:
case FFA_MEM_SHARE_32:
memory_region->flags |=
FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE;
break;
case FFA_MEM_LEND_64:
case FFA_MEM_LEND_32:
memory_region->flags |= FFA_MEMORY_REGION_TRANSACTION_TYPE_LEND;
break;
case FFA_MEM_DONATE_64:
case FFA_MEM_DONATE_32:
memory_region->flags |=
FFA_MEMORY_REGION_TRANSACTION_TYPE_DONATE;
break;
default:
dlog_verbose("Unknown share func %#x (%s)\n", share_func,
ffa_func_name(share_func));
return ffa_error(FFA_INVALID_PARAMETERS);
}
share_states = share_states_lock();
/*
* Allocate a share state before updating the page table. Otherwise if
* updating the page table succeeded but allocating the share state
* failed then it would leave the memory in a state where nobody could
* get it back.
*/
share_state = allocate_share_state(share_states, share_func,
memory_region, fragment_length,
FFA_MEMORY_HANDLE_INVALID);
if (share_state == NULL) {
dlog_verbose("Failed to allocate share state.\n");
mpool_free(page_pool, memory_region);
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
if (fragment_length == memory_share_length) {
/* No more fragments to come, everything fit in one message. */
ret = ffa_memory_send_complete(
from_locked, share_states, share_state, page_pool,
&(share_state->sender_orig_mode));
} else {
/*
* Use sender ID from 'memory_region' assuming
* that at this point it has been validated:
* - MBZ at virtual FF-A instance.
*/
ffa_id_t sender_to_ret =
(from_locked.vm->id == HF_OTHER_WORLD_ID)
? memory_region->sender
: 0;
ret = (struct ffa_value){
.func = FFA_MEM_FRAG_RX_32,
.arg1 = (uint32_t)memory_region->handle,
.arg2 = (uint32_t)(memory_region->handle >> 32),
.arg3 = fragment_length,
.arg4 = (uint32_t)(sender_to_ret & 0xffff) << 16};
}
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
/**
* Continues an operation to donate, lend or share memory to a VM from current
* world. If this is the last fragment then checks that the transition is valid
* for the type of memory sending operation and updates the stage-2 page tables
* of the sender.
*
* Assumes that the caller has already found and locked the sender VM and copied
* the memory region descriptor from the sender's TX buffer to a freshly
* allocated page from Hafnium's internal pool.
*
* This function takes ownership of the `fragment` passed in; it must not be
* freed by the caller.
*/
struct ffa_value ffa_memory_send_continue(struct vm_locked from_locked,
void *fragment,
uint32_t fragment_length,
ffa_memory_handle_t handle,
struct mpool *page_pool)
{
struct share_states_locked share_states = share_states_lock();
struct ffa_memory_share_state *share_state;
struct ffa_value ret;
struct ffa_memory_region *memory_region;
CHECK(is_aligned(fragment,
alignof(struct ffa_memory_region_constituent)));
if (fragment_length % sizeof(struct ffa_memory_region_constituent) !=
0) {
dlog_verbose("Fragment length %u misaligned.\n",
fragment_length);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_free_fragment;
}
ret = ffa_memory_send_continue_validate(share_states, handle,
&share_state,
from_locked.vm->id, page_pool);
if (ret.func != FFA_SUCCESS_32) {
goto out_free_fragment;
}
memory_region = share_state->memory_region;
if (memory_region_receivers_from_other_world(memory_region)) {
dlog_error(
"Got hypervisor-allocated handle for memory send to "
"other world. This should never happen, and indicates "
"a bug in "
"EL3 code.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_free_fragment;
}
/* Add this fragment. */
share_state->fragments[share_state->fragment_count] = fragment;
share_state->fragment_constituent_counts[share_state->fragment_count] =
fragment_length / sizeof(struct ffa_memory_region_constituent);
share_state->fragment_count++;
/* Check whether the memory send operation is now ready to complete. */
if (share_state_sending_complete(share_states, share_state)) {
ret = ffa_memory_send_complete(
from_locked, share_states, share_state, page_pool,
&(share_state->sender_orig_mode));
} else {
ret = (struct ffa_value){
.func = FFA_MEM_FRAG_RX_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = share_state_next_fragment_offset(share_states,
share_state)};
}
goto out;
out_free_fragment:
mpool_free(page_pool, fragment);
out:
share_states_unlock(&share_states);
return ret;
}
/** Clean up after the receiver has finished retrieving a memory region. */
static void ffa_memory_retrieve_complete(
struct share_states_locked share_states,
struct ffa_memory_share_state *share_state, struct mpool *page_pool)
{
if (share_state->share_func == FFA_MEM_DONATE_32 ||
share_state->share_func == FFA_MEM_DONATE_64) {
/*
* Memory that has been donated can't be relinquished,
* so no need to keep the share state around.
*/
share_state_free(share_states, share_state, page_pool);
dlog_verbose("Freed share state for donate.\n");
}
}
/**
* Initialises the given memory region descriptor to be used for an
* `FFA_MEM_RETRIEVE_RESP`, including the given constituents for the first
* fragment.
* The memory region descriptor is initialized according to retriever's
* FF-A version.
*
* Returns true on success, or false if the given constituents won't all fit in
* the first fragment.
*/
static bool ffa_retrieved_memory_region_init(
void *response, enum ffa_version ffa_version, size_t response_max_size,
ffa_id_t sender, ffa_memory_attributes_t attributes,
ffa_memory_region_flags_t flags, ffa_memory_handle_t handle,
ffa_memory_access_permissions_t permissions,
struct ffa_memory_access *receivers, size_t receiver_count,
uint32_t memory_access_desc_size, uint32_t page_count,
uint32_t total_constituent_count,
const struct ffa_memory_region_constituent constituents[],
uint32_t fragment_constituent_count, uint32_t *total_length,
uint32_t *fragment_length)
{
struct ffa_composite_memory_region *composite_memory_region;
uint32_t i;
uint32_t composite_offset;
uint32_t constituents_offset;
assert(response != NULL);
if (ffa_version == FFA_VERSION_1_0) {
struct ffa_memory_region_v1_0 *retrieve_response =
(struct ffa_memory_region_v1_0 *)response;
struct ffa_memory_access_v1_0 *receiver;
ffa_memory_region_init_header_v1_0(retrieve_response, sender,
attributes, flags, handle, 0,
receiver_count);
receiver = (struct ffa_memory_access_v1_0 *)
retrieve_response->receivers;
receiver_count = retrieve_response->receiver_count;
for (uint32_t i = 0; i < receiver_count; i++) {
ffa_id_t receiver_id =
receivers[i].receiver_permissions.receiver;
ffa_memory_receiver_flags_t recv_flags =
receivers[i].receiver_permissions.flags;
/*
* Initialized here as in memory retrieve responses we
* currently expect one borrower to be specified.
*/
ffa_memory_access_init_v1_0(
receiver, receiver_id, permissions.data_access,
permissions.instruction_access, recv_flags);
}
composite_offset =
sizeof(struct ffa_memory_region_v1_0) +
receiver_count * sizeof(struct ffa_memory_access_v1_0);
receiver->composite_memory_region_offset = composite_offset;
composite_memory_region = ffa_memory_region_get_composite_v1_0(
retrieve_response, 0);
} else {
struct ffa_memory_region *retrieve_response =
(struct ffa_memory_region *)response;
struct ffa_memory_access *retrieve_response_receivers;
ffa_memory_region_init_header(
retrieve_response, sender, attributes, flags, handle, 0,
receiver_count, memory_access_desc_size);
/*
* Note that `sizeof(struct_ffa_memory_region)` and
* `sizeof(struct ffa_memory_access)` must both be multiples of
* 16 (as verified by the asserts in `ffa_memory.c`, so it is
* guaranteed that the offset we calculate here is aligned to a
* 64-bit boundary and so 64-bit values can be copied without
* alignment faults.
*/
composite_offset =
retrieve_response->receivers_offset +
(uint32_t)(receiver_count *
retrieve_response->memory_access_desc_size);
retrieve_response_receivers =
ffa_memory_region_get_receiver(retrieve_response, 0);
assert(retrieve_response_receivers != NULL);
/*
* Initialized here as in memory retrieve responses we currently
* expect one borrower to be specified.
*/
memcpy_s(retrieve_response_receivers,
sizeof(struct ffa_memory_access) * receiver_count,
receivers,
sizeof(struct ffa_memory_access) * receiver_count);
retrieve_response_receivers->composite_memory_region_offset =
composite_offset;
composite_memory_region =
ffa_memory_region_get_composite(retrieve_response, 0);
}
assert(composite_memory_region != NULL);
composite_memory_region->page_count = page_count;
composite_memory_region->constituent_count = total_constituent_count;
composite_memory_region->reserved_0 = 0;
constituents_offset =
composite_offset + sizeof(struct ffa_composite_memory_region);
if (constituents_offset +
fragment_constituent_count *
sizeof(struct ffa_memory_region_constituent) >
response_max_size) {
return false;
}
for (i = 0; i < fragment_constituent_count; ++i) {
composite_memory_region->constituents[i] = constituents[i];
}
if (total_length != NULL) {
*total_length =
constituents_offset +
composite_memory_region->constituent_count *
sizeof(struct ffa_memory_region_constituent);
}
if (fragment_length != NULL) {
*fragment_length =
constituents_offset +
fragment_constituent_count *
sizeof(struct ffa_memory_region_constituent);
}
return true;
}
/**
* Validates the retrieved permissions against those specified by the lender
* of memory share operation. Optionally can help set the permissions to be used
* for the S2 mapping, through the `permissions` argument.
* Returns FFA_SUCCESS if all the fields are valid. FFA_ERROR, with error code:
* - FFA_INVALID_PARAMETERS -> if the fields have invalid values as per the
* specification for each ABI.
* - FFA_DENIED -> if the permissions specified by the retriever are not
* less permissive than those provided by the sender.
*/
static struct ffa_value ffa_memory_retrieve_is_memory_access_valid(
uint32_t share_func, enum ffa_data_access sent_data_access,
enum ffa_data_access requested_data_access,
enum ffa_instruction_access sent_instruction_access,
enum ffa_instruction_access requested_instruction_access,
ffa_memory_access_permissions_t *permissions, bool multiple_borrowers)
{
switch (sent_data_access) {
case FFA_DATA_ACCESS_NOT_SPECIFIED:
case FFA_DATA_ACCESS_RW:
if (requested_data_access == FFA_DATA_ACCESS_NOT_SPECIFIED ||
requested_data_access == FFA_DATA_ACCESS_RW) {
if (permissions != NULL) {
permissions->data_access = FFA_DATA_ACCESS_RW;
}
break;
}
[[fallthrough]];
case FFA_DATA_ACCESS_RO:
if (requested_data_access == FFA_DATA_ACCESS_NOT_SPECIFIED ||
requested_data_access == FFA_DATA_ACCESS_RO) {
if (permissions != NULL) {
permissions->data_access = FFA_DATA_ACCESS_RO;
}
break;
}
dlog_verbose(
"Invalid data access requested; sender specified "
"permissions %#x but receiver requested %#x.\n",
sent_data_access, requested_data_access);
return ffa_error(FFA_DENIED);
case FFA_DATA_ACCESS_RESERVED:
panic("Got unexpected FFA_DATA_ACCESS_RESERVED. Should be "
"checked before this point.");
}
/*
* For operations with a single borrower, If it is an FFA_MEMORY_LEND
* or FFA_MEMORY_DONATE the retriever should have specifed the
* instruction permissions it wishes to receive.
*/
switch (share_func) {
case FFA_MEM_SHARE_64:
case FFA_MEM_SHARE_32:
if (requested_instruction_access !=
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"%s: for share instruction permissions must "
"NOT be specified.\n",
__func__);
return ffa_error(FFA_INVALID_PARAMETERS);
}
break;
case FFA_MEM_LEND_64:
case FFA_MEM_LEND_32:
/*
* For operations with multiple borrowers only permit XN
* permissions, and both Sender and borrower should have used
* FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED.
*/
if (multiple_borrowers) {
if (requested_instruction_access !=
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"%s: lend/share/donate with multiple "
"borrowers "
"instruction permissions must NOT be "
"specified.\n",
__func__);
return ffa_error(FFA_INVALID_PARAMETERS);
}
break;
}
[[fallthrough]];
case FFA_MEM_DONATE_64:
case FFA_MEM_DONATE_32:
if (!multiple_borrowers &&
requested_instruction_access ==
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"%s: for lend/donate with single borrower "
"instruction permissions must be speficified "
"by borrower\n",
__func__);
return ffa_error(FFA_INVALID_PARAMETERS);
}
break;
default:
panic("%s: Wrong func id provided.\n", __func__);
}
switch (sent_instruction_access) {
case FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED:
case FFA_INSTRUCTION_ACCESS_X:
if (requested_instruction_access == FFA_INSTRUCTION_ACCESS_X) {
if (permissions != NULL) {
permissions->instruction_access =
FFA_INSTRUCTION_ACCESS_X;
}
break;
}
/*
* Fall through if requested permissions are less
* permissive than those provided by the sender.
*/
[[fallthrough]];
case FFA_INSTRUCTION_ACCESS_NX:
if (requested_instruction_access ==
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED ||
requested_instruction_access == FFA_INSTRUCTION_ACCESS_NX) {
if (permissions != NULL) {
permissions->instruction_access =
FFA_INSTRUCTION_ACCESS_NX;
}
break;
}
dlog_verbose(
"Invalid instruction access requested; sender "
"specified permissions %#x but receiver requested "
"%#x.\n",
sent_instruction_access, requested_instruction_access);
return ffa_error(FFA_DENIED);
case FFA_INSTRUCTION_ACCESS_RESERVED:
panic("Got unexpected FFA_INSTRUCTION_ACCESS_RESERVED. Should "
"be checked before this point.");
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Validate the receivers' permissions in the retrieve request against those
* specified by the lender.
* In the `permissions` argument returns the permissions to set at S2 for the
* caller to the FFA_MEMORY_RETRIEVE_REQ.
* The function looks into the flag to bypass multiple borrower checks:
* - If not set returns FFA_SUCCESS if all specified permissions are valid.
* - If set returns FFA_SUCCESS if the descriptor contains the permissions
* to the caller of FFA_MEM_RETRIEVE_REQ and they are valid. Other permissions
* are ignored, if provided.
*/
static struct ffa_value ffa_memory_retrieve_validate_memory_access_list(
struct ffa_memory_region *memory_region,
struct ffa_memory_region *retrieve_request, ffa_id_t to_vm_id,
ffa_memory_access_permissions_t *permissions,
struct ffa_memory_access **receiver_ret, uint32_t func_id)
{
uint32_t retrieve_receiver_index;
bool bypass_multi_receiver_check =
(retrieve_request->flags &
FFA_MEMORY_REGION_FLAG_BYPASS_BORROWERS_CHECK) != 0U;
const uint32_t region_receiver_count = memory_region->receiver_count;
struct ffa_value ret;
assert(receiver_ret != NULL);
assert(permissions != NULL);
*permissions = (ffa_memory_access_permissions_t){0};
if (!bypass_multi_receiver_check) {
if (retrieve_request->receiver_count != region_receiver_count) {
dlog_verbose(
"Retrieve request should contain same list of "
"borrowers, as specified by the lender.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
} else {
if (retrieve_request->receiver_count != 1) {
dlog_verbose(
"Set bypass multiple borrower check, receiver "
"list must be sized 1 in the retrieve request "
"not %x.\n",
memory_region->receiver_count);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (memory_region->receiver_count == 1) {
dlog_verbose(
"Setting the bypass multiple borrower check "
"flag for a transaction with a single borrower "
"is not allowed.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
retrieve_receiver_index = retrieve_request->receiver_count;
for (uint32_t i = 0U; i < retrieve_request->receiver_count; i++) {
ffa_memory_access_permissions_t sent_permissions;
struct ffa_memory_access *retrieve_request_receiver =
ffa_memory_region_get_receiver(retrieve_request, i);
assert(retrieve_request_receiver != NULL);
ffa_memory_access_permissions_t requested_permissions =
retrieve_request_receiver->receiver_permissions
.permissions;
ffa_id_t current_receiver_id =
retrieve_request_receiver->receiver_permissions
.receiver;
struct ffa_memory_access *receiver;
uint32_t mem_region_receiver_index;
bool permissions_RO;
bool clear_memory_flags;
/*
* If the call is at the virtual FF-A instance the caller's
* ID must match an entry in the memory access list.
* In the SPMC, one of the specified receivers could be from
* the NWd.
*/
bool found_to_id = vm_id_is_current_world(to_vm_id)
? (current_receiver_id == to_vm_id)
: (!vm_id_is_current_world(
current_receiver_id));
if (bypass_multi_receiver_check && !found_to_id) {
dlog_verbose(
"Bypass multiple borrower check for id %x.\n",
current_receiver_id);
continue;
}
if (retrieve_request_receiver->composite_memory_region_offset !=
0U) {
dlog_verbose(
"Retriever specified address ranges not "
"supported (got offset %d).\n",
retrieve_request_receiver
->composite_memory_region_offset);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Find the current receiver in the transaction descriptor from
* sender.
*/
mem_region_receiver_index =
ffa_memory_region_get_receiver_index(
memory_region, current_receiver_id);
if (mem_region_receiver_index ==
memory_region->receiver_count) {
dlog_verbose("%s: receiver %x not found\n", __func__,
current_receiver_id);
return ffa_error(FFA_DENIED);
}
receiver = ffa_memory_region_get_receiver(
memory_region, mem_region_receiver_index);
assert(receiver != NULL);
sent_permissions = receiver->receiver_permissions.permissions;
if (found_to_id) {
retrieve_receiver_index = i;
*receiver_ret = receiver;
}
/*
* Check if retrieve request memory access list is valid:
* - The retrieve request complies with the specification.
* - Permissions are within those specified by the sender.
*/
ret = ffa_memory_retrieve_is_memory_access_valid(
func_id, sent_permissions.data_access,
requested_permissions.data_access,
sent_permissions.instruction_access,
requested_permissions.instruction_access,
found_to_id ? permissions : NULL,
region_receiver_count > 1);
if (ret.func != FFA_SUCCESS_32) {
return ret;
}
permissions_RO =
(permissions->data_access == FFA_DATA_ACCESS_RO);
clear_memory_flags =
(retrieve_request->flags &
(FFA_MEMORY_REGION_FLAG_CLEAR |
FFA_MEMORY_REGION_FLAG_CLEAR_RELINQUISH)) != 0U;
/*
* Can't request PM to clear memory if only provided
* with RO permissions.
*/
if (found_to_id && permissions_RO && clear_memory_flags) {
dlog_verbose(
"Receiver has RO permissions can not request "
"clear.\n");
return ffa_error(FFA_DENIED);
}
/*
* Check the impdef in the retrieve_request matches the value in
* the original memory send.
*/
if (ffa_version_from_memory_access_desc_size(
memory_region->memory_access_desc_size) >=
FFA_VERSION_1_2 &&
ffa_version_from_memory_access_desc_size(
retrieve_request->memory_access_desc_size) >=
FFA_VERSION_1_2) {
if (receiver->impdef.val[0] !=
retrieve_request_receiver->impdef.val[0] ||
receiver->impdef.val[1] !=
retrieve_request_receiver->impdef.val[1]) {
dlog_verbose(
"Impdef value in memory send does not "
"match retrieve request value send "
"value %#lx %#lx retrieve request "
"value %#lx %#lx\n",
receiver->impdef.val[0],
receiver->impdef.val[1],
retrieve_request_receiver->impdef
.val[0],
retrieve_request_receiver->impdef
.val[1]);
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
}
if (retrieve_receiver_index == retrieve_request->receiver_count) {
dlog_verbose(
"Retrieve request does not contain caller's (%x) "
"permissions\n",
to_vm_id);
return ffa_error(FFA_INVALID_PARAMETERS);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* According to section 17.4.3 of the FF-A v1.2 ALP0 specification, the
* hypervisor may issue an FFA_MEM_RETRIEVE_REQ to obtain the memory region
* description of a pending memory sharing operation whose allocator is the SPM,
* for validation purposes before forwarding an FFA_MEM_RECLAIM call. For a
* hypervisor retrieve request the endpoint memory access descriptor count must
* be 0 (for any other retrieve request it must be >= 1).
*/
bool is_ffa_hypervisor_retrieve_request(struct ffa_memory_region *request)
{
return request->receiver_count == 0U;
}
/*
* Helper to reset count of fragments retrieved by the hypervisor.
*/
static void ffa_memory_retrieve_complete_from_hyp(
struct ffa_memory_share_state *share_state)
{
if (share_state->hypervisor_fragment_count ==
share_state->fragment_count) {
share_state->hypervisor_fragment_count = 0;
}
}
/**
* Prepares the return of the ffa_value for the memory retrieve response.
*/
static struct ffa_value ffa_memory_retrieve_resp(uint32_t total_length,
uint32_t fragment_length)
{
return (struct ffa_value){.func = FFA_MEM_RETRIEVE_RESP_32,
.arg1 = total_length,
.arg2 = fragment_length};
}
/**
* Validate that the memory region descriptor provided by the borrower on
* FFA_MEM_RETRIEVE_REQ, against saved memory region provided by lender at the
* memory sharing call.
*/
static struct ffa_value ffa_memory_retrieve_validate(
ffa_id_t to_id, struct ffa_memory_region *retrieve_request,
uint32_t retrieve_request_length,
struct ffa_memory_region *memory_region, uint32_t *receiver_index,
uint32_t share_func)
{
ffa_memory_region_flags_t transaction_type =
retrieve_request->flags &
FFA_MEMORY_REGION_TRANSACTION_TYPE_MASK;
enum ffa_memory_security security_state;
const uint64_t memory_access_desc_size =
retrieve_request->memory_access_desc_size;
const uint32_t expected_retrieve_request_length =
retrieve_request->receivers_offset +
(uint32_t)(retrieve_request->receiver_count *
memory_access_desc_size);
assert(retrieve_request != NULL);
assert(memory_region != NULL);
assert(receiver_index != NULL);
if (retrieve_request_length != expected_retrieve_request_length) {
dlog_verbose(
"Invalid length for FFA_MEM_RETRIEVE_REQ, expected %d "
"but was %d.\n",
expected_retrieve_request_length,
retrieve_request_length);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (retrieve_request->sender != memory_region->sender) {
dlog_verbose(
"Memory with handle %#lx not fully sent, can't "
"retrieve.\n",
memory_region->handle);
return ffa_error(FFA_DENIED);
}
/*
* The SPMC can only process retrieve requests to memory share
* operations with one borrower from the other world. It can't
* determine the ID of the NWd VM that invoked the retrieve
* request interface call. It relies on the hypervisor to
* validate the caller's ID against that provided in the
* `receivers` list of the retrieve response.
* In case there is only one borrower from the NWd in the
* transaction descriptor, record that in the `receiver_id` for
* later use, and validate in the retrieve request message.
* This limitation is due to the fact SPMC can't determine the
* index in the memory share structures state to update.
*/
if (to_id == HF_HYPERVISOR_VM_ID) {
uint32_t other_world_count = 0;
for (uint32_t i = 0; i < memory_region->receiver_count; i++) {
struct ffa_memory_access *receiver =
ffa_memory_region_get_receiver(retrieve_request,
i);
assert(receiver != NULL);
if (!vm_id_is_current_world(
receiver->receiver_permissions.receiver)) {
other_world_count++;
/* Set it to be used later. */
to_id = receiver->receiver_permissions.receiver;
}
}
if (other_world_count > 1) {
dlog_verbose(
"Support one receiver from the other world.\n");
return ffa_error(FFA_NOT_SUPPORTED);
}
}
/*
* Check that the transaction type expected by the receiver is
* correct, if it has been specified.
*/
if (transaction_type !=
FFA_MEMORY_REGION_TRANSACTION_TYPE_UNSPECIFIED &&
transaction_type != (memory_region->flags &
FFA_MEMORY_REGION_TRANSACTION_TYPE_MASK)) {
dlog_verbose(
"Incorrect transaction type %#x for "
"FFA_MEM_RETRIEVE_REQ, expected %#x for handle %#lx.\n",
transaction_type,
memory_region->flags &
FFA_MEMORY_REGION_TRANSACTION_TYPE_MASK,
retrieve_request->handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (retrieve_request->tag != memory_region->tag) {
dlog_verbose(
"Incorrect tag %lu for FFA_MEM_RETRIEVE_REQ, expected "
"%lu for handle %#lx.\n",
retrieve_request->tag, memory_region->tag,
retrieve_request->handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
*receiver_index =
ffa_memory_region_get_receiver_index(memory_region, to_id);
if (*receiver_index == memory_region->receiver_count) {
dlog_verbose(
"Incorrect receiver VM ID %d for "
"FFA_MEM_RETRIEVE_REQ, for handle %#lx.\n",
to_id, memory_region->handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if ((retrieve_request->flags &
FFA_MEMORY_REGION_ADDRESS_RANGE_HINT_VALID) != 0U) {
dlog_verbose(
"Retriever specified 'address range alignment 'hint' "
"not supported.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if ((retrieve_request->flags &
FFA_MEMORY_REGION_ADDRESS_RANGE_HINT_MASK) != 0) {
dlog_verbose(
"Bits 8-5 must be zero in memory region's flags "
"(address range alignment hint not supported).\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if ((retrieve_request->flags & ~0x7FF) != 0U) {
dlog_verbose(
"Bits 31-10 must be zero in memory region's flags.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if ((share_func == FFA_MEM_SHARE_32 ||
share_func == FFA_MEM_SHARE_64) &&
(retrieve_request->flags &
(FFA_MEMORY_REGION_FLAG_CLEAR |
FFA_MEMORY_REGION_FLAG_CLEAR_RELINQUISH)) != 0U) {
dlog_verbose(
"Memory Share operation can't clean after relinquish "
"memory region.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* If the borrower needs the memory to be cleared before mapping
* to its address space, the sender should have set the flag
* when calling FFA_MEM_LEND/FFA_MEM_DONATE, else return
* FFA_DENIED.
*/
if ((retrieve_request->flags & FFA_MEMORY_REGION_FLAG_CLEAR) != 0U &&
(memory_region->flags & FFA_MEMORY_REGION_FLAG_CLEAR) == 0U) {
dlog_verbose(
"Borrower needs memory cleared. Sender needs to set "
"flag for clearing memory.\n");
return ffa_error(FFA_DENIED);
}
/* Memory region attributes NS-Bit MBZ for FFA_MEM_RETRIEVE_REQ. */
security_state = retrieve_request->attributes.security;
if (security_state != FFA_MEMORY_SECURITY_UNSPECIFIED) {
dlog_verbose(
"Invalid security state for memory retrieve request "
"operation.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* If memory type is not specified, bypass validation of memory
* attributes in the retrieve request. The retriever is expecting to
* obtain this information from the SPMC.
*/
if (retrieve_request->attributes.type == FFA_MEMORY_NOT_SPECIFIED_MEM) {
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/*
* Ensure receiver's attributes are compatible with how
* Hafnium maps memory: Normal Memory, Inner shareable,
* Write-Back Read-Allocate Write-Allocate Cacheable.
*/
return ffa_memory_attributes_validate(retrieve_request->attributes);
}
/**
* Whilst processing the retrieve request, the operation could be aborted, and
* changes to page tables and the share state structures need to be reverted.
*/
static void ffa_partition_memory_retrieve_request_undo(
struct vm_locked from_locked,
struct ffa_memory_share_state *share_state, uint32_t receiver_index)
{
/*
* Currently this operation is expected for operations involving the
* 'other_world' vm.
*/
assert(from_locked.vm->id == HF_OTHER_WORLD_ID);
assert(share_state->retrieved_fragment_count[receiver_index] > 0);
/* Decrement the retrieved fragment count for the given receiver. */
share_state->retrieved_fragment_count[receiver_index]--;
}
/**
* Whilst processing an hypervisor retrieve request the operation could be
* aborted. There were no updates to PTs in this case, so decrementing the
* fragment count retrieved by the hypervisor should be enough.
*/
static void ffa_hypervisor_memory_retrieve_request_undo(
struct ffa_memory_share_state *share_state)
{
assert(share_state->hypervisor_fragment_count > 0);
share_state->hypervisor_fragment_count--;
}
static struct ffa_value ffa_partition_retrieve_request(
struct share_states_locked share_states,
struct ffa_memory_share_state *share_state, struct vm_locked to_locked,
struct ffa_memory_region *retrieve_request,
uint32_t retrieve_request_length, struct mpool *page_pool)
{
ffa_memory_access_permissions_t permissions = {0};
mm_mode_t memory_to_mode;
struct ffa_value ret;
struct ffa_composite_memory_region *composite;
uint32_t total_length;
uint32_t fragment_length;
ffa_id_t receiver_id = to_locked.vm->id;
bool is_retrieve_complete = false;
const uint64_t memory_access_desc_size =
retrieve_request->memory_access_desc_size;
uint32_t receiver_index;
struct ffa_memory_access *receiver;
ffa_memory_handle_t handle = retrieve_request->handle;
ffa_memory_attributes_t attributes = {0};
mm_mode_t retrieve_mode = 0;
struct ffa_memory_region *memory_region = share_state->memory_region;
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#lx not fully sent, can't "
"retrieve.\n",
handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Validate retrieve request, according to what was sent by the
* sender. Function will output the `receiver_index` from the
* provided memory region.
*/
ret = ffa_memory_retrieve_validate(
receiver_id, retrieve_request, retrieve_request_length,
memory_region, &receiver_index, share_state->share_func);
if (ret.func != FFA_SUCCESS_32) {
return ret;
}
/*
* Validate the requested permissions against the sent
* permissions.
* Outputs the permissions to give to retriever at S2
* PTs.
*/
ret = ffa_memory_retrieve_validate_memory_access_list(
memory_region, retrieve_request, receiver_id, &permissions,
&receiver, share_state->share_func);
if (ret.func != FFA_SUCCESS_32) {
return ret;
}
memory_to_mode = ffa_memory_permissions_to_mode(
permissions, share_state->sender_orig_mode);
/*
* Check requested memory type is valid with the memory type of the
* owner. E.g. they follow the memory type precedence where Normal
* memory is more permissive than device and therefore device memory
* can only be shared as device memory.
*/
if (retrieve_request->attributes.type == FFA_MEMORY_NORMAL_MEM &&
((share_state->sender_orig_mode & MM_MODE_D) != 0U ||
memory_region->attributes.type == FFA_MEMORY_DEVICE_MEM)) {
dlog_verbose(
"Retrieving device memory as Normal memory is not "
"allowed\n");
return ffa_error(FFA_DENIED);
}
ret = ffa_retrieve_check_update(
to_locked, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, memory_to_mode,
share_state->share_func, false, page_pool, &retrieve_mode,
share_state->memory_protected);
if (ret.func != FFA_SUCCESS_32) {
return ret;
}
share_state->retrieved_fragment_count[receiver_index] = 1;
is_retrieve_complete =
share_state->retrieved_fragment_count[receiver_index] ==
share_state->fragment_count;
/* VMs acquire the RX buffer from SPMC. */
CHECK(ffa_setup_acquire_receiver_rx(to_locked, &ret));
/*
* Copy response to RX buffer of caller and deliver the message.
* This must be done before the share_state is (possibly) freed.
*/
composite = ffa_memory_region_get_composite(memory_region, 0);
/*
* Set the security state in the memory retrieve response attributes
* if specified by the target mode.
*/
attributes = ffa_memory_add_security_bit_from_mode(
memory_region->attributes, retrieve_mode);
/*
* Constituents which we received in the first fragment should
* always fit in the first fragment we are sending, because the
* header is the same size in both cases and we have a fixed
* message buffer size. So `ffa_retrieved_memory_region_init`
* should never fail.
*/
/* Provide the permissions that had been provided. */
receiver->receiver_permissions.permissions = permissions;
/*
* Prepare the memory region descriptor for the retrieve response.
* Provide the pointer to the receiver tracked in the share state
* structures.
* At this point the retrieve request descriptor from the partition
* has been processed. The `retrieve_request` is expected to be in
* a region that is handled by the SPMC/Hyp. Reuse the same buffer to
* prepare the retrieve response before copying it to the RX buffer of
* the caller.
*/
CHECK(ffa_retrieved_memory_region_init(
retrieve_request, to_locked.vm->ffa_version, HF_MAILBOX_SIZE,
memory_region->sender, attributes, memory_region->flags, handle,
permissions, receiver, 1, memory_access_desc_size,
composite->page_count, composite->constituent_count,
share_state->fragments[0],
share_state->fragment_constituent_counts[0], &total_length,
&fragment_length));
/*
* Copy the message from the buffer into the partition's mailbox.
* The operation might fail unexpectedly due to change in PAS address
* space, or improper values to the sizes of the structures.
*/
if (!memcpy_trapped(to_locked.vm->mailbox.recv, HF_MAILBOX_SIZE,
retrieve_request, fragment_length)) {
dlog_error(
"%s: aborted the copy of response to RX buffer of "
"%x.\n",
__func__, to_locked.vm->id);
ffa_partition_memory_retrieve_request_undo(
to_locked, share_state, receiver_index);
return ffa_error(FFA_ABORTED);
}
if (is_retrieve_complete) {
ffa_memory_retrieve_complete(share_states, share_state,
page_pool);
}
return ffa_memory_retrieve_resp(total_length, fragment_length);
}
static struct ffa_value ffa_hypervisor_retrieve_request(
struct ffa_memory_share_state *share_state, struct vm_locked to_locked,
struct ffa_memory_region *retrieve_request)
{
struct ffa_value ret;
struct ffa_composite_memory_region *composite;
uint32_t total_length;
uint32_t fragment_length;
ffa_memory_attributes_t attributes;
uint64_t memory_access_desc_size;
struct ffa_memory_region *memory_region;
struct ffa_memory_access *receiver;
ffa_memory_handle_t handle = retrieve_request->handle;
memory_region = share_state->memory_region;
assert(to_locked.vm->id == HF_HYPERVISOR_VM_ID);
switch (to_locked.vm->ffa_version) {
case FFA_VERSION_1_2:
memory_access_desc_size = sizeof(struct ffa_memory_access);
break;
case FFA_VERSION_1_0:
case FFA_VERSION_1_1:
memory_access_desc_size = sizeof(struct ffa_memory_access_v1_0);
break;
default:
panic("version not supported: %x\n", to_locked.vm->ffa_version);
}
if (share_state->hypervisor_fragment_count != 0U) {
dlog_verbose(
"Memory with handle %#lx already retrieved by "
"the hypervisor.\n",
handle);
return ffa_error(FFA_DENIED);
}
share_state->hypervisor_fragment_count = 1;
/* VMs acquire the RX buffer from SPMC. */
CHECK(ffa_setup_acquire_receiver_rx(to_locked, &ret));
/*
* Copy response to RX buffer of caller and deliver the message.
* This must be done before the share_state is (possibly) freed.
*/
composite = ffa_memory_region_get_composite(memory_region, 0);
/*
* Constituents which we received in the first fragment should
* always fit in the first fragment we are sending, because the
* header is the same size in both cases and we have a fixed
* message buffer size. So `ffa_retrieved_memory_region_init`
* should never fail.
*/
/*
* Set the security state in the memory retrieve response attributes
* if specified by the target mode.
*/
attributes = ffa_memory_add_security_bit_from_mode(
memory_region->attributes, share_state->sender_orig_mode);
receiver = ffa_memory_region_get_receiver(memory_region, 0);
/*
* At this point the `retrieve_request` is expected to be in a section
* managed by the hypervisor.
*/
CHECK(ffa_retrieved_memory_region_init(
retrieve_request, to_locked.vm->ffa_version, HF_MAILBOX_SIZE,
memory_region->sender, attributes, memory_region->flags, handle,
receiver->receiver_permissions.permissions, receiver,
memory_region->receiver_count, memory_access_desc_size,
composite->page_count, composite->constituent_count,
share_state->fragments[0],
share_state->fragment_constituent_counts[0], &total_length,
&fragment_length));
/*
* Copy the message from the buffer into the hypervisor's mailbox.
* The operation might fail unexpectedly due to change in PAS, or
* improper values for the sizes of the structures.
*/
if (!memcpy_trapped(to_locked.vm->mailbox.recv, HF_MAILBOX_SIZE,
retrieve_request, fragment_length)) {
dlog_error(
"%s: aborted the copy of response to RX buffer of "
"%x.\n",
__func__, to_locked.vm->id);
ffa_hypervisor_memory_retrieve_request_undo(share_state);
return ffa_error(FFA_ABORTED);
}
ffa_memory_retrieve_complete_from_hyp(share_state);
return ffa_memory_retrieve_resp(total_length, fragment_length);
}
struct ffa_value ffa_memory_retrieve(struct vm_locked to_locked,
struct ffa_memory_region *retrieve_request,
uint32_t retrieve_request_length,
struct mpool *page_pool)
{
ffa_memory_handle_t handle = retrieve_request->handle;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_value ret;
dump_share_states();
share_states = share_states_lock();
share_state = get_share_state(share_states, handle);
if (share_state == NULL) {
dlog_verbose("Invalid handle %#lx for FFA_MEM_RETRIEVE_REQ.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (is_ffa_hypervisor_retrieve_request(retrieve_request)) {
ret = ffa_hypervisor_retrieve_request(share_state, to_locked,
retrieve_request);
} else {
ret = ffa_partition_retrieve_request(
share_states, share_state, to_locked, retrieve_request,
retrieve_request_length, page_pool);
}
/* Track use of the RX buffer if the handling has succeeded. */
if (ret.func == FFA_MEM_RETRIEVE_RESP_32) {
to_locked.vm->mailbox.recv_func = FFA_MEM_RETRIEVE_RESP_32;
to_locked.vm->mailbox.state = MAILBOX_STATE_FULL;
}
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
/**
* Determine expected fragment offset according to the FF-A version of
* the caller.
*/
static uint32_t ffa_memory_retrieve_expected_offset_per_ffa_version(
struct ffa_memory_region *memory_region,
uint32_t retrieved_constituents_count, enum ffa_version ffa_version)
{
uint32_t expected_fragment_offset;
uint32_t composite_constituents_offset;
if (ffa_version >= FFA_VERSION_1_1) {
/*
* Hafnium operates memory regions in FF-A v1.1 format, so we
* can retrieve the constituents offset from descriptor.
*/
composite_constituents_offset =
ffa_composite_constituent_offset(memory_region, 0);
} else if (ffa_version == FFA_VERSION_1_0) {
/*
* If retriever is FF-A v1.0, determine the composite offset
* as it is expected to have been configured in the
* retrieve response.
*/
composite_constituents_offset =
sizeof(struct ffa_memory_region_v1_0) +
RECEIVERS_COUNT_IN_RETRIEVE_RESP *
sizeof(struct ffa_memory_access_v1_0) +
sizeof(struct ffa_composite_memory_region);
} else {
panic("%s received an invalid FF-A version.\n", __func__);
}
expected_fragment_offset =
composite_constituents_offset +
retrieved_constituents_count *
sizeof(struct ffa_memory_region_constituent) -
(size_t)(memory_region->memory_access_desc_size *
(memory_region->receiver_count - 1));
return expected_fragment_offset;
}
struct ffa_value ffa_memory_retrieve_continue(struct vm_locked to_locked,
ffa_memory_handle_t handle,
uint32_t fragment_offset,
ffa_id_t sender_vm_id,
void *retrieve_continue_page,
struct mpool *page_pool)
{
struct ffa_memory_region *memory_region;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_value ret;
uint32_t fragment_index;
uint32_t retrieved_constituents_count;
uint32_t i;
uint32_t expected_fragment_offset;
uint32_t remaining_constituent_count;
uint32_t fragment_length;
uint32_t receiver_index;
bool continue_ffa_hyp_mem_retrieve_req;
dump_share_states();
share_states = share_states_lock();
share_state = get_share_state(share_states, handle);
if (share_state == NULL) {
dlog_verbose("Invalid handle %#lx for FFA_MEM_FRAG_RX.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memory_region = share_state->memory_region;
CHECK(memory_region != NULL);
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#lx not fully sent, can't "
"retrieve.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* If retrieve request from the hypervisor has been initiated in the
* given share_state, continue it, else assume it is a continuation of
* retrieve request from a partition.
*/
continue_ffa_hyp_mem_retrieve_req =
(to_locked.vm->id == HF_HYPERVISOR_VM_ID) &&
(share_state->hypervisor_fragment_count != 0U) &&
ffa_is_vm_id(sender_vm_id);
if (!continue_ffa_hyp_mem_retrieve_req) {
receiver_index = ffa_memory_region_get_receiver_index(
memory_region, to_locked.vm->id);
if (receiver_index == memory_region->receiver_count) {
dlog_verbose(
"Caller of FFA_MEM_FRAG_RX (%x) is not a "
"borrower to memory sharing transaction "
"(%lx)\n",
to_locked.vm->id, handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
fragment_index =
share_state->retrieved_fragment_count[receiver_index];
if (fragment_index == 0 ||
fragment_index >= share_state->fragment_count) {
dlog_verbose(
"Retrieval of memory with handle %#lx not yet "
"started or already completed (%d/%d fragments "
"retrieved).\n",
handle,
share_state->retrieved_fragment_count
[receiver_index],
share_state->fragment_count);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
} else {
fragment_index = share_state->hypervisor_fragment_count;
if (fragment_index == 0 ||
fragment_index >= share_state->fragment_count) {
dlog_verbose(
"Retrieve of memory with handle %lx not "
"started from hypervisor.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (memory_region->sender != sender_vm_id) {
dlog_verbose(
"Sender ID (%x) is not as expected for memory "
"handle %lx\n",
sender_vm_id, handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
receiver_index = 0;
}
/*
* Check that the given fragment offset is correct by counting
* how many constituents were in the fragments previously sent.
*/
retrieved_constituents_count = 0;
for (i = 0; i < fragment_index; ++i) {
retrieved_constituents_count +=
share_state->fragment_constituent_counts[i];
}
CHECK(memory_region->receiver_count > 0);
expected_fragment_offset =
ffa_memory_retrieve_expected_offset_per_ffa_version(
memory_region, retrieved_constituents_count,
to_locked.vm->ffa_version);
if (fragment_offset != expected_fragment_offset) {
dlog_verbose("Fragment offset was %d but expected %d.\n",
fragment_offset, expected_fragment_offset);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* When hafnium is the hypervisor, acquire the RX buffer of a VM, that
* is currently ownder by the SPMC.
*/
assert(ffa_setup_acquire_receiver_rx(to_locked, &ret));
remaining_constituent_count = ffa_memory_fragment_init(
(struct ffa_memory_region_constituent *)retrieve_continue_page,
HF_MAILBOX_SIZE, share_state->fragments[fragment_index],
share_state->fragment_constituent_counts[fragment_index],
&fragment_length);
CHECK(remaining_constituent_count == 0);
/*
* Return FFA_ERROR(FFA_ABORTED) in case the access to the partition's
* RX buffer results in a GPF exception. Could happen if the retrieve
* request is for a VM or the Hypervisor retrieve request, if the PAS
* has been changed externally.
*/
if (!memcpy_trapped(to_locked.vm->mailbox.recv, HF_MAILBOX_SIZE,
retrieve_continue_page, fragment_length)) {
dlog_error(
"%s: aborted copying fragment to RX buffer of %#x.\n",
__func__, to_locked.vm->id);
ret = ffa_error(FFA_ABORTED);
goto out;
}
to_locked.vm->mailbox.recv_func = FFA_MEM_FRAG_TX_32;
to_locked.vm->mailbox.state = MAILBOX_STATE_FULL;
if (!continue_ffa_hyp_mem_retrieve_req) {
share_state->retrieved_fragment_count[receiver_index]++;
if (share_state->retrieved_fragment_count[receiver_index] ==
share_state->fragment_count) {
ffa_memory_retrieve_complete(share_states, share_state,
page_pool);
}
} else {
share_state->hypervisor_fragment_count++;
ffa_memory_retrieve_complete_from_hyp(share_state);
}
ret = (struct ffa_value){.func = FFA_MEM_FRAG_TX_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = fragment_length};
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
struct ffa_value ffa_memory_relinquish(
struct vm_locked from_locked,
struct ffa_mem_relinquish *relinquish_request, struct mpool *page_pool)
{
ffa_memory_handle_t handle = relinquish_request->handle;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_memory_region *memory_region;
bool clear;
struct ffa_value ret;
uint32_t receiver_index;
bool receivers_relinquished_memory;
ffa_memory_access_permissions_t receiver_permissions = {0};
if (relinquish_request->endpoint_count != 1) {
dlog_verbose(
"Stream endpoints not supported (got %d endpoints on "
"FFA_MEM_RELINQUISH, expected 1).\n",
relinquish_request->endpoint_count);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (vm_id_is_current_world(from_locked.vm->id) &&
relinquish_request->endpoints[0] != from_locked.vm->id) {
dlog_verbose(
"VM ID %d in relinquish message doesn't match calling "
"VM ID %d.\n",
relinquish_request->endpoints[0], from_locked.vm->id);
return ffa_error(FFA_INVALID_PARAMETERS);
}
dump_share_states();
share_states = share_states_lock();
share_state = get_share_state(share_states, handle);
if (share_state == NULL) {
dlog_verbose("Invalid handle %#lx for FFA_MEM_RELINQUISH.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#lx not fully sent, can't "
"relinquish.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memory_region = share_state->memory_region;
CHECK(memory_region != NULL);
receiver_index = ffa_memory_region_get_receiver_index(
memory_region, relinquish_request->endpoints[0]);
if (receiver_index == memory_region->receiver_count) {
dlog_verbose(
"VM ID %d tried to relinquish memory region "
"with handle %#lx and it is not a valid borrower.\n",
from_locked.vm->id, handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (share_state->retrieved_fragment_count[receiver_index] !=
share_state->fragment_count) {
dlog_verbose(
"Memory with handle %#lx not yet fully retrieved, "
"receiver %x can't relinquish.\n",
handle, from_locked.vm->id);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* Either clear if requested in relinquish call, or in a retrieve
* request from one of the borrowers.
*/
receivers_relinquished_memory = true;
for (uint32_t i = 0; i < memory_region->receiver_count; i++) {
struct ffa_memory_access *receiver =
ffa_memory_region_get_receiver(memory_region, i);
assert(receiver != NULL);
if (receiver->receiver_permissions.receiver ==
from_locked.vm->id) {
receiver_permissions =
receiver->receiver_permissions.permissions;
continue;
}
if (share_state->retrieved_fragment_count[i] != 0U) {
receivers_relinquished_memory = false;
break;
}
}
clear = receivers_relinquished_memory &&
((relinquish_request->flags & FFA_MEMORY_REGION_FLAG_CLEAR) !=
0U);
/*
* Clear is not allowed for memory that was shared, as the
* original sender still has access to the memory.
*/
if (clear && (share_state->share_func == FFA_MEM_SHARE_32 ||
share_state->share_func == FFA_MEM_SHARE_64)) {
dlog_verbose("Memory which was shared can't be cleared.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (clear && receiver_permissions.data_access == FFA_DATA_ACCESS_RO) {
dlog_verbose("%s: RO memory can't use clear memory flag.\n",
__func__);
ret = ffa_error(FFA_DENIED);
goto out;
}
ret = ffa_relinquish_check_update(
from_locked, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, share_state->sender_orig_mode,
page_pool, clear);
if (ret.func == FFA_SUCCESS_32) {
/*
* Mark memory handle as not retrieved, so it can be
* reclaimed (or retrieved again).
*/
share_state->retrieved_fragment_count[receiver_index] = 0;
}
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
/**
* Validates that the reclaim transition is allowed for the given
* handle, updates the page table of the reclaiming VM, and frees the
* internal state associated with the handle.
*/
struct ffa_value ffa_memory_reclaim(struct vm_locked to_locked,
ffa_memory_handle_t handle,
ffa_memory_region_flags_t flags,
struct mpool *page_pool)
{
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_memory_region *memory_region;
struct ffa_value ret;
dump_share_states();
share_states = share_states_lock();
share_state = get_share_state(share_states, handle);
if (share_state == NULL) {
dlog_verbose("Invalid handle %#lx for FFA_MEM_RECLAIM.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memory_region = share_state->memory_region;
CHECK(memory_region != NULL);
if (vm_id_is_current_world(to_locked.vm->id) &&
to_locked.vm->id != memory_region->sender) {
dlog_verbose(
"VM %#x attempted to reclaim memory handle %#lx "
"originally sent by VM %#x.\n",
to_locked.vm->id, handle, memory_region->sender);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#lx not fully sent, can't "
"reclaim.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
for (uint32_t i = 0; i < memory_region->receiver_count; i++) {
if (share_state->retrieved_fragment_count[i] != 0) {
struct ffa_memory_access *receiver =
ffa_memory_region_get_receiver(memory_region,
i);
assert(receiver != NULL);
(void)receiver;
dlog_verbose(
"Tried to reclaim memory handle %#lx that has "
"not been relinquished by all borrowers(%x).\n",
handle,
receiver->receiver_permissions.receiver);
ret = ffa_error(FFA_DENIED);
goto out;
}
}
ret = ffa_retrieve_check_update(
to_locked, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, share_state->sender_orig_mode,
FFA_MEM_RECLAIM_32, flags & FFA_MEM_RECLAIM_CLEAR, page_pool,
NULL, share_state->memory_protected);
if (ret.func == FFA_SUCCESS_32) {
share_state_free(share_states, share_state, page_pool);
dlog_verbose("Freed share state after successful reclaim.\n");
}
out:
share_states_unlock(&share_states);
return ret;
}