| /* |
| * Copyright 2024 The Hafnium Authors. |
| * |
| * Use of this source code is governed by a BSD-style |
| * license that can be found in the LICENSE file or at |
| * https://opensource.org/licenses/BSD-3-Clause. |
| */ |
| |
| #include "hf/arch/gicv3.h" |
| |
| #include "hf/api.h" |
| #include "hf/check.h" |
| #include "hf/ffa.h" |
| #include "hf/ffa/direct_messaging.h" |
| #include "hf/ffa/interrupts.h" |
| #include "hf/ffa/vm.h" |
| #include "hf/ffa_internal.h" |
| #include "hf/plat/interrupts.h" |
| #include "hf/vm.h" |
| |
| bool ffa_cpu_cycles_run_forward(ffa_id_t vm_id, ffa_vcpu_index_t vcpu_idx, |
| struct ffa_value *ret) |
| { |
| (void)vm_id; |
| (void)vcpu_idx; |
| (void)ret; |
| |
| return false; |
| } |
| |
| /** |
| * Check if current VM can resume target VM using FFA_RUN ABI. |
| */ |
| bool ffa_cpu_cycles_run_checks(struct vcpu_locked current_locked, |
| ffa_id_t target_vm_id, ffa_vcpu_index_t vcpu_idx, |
| struct ffa_value *run_ret, struct vcpu **next) |
| { |
| /* |
| * Under the Partition runtime model specified in FF-A v1.1-Beta0 spec, |
| * SP can invoke FFA_RUN to resume target SP. |
| */ |
| struct vcpu *target_vcpu; |
| struct vcpu *current = current_locked.vcpu; |
| bool ret = true; |
| struct vm *vm; |
| struct vcpu_locked target_locked; |
| struct two_vcpu_locked vcpus_locked; |
| |
| vm = vm_find(target_vm_id); |
| if (vm == NULL) { |
| return false; |
| } |
| |
| if (vm_is_mp(vm) && vm_is_mp(current->vm) && |
| vcpu_idx != cpu_index(current->cpu)) { |
| dlog_verbose("vcpu_idx (%d) != pcpu index (%zu)\n", vcpu_idx, |
| cpu_index(current->cpu)); |
| return false; |
| } |
| |
| target_vcpu = api_ffa_get_vm_vcpu(vm, current); |
| |
| vcpu_unlock(¤t_locked); |
| |
| /* Lock both vCPUs at once to avoid deadlock. */ |
| vcpus_locked = vcpu_lock_both(current, target_vcpu); |
| current_locked = vcpus_locked.vcpu1; |
| target_locked = vcpus_locked.vcpu2; |
| |
| /* Only the primary VM can turn ON a vCPU that is currently OFF. */ |
| if (!vm_is_primary(current->vm) && |
| target_vcpu->state == VCPU_STATE_OFF) { |
| run_ret->arg2 = FFA_DENIED; |
| ret = false; |
| goto out; |
| } |
| |
| /* |
| * An SPx can resume another SPy only when SPy is in PREEMPTED or |
| * BLOCKED state. |
| */ |
| if (vm_id_is_current_world(current->vm->id) && |
| vm_id_is_current_world(target_vm_id)) { |
| /* Target SP must be in preempted or blocked state. */ |
| if (target_vcpu->state != VCPU_STATE_PREEMPTED && |
| target_vcpu->state != VCPU_STATE_BLOCKED) { |
| run_ret->arg2 = FFA_DENIED; |
| ret = false; |
| goto out; |
| } |
| } |
| |
| /* A SP cannot invoke FFA_RUN to resume a normal world VM. */ |
| if (!vm_id_is_current_world(target_vm_id)) { |
| run_ret->arg2 = FFA_DENIED; |
| ret = false; |
| goto out; |
| } |
| |
| if (vm_id_is_current_world(current->vm->id)) { |
| /* |
| * Refer FF-A v1.1 EAC0 spec section 8.3.2.2.1 |
| * Signaling an Other S-Int in blocked state |
| */ |
| if (current->preempted_vcpu != NULL) { |
| /* |
| * After the target SP execution context has handled |
| * the interrupt, it uses the FFA_RUN ABI to resume |
| * the request due to which it had entered the blocked |
| * state earlier. |
| * Deny the state transition if the SP didnt perform the |
| * deactivation of the secure virtual interrupt. |
| */ |
| if (vcpu_virt_interrupt_count_get(current_locked) > 0) { |
| run_ret->arg2 = FFA_DENIED; |
| ret = false; |
| goto out; |
| } |
| |
| /* |
| * Refer Figure 8.13 Scenario 1: Implementation choice: |
| * SPMC left all intermediate SP execution contexts in |
| * blocked state. Hence, SPMC now bypasses the |
| * intermediate these execution contexts and resumes the |
| * SP execution context that was originally preempted. |
| */ |
| *next = current->preempted_vcpu; |
| if (target_vcpu != current->preempted_vcpu) { |
| dlog_verbose("Skipping intermediate vCPUs\n"); |
| } |
| |
| /* |
| * Clear fields corresponding to secure interrupt |
| * handling. |
| */ |
| vcpu_secure_interrupt_complete(current_locked); |
| } |
| } |
| |
| /* Check if a vCPU of SP is being resumed. */ |
| if (vm_id_is_current_world(target_vm_id)) { |
| /* |
| * A call chain cannot span CPUs. The target vCPU can only be |
| * resumed by FFA_RUN on present CPU. |
| */ |
| if ((target_vcpu->call_chain.prev_node != NULL || |
| target_vcpu->call_chain.next_node != NULL) && |
| (target_vcpu->cpu != current->cpu)) { |
| run_ret->arg2 = FFA_DENIED; |
| ret = false; |
| goto out; |
| } |
| } |
| |
| out: |
| vcpu_unlock(&target_locked); |
| return ret; |
| } |
| |
| /** |
| * SPMC scheduled call chain is completely unwound. |
| */ |
| static void ffa_cpu_cycles_exit_spmc_schedule_mode( |
| struct vcpu_locked current_locked) |
| { |
| struct vcpu *current; |
| |
| current = current_locked.vcpu; |
| assert(current->call_chain.next_node == NULL); |
| CHECK(current->scheduling_mode == SPMC_MODE); |
| |
| current->scheduling_mode = NONE; |
| current->rt_model = RTM_NONE; |
| } |
| |
| /** |
| * A SP in running state could have been pre-empted by a secure interrupt. SPM |
| * would switch the execution to the vCPU of target SP responsible for interupt |
| * handling. Upon completion of interrupt handling, vCPU performs interrupt |
| * signal completion through FFA_MSG_WAIT ABI (provided it was in waiting state |
| * when interrupt was signaled). |
| * |
| * SPM then resumes the original SP that was initially pre-empted. |
| */ |
| static struct ffa_value ffa_cpu_cycles_preempted_vcpu_resume( |
| struct vcpu_locked current_locked, struct vcpu **next) |
| { |
| struct ffa_value ffa_ret = (struct ffa_value){.func = FFA_MSG_WAIT_32}; |
| struct vcpu *target_vcpu; |
| struct vcpu *current = current_locked.vcpu; |
| struct vcpu_locked target_locked; |
| struct two_vcpu_locked vcpus_locked; |
| |
| CHECK(current->preempted_vcpu != NULL); |
| CHECK(current->preempted_vcpu->state == VCPU_STATE_PREEMPTED); |
| |
| target_vcpu = current->preempted_vcpu; |
| vcpu_unlock(¤t_locked); |
| |
| /* Lock both vCPUs at once to avoid deadlock. */ |
| vcpus_locked = vcpu_lock_both(current, target_vcpu); |
| current_locked = vcpus_locked.vcpu1; |
| target_locked = vcpus_locked.vcpu2; |
| |
| /* Reset the fields tracking secure interrupt processing. */ |
| vcpu_secure_interrupt_complete(current_locked); |
| |
| /* SPMC scheduled call chain is completely unwound. */ |
| ffa_cpu_cycles_exit_spmc_schedule_mode(current_locked); |
| assert(current->call_chain.prev_node == NULL); |
| |
| current->state = VCPU_STATE_WAITING; |
| |
| vcpu_set_running(target_locked, NULL); |
| |
| vcpu_unlock(&target_locked); |
| |
| /* Restore interrupt priority mask. */ |
| ffa_interrupts_unmask(current); |
| |
| /* The pre-empted vCPU should be run. */ |
| *next = target_vcpu; |
| |
| return ffa_ret; |
| } |
| |
| static void ffa_msg_wait_complete(struct vcpu_locked current_locked, |
| struct vcpu **next) |
| { |
| struct vcpu *current = current_locked.vcpu; |
| |
| current->scheduling_mode = NONE; |
| current->rt_model = RTM_NONE; |
| |
| /* |
| * We no longer need to do a managed exit so clear the interrupt if |
| * needed. |
| */ |
| vcpu_virt_interrupt_clear(current_locked, HF_MANAGED_EXIT_INTID); |
| |
| /* Relinquish control back to the NWd. */ |
| *next = api_switch_to_other_world( |
| current_locked, (struct ffa_value){.func = FFA_MSG_WAIT_32}, |
| VCPU_STATE_WAITING); |
| } |
| |
| /** |
| * Deals with the common case of intercepting an FFA_MSG_WAIT call. |
| */ |
| static bool ffa_cpu_cycles_msg_wait_intercept(struct vcpu_locked current_locked, |
| struct vcpu **next, |
| struct ffa_value *ffa_ret) |
| { |
| struct two_vcpu_locked both_vcpu_locks; |
| struct vcpu *current = current_locked.vcpu; |
| bool ret = false; |
| |
| assert(next != NULL); |
| assert(*next != NULL); |
| |
| vcpu_unlock(¤t_locked); |
| |
| both_vcpu_locks = vcpu_lock_both(current, *next); |
| |
| /* |
| * Check if there is a pending interrupt, and if the partition |
| * is expects to notify the scheduler or resume straight away. |
| * Either trigger SRI for later donation of CPU cycles, or |
| * eret `FFA_INTERRUPT` back to the caller. |
| */ |
| if (ffa_interrupts_intercept_call(both_vcpu_locks.vcpu1, |
| both_vcpu_locks.vcpu2, ffa_ret)) { |
| *next = NULL; |
| ret = true; |
| } |
| |
| vcpu_unlock(&both_vcpu_locks.vcpu2); |
| |
| return ret; |
| } |
| |
| static bool sp_boot_next(struct vcpu_locked current_locked, struct vcpu **next) |
| { |
| struct vcpu *vcpu_next = NULL; |
| struct vcpu *current = current_locked.vcpu; |
| struct vm *next_vm; |
| size_t cpu_indx = cpu_index(current->cpu); |
| |
| if (current->cpu->last_sp_initialized) { |
| return false; |
| } |
| |
| if (!atomic_load_explicit(¤t->vm->aborting, |
| memory_order_relaxed)) { |
| /* vCPU has just returned from successful initialization. */ |
| dlog_verbose( |
| "Initialized execution context of VM: %#x on CPU: %zu, " |
| "boot_order: %u\n", |
| current->vm->id, cpu_index(current->cpu), |
| current->vm->boot_order); |
| } |
| |
| if (cpu_index(current_locked.vcpu->cpu) == PRIMARY_CPU_IDX) { |
| next_vm = vm_get_next_boot(current->vm); |
| } else { |
| /* SP boot chain on secondary CPU. */ |
| next_vm = vm_get_next_boot_secondary_core(current->vm); |
| } |
| |
| current->state = VCPU_STATE_WAITING; |
| current->rt_model = RTM_NONE; |
| current->scheduling_mode = NONE; |
| |
| /* |
| * Pick next SP's vCPU to be booted. Once all SPs have booted |
| * (next_vm is NULL), then return execution to NWd. |
| */ |
| if (next_vm == NULL) { |
| current->cpu->last_sp_initialized = true; |
| goto out; |
| } |
| |
| vcpu_next = vm_get_vcpu(next_vm, cpu_indx); |
| |
| /* |
| * An SP's execution context needs to be bootstrapped if: |
| * - It has never been initialized before. |
| * - Or it was turned off when the CPU, on which it was pinned, was |
| * powered down. |
| */ |
| if (vcpu_next->rt_model == RTM_SP_INIT || |
| vcpu_next->state == VCPU_STATE_OFF) { |
| vcpu_next->rt_model = RTM_SP_INIT; |
| arch_regs_reset(vcpu_next); |
| vcpu_next->cpu = current->cpu; |
| vcpu_next->state = VCPU_STATE_STARTING; |
| vcpu_next->regs_available = false; |
| vcpu_set_phys_core_idx(vcpu_next); |
| arch_regs_set_pc_arg(&vcpu_next->regs, |
| vcpu_next->vm->secondary_ep, 0ULL); |
| |
| if (cpu_index(current_locked.vcpu->cpu) == PRIMARY_CPU_IDX) { |
| /* |
| * Boot information is passed by the SPMC to the SP's |
| * execution context only on the primary CPU. |
| */ |
| vcpu_set_boot_info_gp_reg(vcpu_next); |
| } |
| |
| *next = vcpu_next; |
| |
| return true; |
| } |
| out: |
| dlog_notice("Finished bootstrapping all SPs on CPU%lx\n", cpu_indx); |
| return false; |
| } |
| |
| /** |
| * The invocation of FFA_MSG_WAIT at secure virtual FF-A instance is compliant |
| * with FF-A v1.1 EAC0 specification. It only performs the state transition |
| * from RUNNING to WAITING for the following Partition runtime models: |
| * RTM_FFA_RUN, RTM_SEC_INTERRUPT, RTM_SP_INIT. |
| */ |
| struct ffa_value ffa_cpu_cycles_msg_wait_prepare( |
| struct vcpu_locked current_locked, struct vcpu **next) |
| { |
| struct ffa_value ret = api_ffa_interrupt_return(0); |
| struct vcpu *current = current_locked.vcpu; |
| |
| switch (current->rt_model) { |
| case RTM_SP_INIT: |
| if (!sp_boot_next(current_locked, next)) { |
| ffa_msg_wait_complete(current_locked, next); |
| |
| ffa_cpu_cycles_msg_wait_intercept(current_locked, next, |
| &ret); |
| } |
| break; |
| case RTM_SEC_INTERRUPT: |
| /* |
| * Either resume the preempted SP or complete the FFA_MSG_WAIT. |
| */ |
| assert(current->preempted_vcpu != NULL); |
| ffa_cpu_cycles_preempted_vcpu_resume(current_locked, next); |
| |
| if (!ffa_cpu_cycles_msg_wait_intercept(current_locked, next, |
| &ret)) { |
| /* |
| * If CPU cycles were allocated through FFA_RUN |
| * interface, allow the interrupts(if they were masked |
| * earlier) before returning control to NWd. |
| */ |
| ffa_interrupts_unmask(current); |
| } |
| |
| break; |
| case RTM_FFA_RUN: |
| ffa_msg_wait_complete(current_locked, next); |
| |
| if (!ffa_cpu_cycles_msg_wait_intercept(current_locked, next, |
| &ret)) { |
| /* |
| * If CPU cycles were allocated through FFA_RUN |
| * interface, allow the interrupts(if they were masked |
| * earlier) before returning control to NWd. |
| */ |
| ffa_interrupts_unmask(current); |
| } |
| |
| break; |
| default: |
| panic("%s: unexpected runtime model %x for [%x %x]", |
| current->rt_model, current->vm->id, |
| cpu_index(current->cpu)); |
| } |
| |
| vcpu_unlock(¤t_locked); |
| |
| return ret; |
| } |
| |
| /* |
| * Initialize the scheduling mode and/or Partition Runtime model of the target |
| * SP upon being resumed by an FFA_RUN ABI. |
| */ |
| void ffa_cpu_cycles_init_schedule_mode_ffa_run( |
| struct vcpu_locked current_locked, struct vcpu_locked target_locked) |
| { |
| struct vcpu *vcpu = target_locked.vcpu; |
| struct vcpu *current = current_locked.vcpu; |
| |
| /* |
| * Scenario 1 in Table 8.4; Therefore SPMC could be resuming a vCPU |
| * that was part of NWd scheduled mode. |
| */ |
| CHECK(vcpu->scheduling_mode != SPMC_MODE); |
| |
| /* Section 8.2.3 bullet 4.2 of spec FF-A v1.1 EAC0. */ |
| if (vcpu->state == VCPU_STATE_WAITING) { |
| assert(vcpu->rt_model == RTM_SP_INIT || |
| vcpu->rt_model == RTM_NONE); |
| vcpu->rt_model = RTM_FFA_RUN; |
| |
| if (!vm_id_is_current_world(current->vm->id) || |
| (current->scheduling_mode == NWD_MODE)) { |
| vcpu->scheduling_mode = NWD_MODE; |
| } |
| } else { |
| /* SP vCPU would have been pre-empted earlier or blocked. */ |
| CHECK(vcpu->state == VCPU_STATE_PREEMPTED || |
| vcpu->state == VCPU_STATE_BLOCKED); |
| } |
| |
| ffa_interrupts_mask(target_locked); |
| } |
| |
| /* |
| * Prepare to yield execution back to the VM/SP that allocated CPU cycles and |
| * move to BLOCKED state. If the CPU cycles were allocated to the current |
| * execution context by the SPMC to handle secure virtual interrupt, then |
| * FFA_YIELD invocation is essentially a no-op. |
| */ |
| struct ffa_value ffa_cpu_cycles_yield_prepare(struct vcpu_locked current_locked, |
| struct vcpu **next, |
| uint32_t timeout_low, |
| uint32_t timeout_high) |
| { |
| struct ffa_value ret_args = (struct ffa_value){.func = FFA_SUCCESS_32}; |
| struct vcpu *current = current_locked.vcpu; |
| struct ffa_value ret = { |
| .func = FFA_YIELD_32, |
| .arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)), |
| .arg2 = timeout_low, |
| .arg3 = timeout_high, |
| }; |
| |
| switch (current->rt_model) { |
| case RTM_FFA_DIR_REQ: |
| assert(current->direct_request_origin.vm_id != |
| HF_INVALID_VM_ID); |
| if (current->call_chain.prev_node == NULL) { |
| /* |
| * Relinquish cycles to the NWd VM that sent direct |
| * request message to the current SP. |
| */ |
| *next = api_switch_to_other_world(current_locked, ret, |
| VCPU_STATE_BLOCKED); |
| } else { |
| /* |
| * Relinquish cycles to the SP that sent direct request |
| * message to the current SP. |
| */ |
| *next = api_switch_to_vm( |
| current_locked, ret, VCPU_STATE_BLOCKED, |
| current->direct_request_origin.vm_id); |
| } |
| break; |
| case RTM_SEC_INTERRUPT: { |
| /* |
| * SPMC does not implement a scheduler needed to resume the |
| * current vCPU upon timeout expiration. Hence, SPMC makes the |
| * implementation defined choice to treat FFA_YIELD invocation |
| * as a no-op if the SP execution context is in the secure |
| * interrupt runtime model. This does not violate FF-A spec as |
| * the spec does not mandate timeout to be honored. Moreover, |
| * timeout specified by an endpoint is just a hint to the |
| * partition manager which allocated CPU cycles. |
| * Resume the current vCPU. |
| */ |
| *next = NULL; |
| break; |
| } |
| default: |
| CHECK(current->rt_model == RTM_FFA_RUN); |
| *next = api_switch_to_primary(current_locked, ret, |
| VCPU_STATE_BLOCKED); |
| break; |
| } |
| |
| /* |
| * Before yielding CPU cycles, allow the interrupts(if they were |
| * masked earlier). |
| */ |
| if (*next != NULL) { |
| ffa_interrupts_unmask(current); |
| } |
| |
| return ret_args; |
| } |
| |
| /** |
| * Validates the Runtime model for FFA_RUN. Refer to section 7.2 of the FF-A |
| * v1.1 EAC0 spec. |
| */ |
| static bool ffa_cpu_cycles_check_rtm_ffa_run(struct vcpu_locked current_locked, |
| struct vcpu_locked locked_vcpu, |
| uint32_t func, |
| enum vcpu_state *next_state) |
| { |
| switch (func) { |
| case FFA_MSG_SEND_DIRECT_REQ_64: |
| case FFA_MSG_SEND_DIRECT_REQ_32: |
| case FFA_MSG_SEND_DIRECT_REQ2_64: |
| [[fallthrough]]; |
| case FFA_RUN_32: { |
| /* Rules 1,2 section 7.2 EAC0 spec. */ |
| if (ffa_direct_msg_precedes_in_call_chain(current_locked, |
| locked_vcpu)) { |
| return false; |
| } |
| *next_state = VCPU_STATE_BLOCKED; |
| return true; |
| } |
| case FFA_MSG_WAIT_32: |
| /* Rule 4 section 7.2 EAC0 spec. Fall through. */ |
| *next_state = VCPU_STATE_WAITING; |
| return true; |
| case FFA_YIELD_32: |
| /* Rule 5 section 7.2 EAC0 spec. */ |
| *next_state = VCPU_STATE_BLOCKED; |
| return true; |
| case FFA_ABORT_32: |
| case FFA_ABORT_64: |
| /* Rule I0072 in section 7.2.4 of FF-A v1.3 ALP2 spec. */ |
| *next_state = VCPU_STATE_ABORTED; |
| return true; |
| case FFA_MSG_SEND_DIRECT_RESP_64: |
| case FFA_MSG_SEND_DIRECT_RESP_32: |
| case FFA_MSG_SEND_DIRECT_RESP2_64: |
| /* Rule 3 section 7.2 EAC0 spec. Fall through. */ |
| default: |
| /* Deny state transitions by default. */ |
| return false; |
| } |
| } |
| |
| /** |
| * Validates the Runtime model for FFA_MSG_SEND_DIRECT_REQ and |
| * FFA_MSG_SEND_DIRECT_REQ2. Refer to section 8.3 of the FF-A |
| * v1.2 spec. |
| */ |
| static bool ffa_cpu_cycles_check_rtm_ffa_dir_req( |
| struct vcpu_locked current_locked, struct vcpu_locked locked_vcpu, |
| ffa_id_t receiver_vm_id, uint32_t func, enum vcpu_state *next_state) |
| { |
| /* |
| * SPMC denies invocation if the SP's vCPU is processing a PSCI power |
| * management operation. |
| */ |
| if (current_locked.vcpu->pwr_mgmt_op != PWR_MGMT_NONE) { |
| switch (func) { |
| case FFA_MSG_SEND_DIRECT_REQ_64: |
| case FFA_MSG_SEND_DIRECT_REQ_32: |
| case FFA_MSG_SEND_DIRECT_REQ2_64: |
| case FFA_RUN_32: |
| case FFA_YIELD_32: |
| dlog_verbose( |
| "State transition denied during power " |
| "management operation\n"); |
| return false; |
| default: |
| break; |
| } |
| } |
| |
| switch (func) { |
| case FFA_MSG_SEND_DIRECT_REQ_64: |
| case FFA_MSG_SEND_DIRECT_REQ_32: |
| case FFA_MSG_SEND_DIRECT_REQ2_64: |
| [[fallthrough]]; |
| case FFA_RUN_32: { |
| /* Rules 1,2. */ |
| if (ffa_direct_msg_precedes_in_call_chain(current_locked, |
| locked_vcpu)) { |
| return false; |
| } |
| |
| *next_state = VCPU_STATE_BLOCKED; |
| return true; |
| } |
| case FFA_MSG_SEND_DIRECT_RESP_64: |
| case FFA_MSG_SEND_DIRECT_RESP_32: |
| case FFA_MSG_SEND_DIRECT_RESP2_64: { |
| /* Rule 3. */ |
| if (current_locked.vcpu->direct_request_origin.vm_id == |
| receiver_vm_id) { |
| *next_state = VCPU_STATE_WAITING; |
| return true; |
| } |
| |
| return false; |
| } |
| case FFA_YIELD_32: |
| /* Rule 3, section 8.3 of FF-A v1.2 spec. */ |
| *next_state = VCPU_STATE_BLOCKED; |
| return true; |
| case FFA_ABORT_32: |
| case FFA_ABORT_64: |
| /* Rule I0072 in section 7.2.4 of FF-A v1.3 ALP2 spec. */ |
| *next_state = VCPU_STATE_ABORTED; |
| return true; |
| case FFA_MSG_WAIT_32: |
| /* Rule 4. Fall through. */ |
| default: |
| /* Deny state transitions by default. */ |
| return false; |
| } |
| } |
| |
| /** |
| * Validates the Runtime model for Secure interrupt handling. Refer to section |
| * 8.4 of the FF-A v1.2 ALP0 spec. |
| */ |
| static bool ffa_cpu_cycles_check_rtm_sec_interrupt( |
| struct vcpu_locked current_locked, struct vcpu_locked locked_vcpu, |
| uint32_t func, enum vcpu_state *next_state) |
| { |
| struct vcpu *current = current_locked.vcpu; |
| struct vcpu *vcpu = locked_vcpu.vcpu; |
| |
| CHECK(current->scheduling_mode == SPMC_MODE); |
| |
| switch (func) { |
| case FFA_MSG_SEND_DIRECT_REQ_64: |
| case FFA_MSG_SEND_DIRECT_REQ_32: |
| case FFA_MSG_SEND_DIRECT_REQ2_64: |
| /* Rule 3. */ |
| *next_state = VCPU_STATE_BLOCKED; |
| return true; |
| case FFA_RUN_32: { |
| /* Rule 6. */ |
| if (vcpu->state == VCPU_STATE_PREEMPTED) { |
| *next_state = VCPU_STATE_BLOCKED; |
| return true; |
| } |
| |
| return false; |
| } |
| case FFA_MSG_WAIT_32: |
| /* Rule 2. */ |
| *next_state = VCPU_STATE_WAITING; |
| return true; |
| case FFA_YIELD_32: |
| /* Rule 3, section 8.4 of FF-A v1.2 spec. */ |
| *next_state = VCPU_STATE_BLOCKED; |
| return true; |
| case FFA_ABORT_32: |
| case FFA_ABORT_64: |
| /* Rule I0072 in section 7.2.4 of FF-A v1.3 ALP2 spec. */ |
| *next_state = VCPU_STATE_ABORTED; |
| return true; |
| case FFA_MSG_SEND_DIRECT_RESP_64: |
| case FFA_MSG_SEND_DIRECT_RESP_32: |
| case FFA_MSG_SEND_DIRECT_RESP2_64: |
| /* Rule 5. Fall through. */ |
| default: |
| /* Deny state transitions by default. */ |
| return false; |
| } |
| } |
| |
| /** |
| * Validates the Runtime model for SP initialization. Refer to section |
| * 8.3 of the FF-A v1.2 ALP0 spec. |
| */ |
| static bool ffa_cpu_cycles_check_rtm_sp_init(struct vcpu_locked current_locked, |
| struct vcpu_locked locked_vcpu, |
| uint32_t func, |
| enum vcpu_state *next_state) |
| { |
| assert(current_locked.vcpu->state == VCPU_STATE_STARTING); |
| |
| switch (func) { |
| case FFA_MSG_SEND_DIRECT_REQ_64: |
| case FFA_MSG_SEND_DIRECT_REQ_32: |
| case FFA_MSG_SEND_DIRECT_REQ2_64: { |
| struct vcpu *vcpu = locked_vcpu.vcpu; |
| |
| assert(vcpu != NULL); |
| /* Rule 1. */ |
| if (vcpu->rt_model != RTM_SP_INIT) { |
| *next_state = VCPU_STATE_BLOCKED; |
| return true; |
| } |
| |
| return false; |
| } |
| case FFA_MSG_WAIT_32: |
| /* Rule 2. */ |
| *next_state = VCPU_STATE_WAITING; |
| return true; |
| case FFA_ERROR_32: |
| /* Refer rule I0096 in FF-A v1.3 ALP2 spec. */ |
| if (current_locked.vcpu->vm->ffa_version > FFA_VERSION_1_2) { |
| return false; |
| } |
| |
| *next_state = VCPU_STATE_WAITING; |
| return true; |
| case FFA_ABORT_32: |
| case FFA_ABORT_64: |
| /* Rule I0072 in section 7.2.4 of FF-A v1.3 ALP2 spec. */ |
| *next_state = VCPU_STATE_ABORTED; |
| return true; |
| case FFA_YIELD_32: |
| /* Rule 4. Fall through. */ |
| case FFA_RUN_32: |
| /* Rule 6. Fall through. */ |
| case FFA_MSG_SEND_DIRECT_RESP_64: |
| case FFA_MSG_SEND_DIRECT_RESP_32: |
| case FFA_MSG_SEND_DIRECT_RESP2_64: |
| /* Rule 5. Fall through. */ |
| default: |
| /* Deny state transitions by default. */ |
| return false; |
| } |
| } |
| |
| /** |
| * Check if the runtime model (state machine) of the current SP supports the |
| * given FF-A ABI invocation. If yes, next_state represents the state to which |
| * the current vcpu would transition upon the FF-A ABI invocation as determined |
| * by the Partition runtime model. |
| */ |
| bool ffa_cpu_cycles_check_runtime_state_transition( |
| struct vcpu_locked current_locked, ffa_id_t vm_id, |
| ffa_id_t receiver_vm_id, struct vcpu_locked locked_vcpu, uint32_t func, |
| enum vcpu_state *next_state) |
| { |
| bool allowed = false; |
| struct vcpu *current = current_locked.vcpu; |
| |
| assert(current != NULL); |
| |
| /* Perform state transition checks only for Secure Partitions. */ |
| if (!vm_id_is_current_world(vm_id)) { |
| return true; |
| } |
| |
| switch (current->rt_model) { |
| case RTM_FFA_RUN: |
| allowed = ffa_cpu_cycles_check_rtm_ffa_run( |
| current_locked, locked_vcpu, func, next_state); |
| break; |
| case RTM_FFA_DIR_REQ: |
| allowed = ffa_cpu_cycles_check_rtm_ffa_dir_req( |
| current_locked, locked_vcpu, receiver_vm_id, func, |
| next_state); |
| break; |
| case RTM_SEC_INTERRUPT: |
| allowed = ffa_cpu_cycles_check_rtm_sec_interrupt( |
| current_locked, locked_vcpu, func, next_state); |
| break; |
| case RTM_SP_INIT: |
| allowed = ffa_cpu_cycles_check_rtm_sp_init( |
| current_locked, locked_vcpu, func, next_state); |
| break; |
| default: |
| dlog_error( |
| "Illegal Runtime Model specified by SP%x on CPU%zx\n", |
| current->vm->id, cpu_index(current->cpu)); |
| allowed = false; |
| break; |
| } |
| |
| if (!allowed) { |
| dlog_verbose("State transition denied\n"); |
| } |
| |
| return allowed; |
| } |
| |
| /* |
| * Handle FFA_ERROR_32 call according to the given error code. |
| * |
| * Error codes other than FFA_ABORTED, and cases of FFA_ABORTED not |
| * in RTM_SP_INIT runtime model, not implemented. Refer to section 8.5 |
| * of FF-A 1.2 spec. |
| */ |
| struct ffa_value ffa_cpu_cycles_error_32(struct vcpu *current, |
| struct vcpu **next, |
| enum ffa_error error_code) |
| { |
| struct vcpu_locked current_locked; |
| struct vm_locked vm_locked; |
| enum partition_runtime_model rt_model; |
| struct ffa_value ret = api_ffa_interrupt_return(0); |
| |
| vm_locked = vm_lock(current->vm); |
| current_locked = vcpu_lock(current); |
| rt_model = current_locked.vcpu->rt_model; |
| |
| if (error_code == FFA_ABORTED && rt_model == RTM_SP_INIT) { |
| dlog_error("Aborting SP %#x from vCPU %u\n", current->vm->id, |
| vcpu_index(current)); |
| |
| atomic_store_explicit(¤t->vm->aborting, true, |
| memory_order_relaxed); |
| |
| ffa_vm_free_resources(vm_locked); |
| |
| if (sp_boot_next(current_locked, next)) { |
| goto out; |
| } |
| |
| /* |
| * Relinquish control back to the NWd. Return |
| * FFA_MSG_WAIT_32 to indicate to SPMD that SPMC |
| * has successfully finished initialization. |
| */ |
| *next = api_switch_to_other_world( |
| current_locked, |
| (struct ffa_value){.func = FFA_MSG_WAIT_32}, |
| VCPU_STATE_ABORTED); |
| |
| goto out; |
| } |
| ret = ffa_error(FFA_NOT_SUPPORTED); |
| out: |
| vcpu_unlock(¤t_locked); |
| vm_unlock(&vm_locked); |
| return ret; |
| } |
| |
| struct ffa_value ffa_cpu_cycles_abort(struct vcpu_locked current_locked, |
| struct vcpu **next) |
| { |
| struct ffa_value to_ret = ffa_error(FFA_ABORTED); |
| enum vcpu_state next_state = VCPU_STATE_ABORTED; |
| |
| /* |
| * Relinquish control back to the NWd. |
| * TODO: Support for abort actions will be added in further patches. |
| */ |
| *next = api_switch_to_primary(current_locked, to_ret, next_state); |
| |
| return (struct ffa_value){.func = FFA_SUCCESS_32}; |
| } |