blob: 8dfd8236ba59d7188ea3ed8bdc69ae11397a4843 [file] [log] [blame]
/*
* Copyright 2024 The Hafnium Authors.
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/BSD-3-Clause.
*/
#include "hf/arch/gicv3.h"
#include "hf/api.h"
#include "hf/check.h"
#include "hf/ffa.h"
#include "hf/ffa/direct_messaging.h"
#include "hf/ffa/interrupts.h"
#include "hf/ffa/vm.h"
#include "hf/ffa_internal.h"
#include "hf/plat/interrupts.h"
#include "hf/vm.h"
bool ffa_cpu_cycles_run_forward(ffa_id_t vm_id, ffa_vcpu_index_t vcpu_idx,
struct ffa_value *ret)
{
(void)vm_id;
(void)vcpu_idx;
(void)ret;
return false;
}
/**
* Check if current VM can resume target VM using FFA_RUN ABI.
*/
bool ffa_cpu_cycles_run_checks(struct vcpu_locked current_locked,
ffa_id_t target_vm_id, ffa_vcpu_index_t vcpu_idx,
struct ffa_value *run_ret, struct vcpu **next)
{
/*
* Under the Partition runtime model specified in FF-A v1.1-Beta0 spec,
* SP can invoke FFA_RUN to resume target SP.
*/
struct vcpu *target_vcpu;
struct vcpu *current = current_locked.vcpu;
bool ret = true;
struct vm *vm;
struct vcpu_locked target_locked;
struct two_vcpu_locked vcpus_locked;
vm = vm_find(target_vm_id);
if (vm == NULL) {
return false;
}
if (vm_is_mp(vm) && vm_is_mp(current->vm) &&
vcpu_idx != cpu_index(current->cpu)) {
dlog_verbose("vcpu_idx (%d) != pcpu index (%zu)\n", vcpu_idx,
cpu_index(current->cpu));
return false;
}
target_vcpu = api_ffa_get_vm_vcpu(vm, current);
vcpu_unlock(&current_locked);
/* Lock both vCPUs at once to avoid deadlock. */
vcpus_locked = vcpu_lock_both(current, target_vcpu);
current_locked = vcpus_locked.vcpu1;
target_locked = vcpus_locked.vcpu2;
/* Only the primary VM can turn ON a vCPU that is currently OFF. */
if (!vm_is_primary(current->vm) &&
target_vcpu->state == VCPU_STATE_OFF) {
run_ret->arg2 = FFA_DENIED;
ret = false;
goto out;
}
/*
* An SPx can resume another SPy only when SPy is in PREEMPTED or
* BLOCKED state.
*/
if (vm_id_is_current_world(current->vm->id) &&
vm_id_is_current_world(target_vm_id)) {
/* Target SP must be in preempted or blocked state. */
if (target_vcpu->state != VCPU_STATE_PREEMPTED &&
target_vcpu->state != VCPU_STATE_BLOCKED) {
run_ret->arg2 = FFA_DENIED;
ret = false;
goto out;
}
}
/* A SP cannot invoke FFA_RUN to resume a normal world VM. */
if (!vm_id_is_current_world(target_vm_id)) {
run_ret->arg2 = FFA_DENIED;
ret = false;
goto out;
}
if (vm_id_is_current_world(current->vm->id)) {
/*
* Refer FF-A v1.1 EAC0 spec section 8.3.2.2.1
* Signaling an Other S-Int in blocked state
*/
if (current->preempted_vcpu != NULL) {
/*
* After the target SP execution context has handled
* the interrupt, it uses the FFA_RUN ABI to resume
* the request due to which it had entered the blocked
* state earlier.
* Deny the state transition if the SP didnt perform the
* deactivation of the secure virtual interrupt.
*/
if (vcpu_virt_interrupt_count_get(current_locked) > 0) {
run_ret->arg2 = FFA_DENIED;
ret = false;
goto out;
}
/*
* Refer Figure 8.13 Scenario 1: Implementation choice:
* SPMC left all intermediate SP execution contexts in
* blocked state. Hence, SPMC now bypasses the
* intermediate these execution contexts and resumes the
* SP execution context that was originally preempted.
*/
*next = current->preempted_vcpu;
if (target_vcpu != current->preempted_vcpu) {
dlog_verbose("Skipping intermediate vCPUs\n");
}
/*
* Clear fields corresponding to secure interrupt
* handling.
*/
vcpu_secure_interrupt_complete(current_locked);
}
}
/* Check if a vCPU of SP is being resumed. */
if (vm_id_is_current_world(target_vm_id)) {
/*
* A call chain cannot span CPUs. The target vCPU can only be
* resumed by FFA_RUN on present CPU.
*/
if ((target_vcpu->call_chain.prev_node != NULL ||
target_vcpu->call_chain.next_node != NULL) &&
(target_vcpu->cpu != current->cpu)) {
run_ret->arg2 = FFA_DENIED;
ret = false;
goto out;
}
}
out:
vcpu_unlock(&target_locked);
return ret;
}
/**
* SPMC scheduled call chain is completely unwound.
*/
static void ffa_cpu_cycles_exit_spmc_schedule_mode(
struct vcpu_locked current_locked)
{
struct vcpu *current;
current = current_locked.vcpu;
assert(current->call_chain.next_node == NULL);
CHECK(current->scheduling_mode == SPMC_MODE);
current->scheduling_mode = NONE;
current->rt_model = RTM_NONE;
}
/**
* A SP in running state could have been pre-empted by a secure interrupt. SPM
* would switch the execution to the vCPU of target SP responsible for interupt
* handling. Upon completion of interrupt handling, vCPU performs interrupt
* signal completion through FFA_MSG_WAIT ABI (provided it was in waiting state
* when interrupt was signaled).
*
* SPM then resumes the original SP that was initially pre-empted.
*/
static struct ffa_value ffa_cpu_cycles_preempted_vcpu_resume(
struct vcpu_locked current_locked, struct vcpu **next)
{
struct ffa_value ffa_ret = (struct ffa_value){.func = FFA_MSG_WAIT_32};
struct vcpu *target_vcpu;
struct vcpu *current = current_locked.vcpu;
struct vcpu_locked target_locked;
struct two_vcpu_locked vcpus_locked;
CHECK(current->preempted_vcpu != NULL);
CHECK(current->preempted_vcpu->state == VCPU_STATE_PREEMPTED);
target_vcpu = current->preempted_vcpu;
vcpu_unlock(&current_locked);
/* Lock both vCPUs at once to avoid deadlock. */
vcpus_locked = vcpu_lock_both(current, target_vcpu);
current_locked = vcpus_locked.vcpu1;
target_locked = vcpus_locked.vcpu2;
/* Reset the fields tracking secure interrupt processing. */
vcpu_secure_interrupt_complete(current_locked);
/* SPMC scheduled call chain is completely unwound. */
ffa_cpu_cycles_exit_spmc_schedule_mode(current_locked);
assert(current->call_chain.prev_node == NULL);
current->state = VCPU_STATE_WAITING;
vcpu_set_running(target_locked, NULL);
vcpu_unlock(&target_locked);
/* Restore interrupt priority mask. */
ffa_interrupts_unmask(current);
/* The pre-empted vCPU should be run. */
*next = target_vcpu;
return ffa_ret;
}
static void ffa_msg_wait_complete(struct vcpu_locked current_locked,
struct vcpu **next)
{
struct vcpu *current = current_locked.vcpu;
current->scheduling_mode = NONE;
current->rt_model = RTM_NONE;
/*
* We no longer need to do a managed exit so clear the interrupt if
* needed.
*/
vcpu_virt_interrupt_clear(current_locked, HF_MANAGED_EXIT_INTID);
/* Relinquish control back to the NWd. */
*next = api_switch_to_other_world(
current_locked, (struct ffa_value){.func = FFA_MSG_WAIT_32},
VCPU_STATE_WAITING);
}
/**
* Deals with the common case of intercepting an FFA_MSG_WAIT call.
*/
static bool ffa_cpu_cycles_msg_wait_intercept(struct vcpu_locked current_locked,
struct vcpu **next,
struct ffa_value *ffa_ret)
{
struct two_vcpu_locked both_vcpu_locks;
struct vcpu *current = current_locked.vcpu;
bool ret = false;
assert(next != NULL);
assert(*next != NULL);
vcpu_unlock(&current_locked);
both_vcpu_locks = vcpu_lock_both(current, *next);
/*
* Check if there is a pending interrupt, and if the partition
* is expects to notify the scheduler or resume straight away.
* Either trigger SRI for later donation of CPU cycles, or
* eret `FFA_INTERRUPT` back to the caller.
*/
if (ffa_interrupts_intercept_call(both_vcpu_locks.vcpu1,
both_vcpu_locks.vcpu2, ffa_ret)) {
*next = NULL;
ret = true;
}
vcpu_unlock(&both_vcpu_locks.vcpu2);
return ret;
}
static bool sp_boot_next(struct vcpu_locked current_locked, struct vcpu **next)
{
struct vcpu *vcpu_next = NULL;
struct vcpu *current = current_locked.vcpu;
struct vm *next_vm;
size_t cpu_indx = cpu_index(current->cpu);
if (current->cpu->last_sp_initialized) {
return false;
}
if (!atomic_load_explicit(&current->vm->aborting,
memory_order_relaxed)) {
/* vCPU has just returned from successful initialization. */
dlog_verbose(
"Initialized execution context of VM: %#x on CPU: %zu, "
"boot_order: %u\n",
current->vm->id, cpu_index(current->cpu),
current->vm->boot_order);
}
if (cpu_index(current_locked.vcpu->cpu) == PRIMARY_CPU_IDX) {
next_vm = vm_get_next_boot(current->vm);
} else {
/* SP boot chain on secondary CPU. */
next_vm = vm_get_next_boot_secondary_core(current->vm);
}
current->state = VCPU_STATE_WAITING;
current->rt_model = RTM_NONE;
current->scheduling_mode = NONE;
/*
* Pick next SP's vCPU to be booted. Once all SPs have booted
* (next_vm is NULL), then return execution to NWd.
*/
if (next_vm == NULL) {
current->cpu->last_sp_initialized = true;
goto out;
}
vcpu_next = vm_get_vcpu(next_vm, cpu_indx);
/*
* An SP's execution context needs to be bootstrapped if:
* - It has never been initialized before.
* - Or it was turned off when the CPU, on which it was pinned, was
* powered down.
*/
if (vcpu_next->rt_model == RTM_SP_INIT ||
vcpu_next->state == VCPU_STATE_OFF) {
vcpu_next->rt_model = RTM_SP_INIT;
arch_regs_reset(vcpu_next);
vcpu_next->cpu = current->cpu;
vcpu_next->state = VCPU_STATE_STARTING;
vcpu_next->regs_available = false;
vcpu_set_phys_core_idx(vcpu_next);
arch_regs_set_pc_arg(&vcpu_next->regs,
vcpu_next->vm->secondary_ep, 0ULL);
if (cpu_index(current_locked.vcpu->cpu) == PRIMARY_CPU_IDX) {
/*
* Boot information is passed by the SPMC to the SP's
* execution context only on the primary CPU.
*/
vcpu_set_boot_info_gp_reg(vcpu_next);
}
*next = vcpu_next;
return true;
}
out:
dlog_notice("Finished bootstrapping all SPs on CPU%lx\n", cpu_indx);
return false;
}
/**
* The invocation of FFA_MSG_WAIT at secure virtual FF-A instance is compliant
* with FF-A v1.1 EAC0 specification. It only performs the state transition
* from RUNNING to WAITING for the following Partition runtime models:
* RTM_FFA_RUN, RTM_SEC_INTERRUPT, RTM_SP_INIT.
*/
struct ffa_value ffa_cpu_cycles_msg_wait_prepare(
struct vcpu_locked current_locked, struct vcpu **next)
{
struct ffa_value ret = api_ffa_interrupt_return(0);
struct vcpu *current = current_locked.vcpu;
switch (current->rt_model) {
case RTM_SP_INIT:
if (!sp_boot_next(current_locked, next)) {
ffa_msg_wait_complete(current_locked, next);
ffa_cpu_cycles_msg_wait_intercept(current_locked, next,
&ret);
}
break;
case RTM_SEC_INTERRUPT:
/*
* Either resume the preempted SP or complete the FFA_MSG_WAIT.
*/
assert(current->preempted_vcpu != NULL);
ffa_cpu_cycles_preempted_vcpu_resume(current_locked, next);
if (!ffa_cpu_cycles_msg_wait_intercept(current_locked, next,
&ret)) {
/*
* If CPU cycles were allocated through FFA_RUN
* interface, allow the interrupts(if they were masked
* earlier) before returning control to NWd.
*/
ffa_interrupts_unmask(current);
}
break;
case RTM_FFA_RUN:
ffa_msg_wait_complete(current_locked, next);
if (!ffa_cpu_cycles_msg_wait_intercept(current_locked, next,
&ret)) {
/*
* If CPU cycles were allocated through FFA_RUN
* interface, allow the interrupts(if they were masked
* earlier) before returning control to NWd.
*/
ffa_interrupts_unmask(current);
}
break;
default:
panic("%s: unexpected runtime model %x for [%x %x]",
current->rt_model, current->vm->id,
cpu_index(current->cpu));
}
vcpu_unlock(&current_locked);
return ret;
}
/*
* Initialize the scheduling mode and/or Partition Runtime model of the target
* SP upon being resumed by an FFA_RUN ABI.
*/
void ffa_cpu_cycles_init_schedule_mode_ffa_run(
struct vcpu_locked current_locked, struct vcpu_locked target_locked)
{
struct vcpu *vcpu = target_locked.vcpu;
struct vcpu *current = current_locked.vcpu;
/*
* Scenario 1 in Table 8.4; Therefore SPMC could be resuming a vCPU
* that was part of NWd scheduled mode.
*/
CHECK(vcpu->scheduling_mode != SPMC_MODE);
/* Section 8.2.3 bullet 4.2 of spec FF-A v1.1 EAC0. */
if (vcpu->state == VCPU_STATE_WAITING) {
assert(vcpu->rt_model == RTM_SP_INIT ||
vcpu->rt_model == RTM_NONE);
vcpu->rt_model = RTM_FFA_RUN;
if (!vm_id_is_current_world(current->vm->id) ||
(current->scheduling_mode == NWD_MODE)) {
vcpu->scheduling_mode = NWD_MODE;
}
} else {
/* SP vCPU would have been pre-empted earlier or blocked. */
CHECK(vcpu->state == VCPU_STATE_PREEMPTED ||
vcpu->state == VCPU_STATE_BLOCKED);
}
ffa_interrupts_mask(target_locked);
}
/*
* Prepare to yield execution back to the VM/SP that allocated CPU cycles and
* move to BLOCKED state. If the CPU cycles were allocated to the current
* execution context by the SPMC to handle secure virtual interrupt, then
* FFA_YIELD invocation is essentially a no-op.
*/
struct ffa_value ffa_cpu_cycles_yield_prepare(struct vcpu_locked current_locked,
struct vcpu **next,
uint32_t timeout_low,
uint32_t timeout_high)
{
struct ffa_value ret_args = (struct ffa_value){.func = FFA_SUCCESS_32};
struct vcpu *current = current_locked.vcpu;
struct ffa_value ret = {
.func = FFA_YIELD_32,
.arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)),
.arg2 = timeout_low,
.arg3 = timeout_high,
};
switch (current->rt_model) {
case RTM_FFA_DIR_REQ:
assert(current->direct_request_origin.vm_id !=
HF_INVALID_VM_ID);
if (current->call_chain.prev_node == NULL) {
/*
* Relinquish cycles to the NWd VM that sent direct
* request message to the current SP.
*/
*next = api_switch_to_other_world(current_locked, ret,
VCPU_STATE_BLOCKED);
} else {
/*
* Relinquish cycles to the SP that sent direct request
* message to the current SP.
*/
*next = api_switch_to_vm(
current_locked, ret, VCPU_STATE_BLOCKED,
current->direct_request_origin.vm_id);
}
break;
case RTM_SEC_INTERRUPT: {
/*
* SPMC does not implement a scheduler needed to resume the
* current vCPU upon timeout expiration. Hence, SPMC makes the
* implementation defined choice to treat FFA_YIELD invocation
* as a no-op if the SP execution context is in the secure
* interrupt runtime model. This does not violate FF-A spec as
* the spec does not mandate timeout to be honored. Moreover,
* timeout specified by an endpoint is just a hint to the
* partition manager which allocated CPU cycles.
* Resume the current vCPU.
*/
*next = NULL;
break;
}
default:
CHECK(current->rt_model == RTM_FFA_RUN);
*next = api_switch_to_primary(current_locked, ret,
VCPU_STATE_BLOCKED);
break;
}
/*
* Before yielding CPU cycles, allow the interrupts(if they were
* masked earlier).
*/
if (*next != NULL) {
ffa_interrupts_unmask(current);
}
return ret_args;
}
/**
* Validates the Runtime model for FFA_RUN. Refer to section 7.2 of the FF-A
* v1.1 EAC0 spec.
*/
static bool ffa_cpu_cycles_check_rtm_ffa_run(struct vcpu_locked current_locked,
struct vcpu_locked locked_vcpu,
uint32_t func,
enum vcpu_state *next_state)
{
switch (func) {
case FFA_MSG_SEND_DIRECT_REQ_64:
case FFA_MSG_SEND_DIRECT_REQ_32:
case FFA_MSG_SEND_DIRECT_REQ2_64:
[[fallthrough]];
case FFA_RUN_32: {
/* Rules 1,2 section 7.2 EAC0 spec. */
if (ffa_direct_msg_precedes_in_call_chain(current_locked,
locked_vcpu)) {
return false;
}
*next_state = VCPU_STATE_BLOCKED;
return true;
}
case FFA_MSG_WAIT_32:
/* Rule 4 section 7.2 EAC0 spec. Fall through. */
*next_state = VCPU_STATE_WAITING;
return true;
case FFA_YIELD_32:
/* Rule 5 section 7.2 EAC0 spec. */
*next_state = VCPU_STATE_BLOCKED;
return true;
case FFA_ABORT_32:
case FFA_ABORT_64:
/* Rule I0072 in section 7.2.4 of FF-A v1.3 ALP2 spec. */
*next_state = VCPU_STATE_ABORTED;
return true;
case FFA_MSG_SEND_DIRECT_RESP_64:
case FFA_MSG_SEND_DIRECT_RESP_32:
case FFA_MSG_SEND_DIRECT_RESP2_64:
/* Rule 3 section 7.2 EAC0 spec. Fall through. */
default:
/* Deny state transitions by default. */
return false;
}
}
/**
* Validates the Runtime model for FFA_MSG_SEND_DIRECT_REQ and
* FFA_MSG_SEND_DIRECT_REQ2. Refer to section 8.3 of the FF-A
* v1.2 spec.
*/
static bool ffa_cpu_cycles_check_rtm_ffa_dir_req(
struct vcpu_locked current_locked, struct vcpu_locked locked_vcpu,
ffa_id_t receiver_vm_id, uint32_t func, enum vcpu_state *next_state)
{
/*
* SPMC denies invocation if the SP's vCPU is processing a PSCI power
* management operation.
*/
if (current_locked.vcpu->pwr_mgmt_op != PWR_MGMT_NONE) {
switch (func) {
case FFA_MSG_SEND_DIRECT_REQ_64:
case FFA_MSG_SEND_DIRECT_REQ_32:
case FFA_MSG_SEND_DIRECT_REQ2_64:
case FFA_RUN_32:
case FFA_YIELD_32:
dlog_verbose(
"State transition denied during power "
"management operation\n");
return false;
default:
break;
}
}
switch (func) {
case FFA_MSG_SEND_DIRECT_REQ_64:
case FFA_MSG_SEND_DIRECT_REQ_32:
case FFA_MSG_SEND_DIRECT_REQ2_64:
[[fallthrough]];
case FFA_RUN_32: {
/* Rules 1,2. */
if (ffa_direct_msg_precedes_in_call_chain(current_locked,
locked_vcpu)) {
return false;
}
*next_state = VCPU_STATE_BLOCKED;
return true;
}
case FFA_MSG_SEND_DIRECT_RESP_64:
case FFA_MSG_SEND_DIRECT_RESP_32:
case FFA_MSG_SEND_DIRECT_RESP2_64: {
/* Rule 3. */
if (current_locked.vcpu->direct_request_origin.vm_id ==
receiver_vm_id) {
*next_state = VCPU_STATE_WAITING;
return true;
}
return false;
}
case FFA_YIELD_32:
/* Rule 3, section 8.3 of FF-A v1.2 spec. */
*next_state = VCPU_STATE_BLOCKED;
return true;
case FFA_ABORT_32:
case FFA_ABORT_64:
/* Rule I0072 in section 7.2.4 of FF-A v1.3 ALP2 spec. */
*next_state = VCPU_STATE_ABORTED;
return true;
case FFA_MSG_WAIT_32:
/* Rule 4. Fall through. */
default:
/* Deny state transitions by default. */
return false;
}
}
/**
* Validates the Runtime model for Secure interrupt handling. Refer to section
* 8.4 of the FF-A v1.2 ALP0 spec.
*/
static bool ffa_cpu_cycles_check_rtm_sec_interrupt(
struct vcpu_locked current_locked, struct vcpu_locked locked_vcpu,
uint32_t func, enum vcpu_state *next_state)
{
struct vcpu *current = current_locked.vcpu;
struct vcpu *vcpu = locked_vcpu.vcpu;
CHECK(current->scheduling_mode == SPMC_MODE);
switch (func) {
case FFA_MSG_SEND_DIRECT_REQ_64:
case FFA_MSG_SEND_DIRECT_REQ_32:
case FFA_MSG_SEND_DIRECT_REQ2_64:
/* Rule 3. */
*next_state = VCPU_STATE_BLOCKED;
return true;
case FFA_RUN_32: {
/* Rule 6. */
if (vcpu->state == VCPU_STATE_PREEMPTED) {
*next_state = VCPU_STATE_BLOCKED;
return true;
}
return false;
}
case FFA_MSG_WAIT_32:
/* Rule 2. */
*next_state = VCPU_STATE_WAITING;
return true;
case FFA_YIELD_32:
/* Rule 3, section 8.4 of FF-A v1.2 spec. */
*next_state = VCPU_STATE_BLOCKED;
return true;
case FFA_ABORT_32:
case FFA_ABORT_64:
/* Rule I0072 in section 7.2.4 of FF-A v1.3 ALP2 spec. */
*next_state = VCPU_STATE_ABORTED;
return true;
case FFA_MSG_SEND_DIRECT_RESP_64:
case FFA_MSG_SEND_DIRECT_RESP_32:
case FFA_MSG_SEND_DIRECT_RESP2_64:
/* Rule 5. Fall through. */
default:
/* Deny state transitions by default. */
return false;
}
}
/**
* Validates the Runtime model for SP initialization. Refer to section
* 8.3 of the FF-A v1.2 ALP0 spec.
*/
static bool ffa_cpu_cycles_check_rtm_sp_init(struct vcpu_locked current_locked,
struct vcpu_locked locked_vcpu,
uint32_t func,
enum vcpu_state *next_state)
{
assert(current_locked.vcpu->state == VCPU_STATE_STARTING);
switch (func) {
case FFA_MSG_SEND_DIRECT_REQ_64:
case FFA_MSG_SEND_DIRECT_REQ_32:
case FFA_MSG_SEND_DIRECT_REQ2_64: {
struct vcpu *vcpu = locked_vcpu.vcpu;
assert(vcpu != NULL);
/* Rule 1. */
if (vcpu->rt_model != RTM_SP_INIT) {
*next_state = VCPU_STATE_BLOCKED;
return true;
}
return false;
}
case FFA_MSG_WAIT_32:
/* Rule 2. */
*next_state = VCPU_STATE_WAITING;
return true;
case FFA_ERROR_32:
/* Refer rule I0096 in FF-A v1.3 ALP2 spec. */
if (current_locked.vcpu->vm->ffa_version > FFA_VERSION_1_2) {
return false;
}
*next_state = VCPU_STATE_WAITING;
return true;
case FFA_ABORT_32:
case FFA_ABORT_64:
/* Rule I0072 in section 7.2.4 of FF-A v1.3 ALP2 spec. */
*next_state = VCPU_STATE_ABORTED;
return true;
case FFA_YIELD_32:
/* Rule 4. Fall through. */
case FFA_RUN_32:
/* Rule 6. Fall through. */
case FFA_MSG_SEND_DIRECT_RESP_64:
case FFA_MSG_SEND_DIRECT_RESP_32:
case FFA_MSG_SEND_DIRECT_RESP2_64:
/* Rule 5. Fall through. */
default:
/* Deny state transitions by default. */
return false;
}
}
/**
* Check if the runtime model (state machine) of the current SP supports the
* given FF-A ABI invocation. If yes, next_state represents the state to which
* the current vcpu would transition upon the FF-A ABI invocation as determined
* by the Partition runtime model.
*/
bool ffa_cpu_cycles_check_runtime_state_transition(
struct vcpu_locked current_locked, ffa_id_t vm_id,
ffa_id_t receiver_vm_id, struct vcpu_locked locked_vcpu, uint32_t func,
enum vcpu_state *next_state)
{
bool allowed = false;
struct vcpu *current = current_locked.vcpu;
assert(current != NULL);
/* Perform state transition checks only for Secure Partitions. */
if (!vm_id_is_current_world(vm_id)) {
return true;
}
switch (current->rt_model) {
case RTM_FFA_RUN:
allowed = ffa_cpu_cycles_check_rtm_ffa_run(
current_locked, locked_vcpu, func, next_state);
break;
case RTM_FFA_DIR_REQ:
allowed = ffa_cpu_cycles_check_rtm_ffa_dir_req(
current_locked, locked_vcpu, receiver_vm_id, func,
next_state);
break;
case RTM_SEC_INTERRUPT:
allowed = ffa_cpu_cycles_check_rtm_sec_interrupt(
current_locked, locked_vcpu, func, next_state);
break;
case RTM_SP_INIT:
allowed = ffa_cpu_cycles_check_rtm_sp_init(
current_locked, locked_vcpu, func, next_state);
break;
default:
dlog_error(
"Illegal Runtime Model specified by SP%x on CPU%zx\n",
current->vm->id, cpu_index(current->cpu));
allowed = false;
break;
}
if (!allowed) {
dlog_verbose("State transition denied\n");
}
return allowed;
}
/*
* Handle FFA_ERROR_32 call according to the given error code.
*
* Error codes other than FFA_ABORTED, and cases of FFA_ABORTED not
* in RTM_SP_INIT runtime model, not implemented. Refer to section 8.5
* of FF-A 1.2 spec.
*/
struct ffa_value ffa_cpu_cycles_error_32(struct vcpu *current,
struct vcpu **next,
enum ffa_error error_code)
{
struct vcpu_locked current_locked;
struct vm_locked vm_locked;
enum partition_runtime_model rt_model;
struct ffa_value ret = api_ffa_interrupt_return(0);
vm_locked = vm_lock(current->vm);
current_locked = vcpu_lock(current);
rt_model = current_locked.vcpu->rt_model;
if (error_code == FFA_ABORTED && rt_model == RTM_SP_INIT) {
dlog_error("Aborting SP %#x from vCPU %u\n", current->vm->id,
vcpu_index(current));
atomic_store_explicit(&current->vm->aborting, true,
memory_order_relaxed);
ffa_vm_free_resources(vm_locked);
if (sp_boot_next(current_locked, next)) {
goto out;
}
/*
* Relinquish control back to the NWd. Return
* FFA_MSG_WAIT_32 to indicate to SPMD that SPMC
* has successfully finished initialization.
*/
*next = api_switch_to_other_world(
current_locked,
(struct ffa_value){.func = FFA_MSG_WAIT_32},
VCPU_STATE_ABORTED);
goto out;
}
ret = ffa_error(FFA_NOT_SUPPORTED);
out:
vcpu_unlock(&current_locked);
vm_unlock(&vm_locked);
return ret;
}
struct ffa_value ffa_cpu_cycles_abort(struct vcpu_locked current_locked,
struct vcpu **next)
{
struct ffa_value to_ret = ffa_error(FFA_ABORTED);
enum vcpu_state next_state = VCPU_STATE_ABORTED;
/*
* Relinquish control back to the NWd.
* TODO: Support for abort actions will be added in further patches.
*/
*next = api_switch_to_primary(current_locked, to_ret, next_state);
return (struct ffa_value){.func = FFA_SUCCESS_32};
}