blob: f43553333d459a80640fdf9661aef0a0204db0a9 [file] [log] [blame]
/*
* Copyright 2019 The Hafnium Authors.
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/BSD-3-Clause.
*/
#include "hf/ffa_memory.h"
#include "hf/arch/mm.h"
#include "hf/arch/other_world.h"
#include "hf/arch/plat/ffa.h"
#include "hf/api.h"
#include "hf/assert.h"
#include "hf/check.h"
#include "hf/dlog.h"
#include "hf/ffa_internal.h"
#include "hf/ffa_memory_internal.h"
#include "hf/mpool.h"
#include "hf/std.h"
#include "hf/vm.h"
#include "vmapi/hf/ffa_v1_0.h"
#define RECEIVERS_COUNT_IN_RETRIEVE_RESP 1
/**
* All access to members of a `struct ffa_memory_share_state` must be guarded
* by this lock.
*/
static struct spinlock share_states_lock_instance = SPINLOCK_INIT;
static struct ffa_memory_share_state share_states[MAX_MEM_SHARES];
/**
* Extracts the index from a memory handle allocated by Hafnium's current world.
*/
uint64_t ffa_memory_handle_get_index(ffa_memory_handle_t handle)
{
return handle & ~FFA_MEMORY_HANDLE_ALLOCATOR_MASK;
}
/**
* Initialises the next available `struct ffa_memory_share_state` and sets
* `share_state_ret` to a pointer to it. If `handle` is
* `FFA_MEMORY_HANDLE_INVALID` then allocates an appropriate handle, otherwise
* uses the provided handle which is assumed to be globally unique.
*
* Returns true on success or false if none are available.
*/
bool allocate_share_state(struct share_states_locked share_states,
uint32_t share_func,
struct ffa_memory_region *memory_region,
uint32_t fragment_length, ffa_memory_handle_t handle,
struct ffa_memory_share_state **share_state_ret)
{
uint64_t i;
assert(share_states.share_states != NULL);
assert(memory_region != NULL);
for (i = 0; i < MAX_MEM_SHARES; ++i) {
if (share_states.share_states[i].share_func == 0) {
uint32_t j;
struct ffa_memory_share_state *allocated_state =
&share_states.share_states[i];
struct ffa_composite_memory_region *composite =
ffa_memory_region_get_composite(memory_region,
0);
if (handle == FFA_MEMORY_HANDLE_INVALID) {
memory_region->handle =
plat_ffa_memory_handle_make(i);
} else {
memory_region->handle = handle;
}
allocated_state->share_func = share_func;
allocated_state->memory_region = memory_region;
allocated_state->fragment_count = 1;
allocated_state->fragments[0] = composite->constituents;
allocated_state->fragment_constituent_counts[0] =
(fragment_length -
ffa_composite_constituent_offset(memory_region,
0)) /
sizeof(struct ffa_memory_region_constituent);
allocated_state->sending_complete = false;
for (j = 0; j < MAX_MEM_SHARE_RECIPIENTS; ++j) {
allocated_state->retrieved_fragment_count[j] =
0;
}
if (share_state_ret != NULL) {
*share_state_ret = allocated_state;
}
return true;
}
}
return false;
}
/** Locks the share states lock. */
struct share_states_locked share_states_lock(void)
{
sl_lock(&share_states_lock_instance);
return (struct share_states_locked){.share_states = share_states};
}
/** Unlocks the share states lock. */
void share_states_unlock(struct share_states_locked *share_states)
{
assert(share_states->share_states != NULL);
share_states->share_states = NULL;
sl_unlock(&share_states_lock_instance);
}
/**
* If the given handle is a valid handle for an allocated share state then
* initialises `share_state_ret` to point to the share state and returns true.
* Otherwise returns false.
*/
bool get_share_state(struct share_states_locked share_states,
ffa_memory_handle_t handle,
struct ffa_memory_share_state **share_state_ret)
{
struct ffa_memory_share_state *share_state;
uint64_t index;
assert(share_states.share_states != NULL);
assert(share_state_ret != NULL);
/*
* First look for a share_state allocated by us, in which case the
* handle is based on the index.
*/
if (plat_ffa_memory_handle_allocated_by_current_world(handle)) {
index = ffa_memory_handle_get_index(handle);
if (index < MAX_MEM_SHARES) {
share_state = &share_states.share_states[index];
if (share_state->share_func != 0) {
*share_state_ret = share_state;
return true;
}
}
}
/* Fall back to a linear scan. */
for (index = 0; index < MAX_MEM_SHARES; ++index) {
share_state = &share_states.share_states[index];
if (share_state->memory_region != NULL &&
share_state->memory_region->handle == handle &&
share_state->share_func != 0) {
*share_state_ret = share_state;
return true;
}
}
return false;
}
/** Marks a share state as unallocated. */
void share_state_free(struct share_states_locked share_states,
struct ffa_memory_share_state *share_state,
struct mpool *page_pool)
{
uint32_t i;
assert(share_states.share_states != NULL);
share_state->share_func = 0;
share_state->sending_complete = false;
mpool_free(page_pool, share_state->memory_region);
/*
* First fragment is part of the same page as the `memory_region`, so it
* doesn't need to be freed separately.
*/
share_state->fragments[0] = NULL;
share_state->fragment_constituent_counts[0] = 0;
for (i = 1; i < share_state->fragment_count; ++i) {
mpool_free(page_pool, share_state->fragments[i]);
share_state->fragments[i] = NULL;
share_state->fragment_constituent_counts[i] = 0;
}
share_state->fragment_count = 0;
share_state->memory_region = NULL;
share_state->hypervisor_fragment_count = 0;
}
/** Checks whether the given share state has been fully sent. */
bool share_state_sending_complete(struct share_states_locked share_states,
struct ffa_memory_share_state *share_state)
{
struct ffa_composite_memory_region *composite;
uint32_t expected_constituent_count;
uint32_t fragment_constituent_count_total = 0;
uint32_t i;
/* Lock must be held. */
assert(share_states.share_states != NULL);
/*
* Share state must already be valid, or it's not possible to get hold
* of it.
*/
CHECK(share_state->memory_region != NULL &&
share_state->share_func != 0);
composite =
ffa_memory_region_get_composite(share_state->memory_region, 0);
expected_constituent_count = composite->constituent_count;
for (i = 0; i < share_state->fragment_count; ++i) {
fragment_constituent_count_total +=
share_state->fragment_constituent_counts[i];
}
dlog_verbose(
"Checking completion: constituent count %d/%d from %d "
"fragments.\n",
fragment_constituent_count_total, expected_constituent_count,
share_state->fragment_count);
return fragment_constituent_count_total == expected_constituent_count;
}
/**
* Calculates the offset of the next fragment expected for the given share
* state.
*/
uint32_t share_state_next_fragment_offset(
struct share_states_locked share_states,
struct ffa_memory_share_state *share_state)
{
uint32_t next_fragment_offset;
uint32_t i;
/* Lock must be held. */
assert(share_states.share_states != NULL);
next_fragment_offset =
ffa_composite_constituent_offset(share_state->memory_region, 0);
for (i = 0; i < share_state->fragment_count; ++i) {
next_fragment_offset +=
share_state->fragment_constituent_counts[i] *
sizeof(struct ffa_memory_region_constituent);
}
return next_fragment_offset;
}
static void dump_memory_region(struct ffa_memory_region *memory_region)
{
uint32_t i;
if (LOG_LEVEL < LOG_LEVEL_VERBOSE) {
return;
}
dlog("from VM %#x, attributes %#x, flags %#x, tag %u, to "
"%u "
"recipients [",
memory_region->sender, memory_region->attributes,
memory_region->flags, memory_region->tag,
memory_region->receiver_count);
for (i = 0; i < memory_region->receiver_count; ++i) {
if (i != 0) {
dlog(", ");
}
dlog("VM %#x: %#x (offset %u)",
memory_region->receivers[i].receiver_permissions.receiver,
memory_region->receivers[i]
.receiver_permissions.permissions,
memory_region->receivers[i]
.composite_memory_region_offset);
}
dlog("]");
}
void dump_share_states(void)
{
uint32_t i;
if (LOG_LEVEL < LOG_LEVEL_VERBOSE) {
return;
}
dlog("Current share states:\n");
sl_lock(&share_states_lock_instance);
for (i = 0; i < MAX_MEM_SHARES; ++i) {
if (share_states[i].share_func != 0) {
switch (share_states[i].share_func) {
case FFA_MEM_SHARE_32:
dlog("SHARE");
break;
case FFA_MEM_LEND_32:
dlog("LEND");
break;
case FFA_MEM_DONATE_32:
dlog("DONATE");
break;
default:
dlog("invalid share_func %#x",
share_states[i].share_func);
}
dlog(" %#x (", share_states[i].memory_region->handle);
dump_memory_region(share_states[i].memory_region);
if (share_states[i].sending_complete) {
dlog("): fully sent");
} else {
dlog("): partially sent");
}
dlog(" with %d fragments, %d retrieved, "
" sender's original mode: %#x\n",
share_states[i].fragment_count,
share_states[i].retrieved_fragment_count[0],
share_states[i].sender_orig_mode);
}
}
sl_unlock(&share_states_lock_instance);
}
/* TODO: Add device attributes: GRE, cacheability, shareability. */
static inline uint32_t ffa_memory_permissions_to_mode(
ffa_memory_access_permissions_t permissions, uint32_t default_mode)
{
uint32_t mode = 0;
switch (ffa_get_data_access_attr(permissions)) {
case FFA_DATA_ACCESS_RO:
mode = MM_MODE_R;
break;
case FFA_DATA_ACCESS_RW:
mode = MM_MODE_R | MM_MODE_W;
break;
case FFA_DATA_ACCESS_NOT_SPECIFIED:
mode = (default_mode & (MM_MODE_R | MM_MODE_W));
break;
case FFA_DATA_ACCESS_RESERVED:
panic("Tried to convert FFA_DATA_ACCESS_RESERVED.");
}
switch (ffa_get_instruction_access_attr(permissions)) {
case FFA_INSTRUCTION_ACCESS_NX:
break;
case FFA_INSTRUCTION_ACCESS_X:
mode |= MM_MODE_X;
break;
case FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED:
mode |= (default_mode & MM_MODE_X);
break;
case FFA_INSTRUCTION_ACCESS_RESERVED:
panic("Tried to convert FFA_INSTRUCTION_ACCESS_RESVERVED.");
}
return mode;
}
/**
* Get the current mode in the stage-2 page table of the given vm of all the
* pages in the given constituents, if they all have the same mode, or return
* an appropriate FF-A error if not.
*/
static struct ffa_value constituents_get_mode(
struct vm_locked vm, uint32_t *orig_mode,
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts, uint32_t fragment_count)
{
uint32_t i;
uint32_t j;
if (fragment_count == 0 || fragment_constituent_counts[0] == 0) {
/*
* Fail if there are no constituents. Otherwise we would get an
* uninitialised *orig_mode.
*/
return ffa_error(FFA_INVALID_PARAMETERS);
}
for (i = 0; i < fragment_count; ++i) {
for (j = 0; j < fragment_constituent_counts[i]; ++j) {
ipaddr_t begin = ipa_init(fragments[i][j].address);
size_t size = fragments[i][j].page_count * PAGE_SIZE;
ipaddr_t end = ipa_add(begin, size);
uint32_t current_mode;
/* Fail if addresses are not page-aligned. */
if (!is_aligned(ipa_addr(begin), PAGE_SIZE) ||
!is_aligned(ipa_addr(end), PAGE_SIZE)) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Ensure that this constituent memory range is all
* mapped with the same mode.
*/
if (!vm_mem_get_mode(vm, begin, end, &current_mode)) {
return ffa_error(FFA_DENIED);
}
/*
* Ensure that all constituents are mapped with the same
* mode.
*/
if (i == 0) {
*orig_mode = current_mode;
} else if (current_mode != *orig_mode) {
dlog_verbose(
"Expected mode %#x but was %#x for %d "
"pages at %#x.\n",
*orig_mode, current_mode,
fragments[i][j].page_count,
ipa_addr(begin));
return ffa_error(FFA_DENIED);
}
}
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Verify that all pages have the same mode, that the starting mode
* constitutes a valid state and obtain the next mode to apply
* to the sending VM.
*
* Returns:
* 1) FFA_DENIED if a state transition was not found;
* 2) FFA_DENIED if the pages being shared do not have the same mode within
* the <from> VM;
* 3) FFA_INVALID_PARAMETERS if the beginning and end IPAs are not page
* aligned;
* 4) FFA_INVALID_PARAMETERS if the requested share type was not handled.
* Or FFA_SUCCESS on success.
*/
static struct ffa_value ffa_send_check_transition(
struct vm_locked from, uint32_t share_func,
struct ffa_memory_access *receivers, uint32_t receivers_count,
uint32_t *orig_from_mode,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t *from_mode)
{
const uint32_t state_mask =
MM_MODE_INVALID | MM_MODE_UNOWNED | MM_MODE_SHARED;
struct ffa_value ret;
ret = constituents_get_mode(from, orig_from_mode, fragments,
fragment_constituent_counts,
fragment_count);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Inconsistent modes.\n");
return ret;
}
/* Ensure the address range is normal memory and not a device. */
if (*orig_from_mode & MM_MODE_D) {
dlog_verbose("Can't share device memory (mode is %#x).\n",
*orig_from_mode);
return ffa_error(FFA_DENIED);
}
/*
* Ensure the sender is the owner and has exclusive access to the
* memory.
*/
if ((*orig_from_mode & state_mask) != 0) {
return ffa_error(FFA_DENIED);
}
assert(receivers != NULL && receivers_count > 0U);
for (uint32_t i = 0U; i < receivers_count; i++) {
ffa_memory_access_permissions_t permissions =
receivers[i].receiver_permissions.permissions;
uint32_t required_from_mode = ffa_memory_permissions_to_mode(
permissions, *orig_from_mode);
if ((*orig_from_mode & required_from_mode) !=
required_from_mode) {
dlog_verbose(
"Sender tried to send memory with permissions "
"which "
"required mode %#x but only had %#x itself.\n",
required_from_mode, *orig_from_mode);
return ffa_error(FFA_DENIED);
}
}
/* Find the appropriate new mode. */
*from_mode = ~state_mask & *orig_from_mode;
switch (share_func) {
case FFA_MEM_DONATE_32:
*from_mode |= MM_MODE_INVALID | MM_MODE_UNOWNED;
break;
case FFA_MEM_LEND_32:
*from_mode |= MM_MODE_INVALID;
break;
case FFA_MEM_SHARE_32:
*from_mode |= MM_MODE_SHARED;
break;
default:
return ffa_error(FFA_INVALID_PARAMETERS);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
static struct ffa_value ffa_relinquish_check_transition(
struct vm_locked from, uint32_t *orig_from_mode,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t *from_mode)
{
const uint32_t state_mask =
MM_MODE_INVALID | MM_MODE_UNOWNED | MM_MODE_SHARED;
uint32_t orig_from_state;
struct ffa_value ret;
ret = constituents_get_mode(from, orig_from_mode, fragments,
fragment_constituent_counts,
fragment_count);
if (ret.func != FFA_SUCCESS_32) {
return ret;
}
/* Ensure the address range is normal memory and not a device. */
if (*orig_from_mode & MM_MODE_D) {
dlog_verbose("Can't relinquish device memory (mode is %#x).\n",
*orig_from_mode);
return ffa_error(FFA_DENIED);
}
/*
* Ensure the relinquishing VM is not the owner but has access to the
* memory.
*/
orig_from_state = *orig_from_mode & state_mask;
if ((orig_from_state & ~MM_MODE_SHARED) != MM_MODE_UNOWNED) {
dlog_verbose(
"Tried to relinquish memory in state %#x (masked %#x "
"but should be %#x).\n",
*orig_from_mode, orig_from_state, MM_MODE_UNOWNED);
return ffa_error(FFA_DENIED);
}
/* Find the appropriate new mode. */
*from_mode = (~state_mask & *orig_from_mode) | MM_MODE_UNMAPPED_MASK;
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Verify that all pages have the same mode, that the starting mode
* constitutes a valid state and obtain the next mode to apply
* to the retrieving VM.
*
* Returns:
* 1) FFA_DENIED if a state transition was not found;
* 2) FFA_DENIED if the pages being shared do not have the same mode within
* the <to> VM;
* 3) FFA_INVALID_PARAMETERS if the beginning and end IPAs are not page
* aligned;
* 4) FFA_INVALID_PARAMETERS if the requested share type was not handled.
* Or FFA_SUCCESS on success.
*/
struct ffa_value ffa_retrieve_check_transition(
struct vm_locked to, uint32_t share_func,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t memory_to_attributes, uint32_t *to_mode)
{
uint32_t orig_to_mode;
struct ffa_value ret;
ret = constituents_get_mode(to, &orig_to_mode, fragments,
fragment_constituent_counts,
fragment_count);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Inconsistent modes.\n");
return ret;
}
if (share_func == FFA_MEM_RECLAIM_32) {
/*
* If the original ffa memory send call has been processed
* successfully, it is expected the orig_to_mode would overlay
* with `state_mask`, as a result of the function
* `ffa_send_check_transition`.
*/
if (vm_id_is_current_world(to.vm->id)) {
assert((orig_to_mode &
(MM_MODE_INVALID | MM_MODE_UNOWNED |
MM_MODE_SHARED)) != 0U);
}
} else {
/*
* If the retriever is from virtual FF-A instance:
* Ensure the retriever has the expected state. We don't care
* about the MM_MODE_SHARED bit; either with or without it set
* are both valid representations of the !O-NA state.
*/
if (vm_id_is_current_world(to.vm->id) &&
to.vm->id != HF_PRIMARY_VM_ID &&
(orig_to_mode & MM_MODE_UNMAPPED_MASK) !=
MM_MODE_UNMAPPED_MASK) {
return ffa_error(FFA_DENIED);
}
}
/* Find the appropriate new mode. */
*to_mode = memory_to_attributes;
switch (share_func) {
case FFA_MEM_DONATE_32:
*to_mode |= 0;
break;
case FFA_MEM_LEND_32:
*to_mode |= MM_MODE_UNOWNED;
break;
case FFA_MEM_SHARE_32:
*to_mode |= MM_MODE_UNOWNED | MM_MODE_SHARED;
break;
case FFA_MEM_RECLAIM_32:
*to_mode |= 0;
break;
default:
dlog_error("Invalid share_func %#x.\n", share_func);
return ffa_error(FFA_INVALID_PARAMETERS);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Updates a VM's page table such that the given set of physical address ranges
* are mapped in the address space at the corresponding address ranges, in the
* mode provided.
*
* If commit is false, the page tables will be allocated from the mpool but no
* mappings will actually be updated. This function must always be called first
* with commit false to check that it will succeed before calling with commit
* true, to avoid leaving the page table in a half-updated state. To make a
* series of changes atomically you can call them all with commit false before
* calling them all with commit true.
*
* vm_ptable_defrag should always be called after a series of page table
* updates, whether they succeed or fail.
*
* Returns true on success, or false if the update failed and no changes were
* made to memory mappings.
*/
bool ffa_region_group_identity_map(
struct vm_locked vm_locked,
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t mode, struct mpool *ppool, bool commit)
{
uint32_t i;
uint32_t j;
if (vm_locked.vm->el0_partition) {
mode |= MM_MODE_USER | MM_MODE_NG;
}
/* Iterate over the memory region constituents within each fragment. */
for (i = 0; i < fragment_count; ++i) {
for (j = 0; j < fragment_constituent_counts[i]; ++j) {
size_t size = fragments[i][j].page_count * PAGE_SIZE;
paddr_t pa_begin =
pa_from_ipa(ipa_init(fragments[i][j].address));
paddr_t pa_end = pa_add(pa_begin, size);
uint32_t pa_bits =
arch_mm_get_pa_bits(arch_mm_get_pa_range());
/*
* Ensure the requested region falls into system's PA
* range.
*/
if (((pa_addr(pa_begin) >> pa_bits) > 0) ||
((pa_addr(pa_end) >> pa_bits) > 0)) {
dlog_error("Region is outside of PA Range\n");
return false;
}
if (commit) {
vm_identity_commit(vm_locked, pa_begin, pa_end,
mode, ppool, NULL);
} else if (!vm_identity_prepare(vm_locked, pa_begin,
pa_end, mode, ppool)) {
return false;
}
}
}
return true;
}
/**
* Clears a region of physical memory by overwriting it with zeros. The data is
* flushed from the cache so the memory has been cleared across the system.
*/
static bool clear_memory(paddr_t begin, paddr_t end, struct mpool *ppool,
uint32_t extra_mode_attributes)
{
/*
* TODO: change this to a CPU local single page window rather than a
* global mapping of the whole range. Such an approach will limit
* the changes to stage-1 tables and will allow only local
* invalidation.
*/
bool ret;
struct mm_stage1_locked stage1_locked = mm_lock_stage1();
void *ptr = mm_identity_map(stage1_locked, begin, end,
MM_MODE_W | (extra_mode_attributes &
plat_ffa_other_world_mode()),
ppool);
size_t size = pa_difference(begin, end);
if (!ptr) {
goto fail;
}
memset_s(ptr, size, 0, size);
arch_mm_flush_dcache(ptr, size);
mm_unmap(stage1_locked, begin, end, ppool);
ret = true;
goto out;
fail:
ret = false;
out:
mm_unlock_stage1(&stage1_locked);
return ret;
}
/**
* Clears a region of physical memory by overwriting it with zeros. The data is
* flushed from the cache so the memory has been cleared across the system.
*/
static bool ffa_clear_memory_constituents(
uint32_t security_state_mode,
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts, uint32_t fragment_count,
struct mpool *page_pool)
{
struct mpool local_page_pool;
uint32_t i;
bool ret = false;
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure each constituent that is mapped can be
* unmapped again afterwards.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/* Iterate over the memory region constituents within each fragment. */
for (i = 0; i < fragment_count; ++i) {
uint32_t j;
for (j = 0; j < fragment_constituent_counts[j]; ++j) {
size_t size = fragments[i][j].page_count * PAGE_SIZE;
paddr_t begin =
pa_from_ipa(ipa_init(fragments[i][j].address));
paddr_t end = pa_add(begin, size);
if (!clear_memory(begin, end, &local_page_pool,
security_state_mode)) {
/*
* api_clear_memory will defrag on failure, so
* no need to do it here.
*/
goto out;
}
}
}
ret = true;
out:
mpool_fini(&local_page_pool);
return ret;
}
/**
* Validates and prepares memory to be sent from the calling VM to another.
*
* This function requires the calling context to hold the <from> VM lock.
*
* Returns:
* In case of error, one of the following values is returned:
* 1) FFA_INVALID_PARAMETERS - The endpoint provided parameters were
* erroneous;
* 2) FFA_NO_MEMORY - Hafnium did not have sufficient memory to complete the
* request.
* 3) FFA_DENIED - The sender doesn't have sufficient access to send the
* memory with the given permissions.
* Success is indicated by FFA_SUCCESS.
*/
struct ffa_value ffa_send_check_update(
struct vm_locked from_locked,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t share_func, struct ffa_memory_access *receivers,
uint32_t receivers_count, struct mpool *page_pool, bool clear,
uint32_t *orig_from_mode_ret)
{
uint32_t i;
uint32_t orig_from_mode;
uint32_t from_mode;
struct mpool local_page_pool;
struct ffa_value ret;
/*
* Make sure constituents are properly aligned to a 64-bit boundary. If
* not we would get alignment faults trying to read (64-bit) values.
*/
for (i = 0; i < fragment_count; ++i) {
if (!is_aligned(fragments[i], 8)) {
dlog_verbose("Constituents not aligned.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
/*
* Check if the state transition is lawful for the sender, ensure that
* all constituents of a memory region being shared are at the same
* state.
*/
ret = ffa_send_check_transition(from_locked, share_func, receivers,
receivers_count, &orig_from_mode,
fragments, fragment_constituent_counts,
fragment_count, &from_mode);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Invalid transition for send.\n");
return ret;
}
if (orig_from_mode_ret != NULL) {
*orig_from_mode_ret = orig_from_mode;
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if the
* clear fails.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/*
* First reserve all required memory for the new page table entries
* without committing, to make sure the entire operation will succeed
* without exhausting the page pool.
*/
if (!ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, page_pool, false)) {
/* TODO: partial defrag of failed range. */
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
/*
* Update the mapping for the sender. This won't allocate because the
* transaction was already prepared above, but may free pages in the
* case that a whole block is being unmapped that was previously
* partially mapped.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, &local_page_pool, true));
/* Clear the memory so no VM or device can see the previous contents. */
if (clear &&
!ffa_clear_memory_constituents(
plat_ffa_owner_world_mode(from_locked.vm->id), fragments,
fragment_constituent_counts, fragment_count, page_pool)) {
/*
* On failure, roll back by returning memory to the sender. This
* may allocate pages which were previously freed into
* `local_page_pool` by the call above, but will never allocate
* more pages than that so can never fail.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, orig_from_mode, &local_page_pool,
true));
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
/*
* Tidy up the page table by reclaiming failed mappings (if there was an
* error) or merging entries into blocks where possible (on success).
*/
vm_ptable_defrag(from_locked, page_pool);
return ret;
}
/**
* Validates and maps memory shared from one VM to another.
*
* This function requires the calling context to hold the <to> lock.
*
* Returns:
* In case of error, one of the following values is returned:
* 1) FFA_INVALID_PARAMETERS - The endpoint provided parameters were
* erroneous;
* 2) FFA_NO_MEMORY - Hafnium did not have sufficient memory to complete
* the request.
* Success is indicated by FFA_SUCCESS.
*/
struct ffa_value ffa_retrieve_check_update(
struct vm_locked to_locked, ffa_vm_id_t from_id,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t memory_to_attributes, uint32_t share_func, bool clear,
struct mpool *page_pool)
{
uint32_t i;
uint32_t to_mode;
struct mpool local_page_pool;
struct ffa_value ret;
/*
* Make sure constituents are properly aligned to a 64-bit boundary. If
* not we would get alignment faults trying to read (64-bit) values.
*/
for (i = 0; i < fragment_count; ++i) {
if (!is_aligned(fragments[i], 8)) {
dlog_verbose("Fragment not properly aligned.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
/*
* Check if the state transition is lawful for the recipient, and ensure
* that all constituents of the memory region being retrieved are at the
* same state.
*/
ret = ffa_retrieve_check_transition(
to_locked, share_func, fragments, fragment_constituent_counts,
fragment_count, memory_to_attributes, &to_mode);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Invalid transition for retrieve.\n");
return ret;
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if the
* clear fails.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/*
* First reserve all required memory for the new page table entries in
* the recipient page tables without committing, to make sure the entire
* operation will succeed without exhausting the page pool.
*/
if (!ffa_region_group_identity_map(
to_locked, fragments, fragment_constituent_counts,
fragment_count, to_mode, page_pool, false)) {
/* TODO: partial defrag of failed range. */
dlog_verbose(
"Insufficient memory to update recipient page "
"table.\n");
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
/* Clear the memory so no VM or device can see the previous contents. */
if (clear &&
!ffa_clear_memory_constituents(
plat_ffa_owner_world_mode(from_id), fragments,
fragment_constituent_counts, fragment_count, page_pool)) {
dlog_verbose("Couldn't clear constituents.\n");
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
/*
* Complete the transfer by mapping the memory into the recipient. This
* won't allocate because the transaction was already prepared above, so
* it doesn't need to use the `local_page_pool`.
*/
CHECK(ffa_region_group_identity_map(
to_locked, fragments, fragment_constituent_counts,
fragment_count, to_mode, page_pool, true));
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
/*
* Tidy up the page table by reclaiming failed mappings (if there was an
* error) or merging entries into blocks where possible (on success).
*/
vm_ptable_defrag(to_locked, page_pool);
return ret;
}
static struct ffa_value ffa_relinquish_check_update(
struct vm_locked from_locked,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
struct mpool *page_pool, bool clear)
{
uint32_t orig_from_mode;
uint32_t from_mode;
struct mpool local_page_pool;
struct ffa_value ret;
ret = ffa_relinquish_check_transition(
from_locked, &orig_from_mode, fragments,
fragment_constituent_counts, fragment_count, &from_mode);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Invalid transition for relinquish.\n");
return ret;
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if the
* clear fails.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/*
* First reserve all required memory for the new page table entries
* without committing, to make sure the entire operation will succeed
* without exhausting the page pool.
*/
if (!ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, page_pool, false)) {
/* TODO: partial defrag of failed range. */
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
/*
* Update the mapping for the sender. This won't allocate because the
* transaction was already prepared above, but may free pages in the
* case that a whole block is being unmapped that was previously
* partially mapped.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, &local_page_pool, true));
/* Clear the memory so no VM or device can see the previous contents. */
if (clear &&
!ffa_clear_memory_constituents(
plat_ffa_owner_world_mode(from_locked.vm->id), fragments,
fragment_constituent_counts, fragment_count, page_pool)) {
/*
* On failure, roll back by returning memory to the sender. This
* may allocate pages which were previously freed into
* `local_page_pool` by the call above, but will never allocate
* more pages than that so can never fail.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, orig_from_mode, &local_page_pool,
true));
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
/*
* Tidy up the page table by reclaiming failed mappings (if there was an
* error) or merging entries into blocks where possible (on success).
*/
vm_ptable_defrag(from_locked, page_pool);
return ret;
}
/**
* Complete a memory sending operation by checking that it is valid, updating
* the sender page table, and then either marking the share state as having
* completed sending (on success) or freeing it (on failure).
*
* Returns FFA_SUCCESS with the handle encoded, or the relevant FFA_ERROR.
*/
struct ffa_value ffa_memory_send_complete(
struct vm_locked from_locked, struct share_states_locked share_states,
struct ffa_memory_share_state *share_state, struct mpool *page_pool,
uint32_t *orig_from_mode_ret)
{
struct ffa_memory_region *memory_region = share_state->memory_region;
struct ffa_value ret;
/* Lock must be held. */
assert(share_states.share_states != NULL);
/* Check that state is valid in sender page table and update. */
ret = ffa_send_check_update(
from_locked, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, share_state->share_func,
memory_region->receivers, memory_region->receiver_count,
page_pool, memory_region->flags & FFA_MEMORY_REGION_FLAG_CLEAR,
orig_from_mode_ret);
if (ret.func != FFA_SUCCESS_32) {
/*
* Free share state, it failed to send so it can't be retrieved.
*/
dlog_verbose("Complete failed, freeing share state.\n");
share_state_free(share_states, share_state, page_pool);
return ret;
}
share_state->sending_complete = true;
dlog_verbose("Marked sending complete.\n");
return ffa_mem_success(share_state->memory_region->handle);
}
/**
* Check that the memory attributes match Hafnium expectations:
* Normal Memory, Inner shareable, Write-Back Read-Allocate
* Write-Allocate Cacheable.
*/
static struct ffa_value ffa_memory_attributes_validate(
ffa_memory_attributes_t attributes)
{
enum ffa_memory_type memory_type;
enum ffa_memory_cacheability cacheability;
enum ffa_memory_shareability shareability;
memory_type = ffa_get_memory_type_attr(attributes);
if (memory_type != FFA_MEMORY_NORMAL_MEM) {
dlog_verbose("Invalid memory type %#x, expected %#x.\n",
memory_type, FFA_MEMORY_NORMAL_MEM);
return ffa_error(FFA_DENIED);
}
cacheability = ffa_get_memory_cacheability_attr(attributes);
if (cacheability != FFA_MEMORY_CACHE_WRITE_BACK) {
dlog_verbose("Invalid cacheability %#x, expected %#x.\n",
cacheability, FFA_MEMORY_CACHE_WRITE_BACK);
return ffa_error(FFA_DENIED);
}
shareability = ffa_get_memory_shareability_attr(attributes);
if (shareability != FFA_MEMORY_INNER_SHAREABLE) {
dlog_verbose("Invalid shareability %#x, expected #%x.\n",
shareability, FFA_MEMORY_INNER_SHAREABLE);
return ffa_error(FFA_DENIED);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Check that the given `memory_region` represents a valid memory send request
* of the given `share_func` type, return the clear flag and permissions via the
* respective output parameters, and update the permissions if necessary.
*
* Returns FFA_SUCCESS if the request was valid, or the relevant FFA_ERROR if
* not.
*/
struct ffa_value ffa_memory_send_validate(
struct vm_locked from_locked, struct ffa_memory_region *memory_region,
uint32_t memory_share_length, uint32_t fragment_length,
uint32_t share_func)
{
struct ffa_composite_memory_region *composite;
uint32_t receivers_length;
uint32_t composite_memory_region_offset;
uint32_t constituents_offset;
uint32_t constituents_length;
enum ffa_data_access data_access;
enum ffa_instruction_access instruction_access;
enum ffa_memory_security security_state;
struct ffa_value ret;
assert(memory_region->receivers_offset ==
offsetof(struct ffa_memory_region, receivers));
assert(memory_region->memory_access_desc_size ==
sizeof(struct ffa_memory_access));
/* The sender must match the caller. */
if ((!vm_id_is_current_world(from_locked.vm->id) &&
vm_id_is_current_world(memory_region->sender)) ||
(vm_id_is_current_world(from_locked.vm->id) &&
memory_region->sender != from_locked.vm->id)) {
dlog_verbose("Invalid memory sender ID.\n");
return ffa_error(FFA_DENIED);
}
/*
* Ensure that the composite header is within the memory bounds and
* doesn't overlap the first part of the message.
*/
receivers_length = sizeof(struct ffa_memory_access) *
memory_region->receiver_count;
constituents_offset =
ffa_composite_constituent_offset(memory_region, 0);
composite_memory_region_offset =
memory_region->receivers[0].composite_memory_region_offset;
if ((composite_memory_region_offset == 0) ||
(composite_memory_region_offset <
sizeof(struct ffa_memory_region) + receivers_length) ||
constituents_offset > fragment_length) {
dlog_verbose(
"Invalid composite memory region descriptor offset "
"%d.\n",
memory_region->receivers[0]
.composite_memory_region_offset);
return ffa_error(FFA_INVALID_PARAMETERS);
}
composite = ffa_memory_region_get_composite(memory_region, 0);
/*
* Ensure the number of constituents are within the memory bounds.
*/
constituents_length = sizeof(struct ffa_memory_region_constituent) *
composite->constituent_count;
if (memory_share_length != constituents_offset + constituents_length) {
dlog_verbose("Invalid length %d or composite offset %d.\n",
memory_share_length,
memory_region->receivers[0]
.composite_memory_region_offset);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (fragment_length < memory_share_length &&
fragment_length < HF_MAILBOX_SIZE) {
dlog_warning(
"Initial fragment length %d smaller than mailbox "
"size.\n",
fragment_length);
}
/*
* Clear is not allowed for memory sharing, as the sender still has
* access to the memory.
*/
if ((memory_region->flags & FFA_MEMORY_REGION_FLAG_CLEAR) &&
share_func == FFA_MEM_SHARE_32) {
dlog_verbose("Memory can't be cleared while being shared.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* No other flags are allowed/supported here. */
if (memory_region->flags & ~FFA_MEMORY_REGION_FLAG_CLEAR) {
dlog_verbose("Invalid flags %#x.\n", memory_region->flags);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* Check that the permissions are valid, for each specified receiver. */
for (uint32_t i = 0U; i < memory_region->receiver_count; i++) {
ffa_memory_access_permissions_t permissions =
memory_region->receivers[i]
.receiver_permissions.permissions;
ffa_vm_id_t receiver_id =
memory_region->receivers[i]
.receiver_permissions.receiver;
if (memory_region->sender == receiver_id) {
dlog_verbose("Can't share memory with itself.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
for (uint32_t j = i + 1; j < memory_region->receiver_count;
j++) {
if (receiver_id ==
memory_region->receivers[j]
.receiver_permissions.receiver) {
dlog_verbose(
"Repeated receiver(%x) in memory send "
"operation.\n",
memory_region->receivers[j]
.receiver_permissions.receiver);
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
if (composite_memory_region_offset !=
memory_region->receivers[i]
.composite_memory_region_offset) {
dlog_verbose(
"All ffa_memory_access should point to the "
"same composite memory region offset.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
data_access = ffa_get_data_access_attr(permissions);
instruction_access =
ffa_get_instruction_access_attr(permissions);
if (data_access == FFA_DATA_ACCESS_RESERVED ||
instruction_access == FFA_INSTRUCTION_ACCESS_RESERVED) {
dlog_verbose(
"Reserved value for receiver permissions "
"%#x.\n",
permissions);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (instruction_access !=
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid instruction access permissions %#x "
"for sending memory.\n",
permissions);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_func == FFA_MEM_SHARE_32) {
if (data_access == FFA_DATA_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid data access permissions %#x "
"for sharing memory.\n",
permissions);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* According to section 10.10.3 of the FF-A v1.1 EAC0
* spec, NX is required for share operations (but must
* not be specified by the sender) so set it in the
* copy that we store, ready to be returned to the
* retriever.
*/
if (vm_id_is_current_world(receiver_id)) {
ffa_set_instruction_access_attr(
&permissions,
FFA_INSTRUCTION_ACCESS_NX);
memory_region->receivers[i]
.receiver_permissions.permissions =
permissions;
}
}
if (share_func == FFA_MEM_LEND_32 &&
data_access == FFA_DATA_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid data access permissions %#x for "
"lending memory.\n",
permissions);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_func == FFA_MEM_DONATE_32 &&
data_access != FFA_DATA_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid data access permissions %#x for "
"donating memory.\n",
permissions);
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
/* Memory region attributes NS-Bit MBZ for FFA_MEM_SHARE/LEND/DONATE. */
security_state =
ffa_get_memory_security_attr(memory_region->attributes);
if (security_state != FFA_MEMORY_SECURITY_UNSPECIFIED) {
dlog_verbose(
"Invalid security state for memory share operation.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* If a memory donate or lend with single borrower, the memory type
* shall not be specified by the sender.
*/
if (share_func == FFA_MEM_DONATE_32 ||
(share_func == FFA_MEM_LEND_32 &&
memory_region->receiver_count == 1)) {
if (ffa_get_memory_type_attr(memory_region->attributes) !=
FFA_MEMORY_NOT_SPECIFIED_MEM) {
dlog_verbose(
"Memory type shall not be specified by "
"sender.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
} else {
/*
* Check that sender's memory attributes match Hafnium
* expectations: Normal Memory, Inner shareable, Write-Back
* Read-Allocate Write-Allocate Cacheable.
*/
ret = ffa_memory_attributes_validate(memory_region->attributes);
if (ret.func != FFA_SUCCESS_32) {
return ret;
}
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Gets the share state for continuing an operation to donate, lend or share
* memory, and checks that it is a valid request.
*
* Returns FFA_SUCCESS if the request was valid, or the relevant FFA_ERROR if
* not.
*/
struct ffa_value ffa_memory_send_continue_validate(
struct share_states_locked share_states, ffa_memory_handle_t handle,
struct ffa_memory_share_state **share_state_ret, ffa_vm_id_t from_vm_id,
struct mpool *page_pool)
{
struct ffa_memory_share_state *share_state;
struct ffa_memory_region *memory_region;
assert(share_state_ret != NULL);
/*
* Look up the share state by handle and make sure that the VM ID
* matches.
*/
if (!get_share_state(share_states, handle, &share_state)) {
dlog_verbose(
"Invalid handle %#x for memory send continuation.\n",
handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
memory_region = share_state->memory_region;
if (vm_id_is_current_world(from_vm_id) &&
memory_region->sender != from_vm_id) {
dlog_verbose("Invalid sender %d.\n", memory_region->sender);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_state->sending_complete) {
dlog_verbose(
"Sending of memory handle %#x is already complete.\n",
handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_state->fragment_count == MAX_FRAGMENTS) {
/*
* Log a warning as this is a sign that MAX_FRAGMENTS should
* probably be increased.
*/
dlog_warning(
"Too many fragments for memory share with handle %#x; "
"only %d supported.\n",
handle, MAX_FRAGMENTS);
/* Free share state, as it's not possible to complete it. */
share_state_free(share_states, share_state, page_pool);
return ffa_error(FFA_NO_MEMORY);
}
*share_state_ret = share_state;
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Checks if there is at least one receiver from the other world.
*/
bool memory_region_receivers_from_other_world(
struct ffa_memory_region *memory_region)
{
for (uint32_t i = 0; i < memory_region->receiver_count; i++) {
ffa_vm_id_t receiver = memory_region->receivers[i]
.receiver_permissions.receiver;
if (!vm_id_is_current_world(receiver)) {
return true;
}
}
return false;
}
/**
* Validates a call to donate, lend or share memory to a non-other world VM and
* then updates the stage-2 page tables. Specifically, check if the message
* length and number of memory region constituents match, and if the transition
* is valid for the type of memory sending operation.
*
* Assumes that the caller has already found and locked the sender VM and copied
* the memory region descriptor from the sender's TX buffer to a freshly
* allocated page from Hafnium's internal pool. The caller must have also
* validated that the receiver VM ID is valid.
*
* This function takes ownership of the `memory_region` passed in and will free
* it when necessary; it must not be freed by the caller.
*/
struct ffa_value ffa_memory_send(struct vm_locked from_locked,
struct ffa_memory_region *memory_region,
uint32_t memory_share_length,
uint32_t fragment_length, uint32_t share_func,
struct mpool *page_pool)
{
struct ffa_value ret;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
/*
* If there is an error validating the `memory_region` then we need to
* free it because we own it but we won't be storing it in a share state
* after all.
*/
ret = ffa_memory_send_validate(from_locked, memory_region,
memory_share_length, fragment_length,
share_func);
if (ret.func != FFA_SUCCESS_32) {
mpool_free(page_pool, memory_region);
return ret;
}
/* Set flag for share function, ready to be retrieved later. */
switch (share_func) {
case FFA_MEM_SHARE_32:
memory_region->flags |=
FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE;
break;
case FFA_MEM_LEND_32:
memory_region->flags |= FFA_MEMORY_REGION_TRANSACTION_TYPE_LEND;
break;
case FFA_MEM_DONATE_32:
memory_region->flags |=
FFA_MEMORY_REGION_TRANSACTION_TYPE_DONATE;
break;
}
share_states = share_states_lock();
/*
* Allocate a share state before updating the page table. Otherwise if
* updating the page table succeeded but allocating the share state
* failed then it would leave the memory in a state where nobody could
* get it back.
*/
if (!allocate_share_state(share_states, share_func, memory_region,
fragment_length, FFA_MEMORY_HANDLE_INVALID,
&share_state)) {
dlog_verbose("Failed to allocate share state.\n");
mpool_free(page_pool, memory_region);
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
if (fragment_length == memory_share_length) {
/* No more fragments to come, everything fit in one message. */
ret = ffa_memory_send_complete(
from_locked, share_states, share_state, page_pool,
&(share_state->sender_orig_mode));
} else {
/*
* Use sender ID from 'memory_region' assuming
* that at this point it has been validated:
* - MBZ at virtual FF-A instance.
*/
ffa_vm_id_t sender_to_ret =
(from_locked.vm->id == HF_OTHER_WORLD_ID)
? memory_region->sender
: 0;
ret = (struct ffa_value){
.func = FFA_MEM_FRAG_RX_32,
.arg1 = (uint32_t)memory_region->handle,
.arg2 = (uint32_t)(memory_region->handle >> 32),
.arg3 = fragment_length,
.arg4 = (uint32_t)(sender_to_ret & 0xffff) << 16};
}
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
/**
* Continues an operation to donate, lend or share memory to a VM from current
* world. If this is the last fragment then checks that the transition is valid
* for the type of memory sending operation and updates the stage-2 page tables
* of the sender.
*
* Assumes that the caller has already found and locked the sender VM and copied
* the memory region descriptor from the sender's TX buffer to a freshly
* allocated page from Hafnium's internal pool.
*
* This function takes ownership of the `fragment` passed in; it must not be
* freed by the caller.
*/
struct ffa_value ffa_memory_send_continue(struct vm_locked from_locked,
void *fragment,
uint32_t fragment_length,
ffa_memory_handle_t handle,
struct mpool *page_pool)
{
struct share_states_locked share_states = share_states_lock();
struct ffa_memory_share_state *share_state;
struct ffa_value ret;
struct ffa_memory_region *memory_region;
ret = ffa_memory_send_continue_validate(share_states, handle,
&share_state,
from_locked.vm->id, page_pool);
if (ret.func != FFA_SUCCESS_32) {
goto out_free_fragment;
}
memory_region = share_state->memory_region;
if (memory_region_receivers_from_other_world(memory_region)) {
dlog_error(
"Got hypervisor-allocated handle for memory send to "
"other world. This should never happen, and indicates "
"a bug in "
"EL3 code.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_free_fragment;
}
/* Add this fragment. */
share_state->fragments[share_state->fragment_count] = fragment;
share_state->fragment_constituent_counts[share_state->fragment_count] =
fragment_length / sizeof(struct ffa_memory_region_constituent);
share_state->fragment_count++;
/* Check whether the memory send operation is now ready to complete. */
if (share_state_sending_complete(share_states, share_state)) {
ret = ffa_memory_send_complete(
from_locked, share_states, share_state, page_pool,
&(share_state->sender_orig_mode));
} else {
ret = (struct ffa_value){
.func = FFA_MEM_FRAG_RX_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = share_state_next_fragment_offset(share_states,
share_state)};
}
goto out;
out_free_fragment:
mpool_free(page_pool, fragment);
out:
share_states_unlock(&share_states);
return ret;
}
/** Clean up after the receiver has finished retrieving a memory region. */
static void ffa_memory_retrieve_complete(
struct share_states_locked share_states,
struct ffa_memory_share_state *share_state, struct mpool *page_pool)
{
if (share_state->share_func == FFA_MEM_DONATE_32) {
/*
* Memory that has been donated can't be relinquished,
* so no need to keep the share state around.
*/
share_state_free(share_states, share_state, page_pool);
dlog_verbose("Freed share state for donate.\n");
}
}
/**
* Initialises the given memory region descriptor to be used for an
* `FFA_MEM_RETRIEVE_RESP`, including the given constituents for the first
* fragment.
* The memory region descriptor is initialized according to retriever's
* FF-A version.
*
* Returns true on success, or false if the given constituents won't all fit in
* the first fragment.
*/
static bool ffa_retrieved_memory_region_init(
void *response, uint32_t ffa_version, size_t response_max_size,
ffa_vm_id_t sender, ffa_memory_attributes_t attributes,
ffa_memory_region_flags_t flags, ffa_memory_handle_t handle,
ffa_vm_id_t receiver_id, ffa_memory_access_permissions_t permissions,
uint32_t page_count, uint32_t total_constituent_count,
const struct ffa_memory_region_constituent constituents[],
uint32_t fragment_constituent_count, uint32_t *total_length,
uint32_t *fragment_length)
{
struct ffa_composite_memory_region *composite_memory_region;
struct ffa_memory_access *receiver;
uint32_t i;
uint32_t constituents_offset;
uint32_t receiver_count;
assert(response != NULL);
if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
struct ffa_memory_region_v1_0 *retrieve_response =
(struct ffa_memory_region_v1_0 *)response;
ffa_memory_region_init_header_v1_0(
retrieve_response, sender, attributes, flags, handle, 0,
RECEIVERS_COUNT_IN_RETRIEVE_RESP);
receiver = &retrieve_response->receivers[0];
receiver_count = retrieve_response->receiver_count;
receiver->composite_memory_region_offset =
sizeof(struct ffa_memory_region_v1_0) +
receiver_count * sizeof(struct ffa_memory_access);
composite_memory_region = ffa_memory_region_get_composite_v1_0(
retrieve_response, 0);
} else {
/* Default to FF-A v1.1 version. */
struct ffa_memory_region *retrieve_response =
(struct ffa_memory_region *)response;
ffa_memory_region_init_header(retrieve_response, sender,
attributes, flags, handle, 0, 1);
receiver = &retrieve_response->receivers[0];
receiver_count = retrieve_response->receiver_count;
/*
* Note that `sizeof(struct_ffa_memory_region)` and
* `sizeof(struct ffa_memory_access)` must both be multiples of
* 16 (as verified by the asserts in `ffa_memory.c`, so it is
* guaranteed that the offset we calculate here is aligned to a
* 64-bit boundary and so 64-bit values can be copied without
* alignment faults.
*/
receiver->composite_memory_region_offset =
sizeof(struct ffa_memory_region) +
receiver_count * sizeof(struct ffa_memory_access);
composite_memory_region =
ffa_memory_region_get_composite(retrieve_response, 0);
}
assert(receiver != NULL);
assert(composite_memory_region != NULL);
/*
* Initialized here as in memory retrieve responses we currently expect
* one borrower to be specified.
*/
ffa_memory_access_init_permissions(receiver, receiver_id, 0, 0, flags);
receiver->receiver_permissions.permissions = permissions;
composite_memory_region->page_count = page_count;
composite_memory_region->constituent_count = total_constituent_count;
composite_memory_region->reserved_0 = 0;
constituents_offset = receiver->composite_memory_region_offset +
sizeof(struct ffa_composite_memory_region);
if (constituents_offset +
fragment_constituent_count *
sizeof(struct ffa_memory_region_constituent) >
response_max_size) {
return false;
}
for (i = 0; i < fragment_constituent_count; ++i) {
composite_memory_region->constituents[i] = constituents[i];
}
if (total_length != NULL) {
*total_length =
constituents_offset +
composite_memory_region->constituent_count *
sizeof(struct ffa_memory_region_constituent);
}
if (fragment_length != NULL) {
*fragment_length =
constituents_offset +
fragment_constituent_count *
sizeof(struct ffa_memory_region_constituent);
}
return true;
}
/*
* Gets the receiver's access permissions from 'struct ffa_memory_region' and
* returns its index in the receiver's array. If receiver's ID doesn't exist
* in the array, return the region's 'receiver_count'.
*/
uint32_t ffa_memory_region_get_receiver(struct ffa_memory_region *memory_region,
ffa_vm_id_t receiver)
{
struct ffa_memory_access *receivers;
uint32_t i;
assert(memory_region != NULL);
receivers = memory_region->receivers;
for (i = 0U; i < memory_region->receiver_count; i++) {
if (receivers[i].receiver_permissions.receiver == receiver) {
break;
}
}
return i;
}
/**
* Validates the retrieved permissions against those specified by the lender
* of memory share operation. Optionally can help set the permissions to be used
* for the S2 mapping, through the `permissions` argument.
* Returns true if permissions are valid, false otherwise.
*/
static bool ffa_memory_retrieve_is_memory_access_valid(
enum ffa_data_access sent_data_access,
enum ffa_data_access requested_data_access,
enum ffa_instruction_access sent_instruction_access,
enum ffa_instruction_access requested_instruction_access,
ffa_memory_access_permissions_t *permissions)
{
switch (sent_data_access) {
case FFA_DATA_ACCESS_NOT_SPECIFIED:
case FFA_DATA_ACCESS_RW:
if (requested_data_access == FFA_DATA_ACCESS_NOT_SPECIFIED ||
requested_data_access == FFA_DATA_ACCESS_RW) {
if (permissions != NULL) {
ffa_set_data_access_attr(permissions,
FFA_DATA_ACCESS_RW);
}
break;
}
/* Intentional fall-through. */
case FFA_DATA_ACCESS_RO:
if (requested_data_access == FFA_DATA_ACCESS_NOT_SPECIFIED ||
requested_data_access == FFA_DATA_ACCESS_RO) {
if (permissions != NULL) {
ffa_set_data_access_attr(permissions,
FFA_DATA_ACCESS_RO);
}
break;
}
dlog_verbose(
"Invalid data access requested; sender specified "
"permissions %#x but receiver requested %#x.\n",
sent_data_access, requested_data_access);
return false;
case FFA_DATA_ACCESS_RESERVED:
panic("Got unexpected FFA_DATA_ACCESS_RESERVED. Should be "
"checked before this point.");
}
switch (sent_instruction_access) {
case FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED:
case FFA_INSTRUCTION_ACCESS_X:
if (requested_instruction_access ==
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED ||
requested_instruction_access == FFA_INSTRUCTION_ACCESS_X) {
if (permissions != NULL) {
ffa_set_instruction_access_attr(
permissions, FFA_INSTRUCTION_ACCESS_X);
}
break;
}
case FFA_INSTRUCTION_ACCESS_NX:
if (requested_instruction_access ==
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED ||
requested_instruction_access == FFA_INSTRUCTION_ACCESS_NX) {
if (permissions != NULL) {
ffa_set_instruction_access_attr(
permissions, FFA_INSTRUCTION_ACCESS_NX);
}
break;
}
dlog_verbose(
"Invalid instruction access requested; sender "
"specified permissions %#x but receiver requested "
"%#x.\n",
sent_instruction_access, requested_instruction_access);
return false;
case FFA_INSTRUCTION_ACCESS_RESERVED:
panic("Got unexpected FFA_INSTRUCTION_ACCESS_RESERVED. Should "
"be checked before this point.");
}
return true;
}
/**
* Validate the receivers' permissions in the retrieve request against those
* specified by the lender.
* In the `permissions` argument returns the permissions to set at S2 for the
* caller to the FFA_MEMORY_RETRIEVE_REQ.
* Returns FFA_SUCCESS if all specified permissions are valid.
*/
static struct ffa_value ffa_memory_retrieve_validate_memory_access_list(
struct ffa_memory_region *memory_region,
struct ffa_memory_region *retrieve_request, ffa_vm_id_t to_vm_id,
ffa_memory_access_permissions_t *permissions)
{
uint32_t retrieve_receiver_index;
assert(permissions != NULL);
if (retrieve_request->receiver_count != memory_region->receiver_count) {
dlog_verbose(
"Retrieve request should contain same list of "
"borrowers, as specified by the lender.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
retrieve_receiver_index = retrieve_request->receiver_count;
/* Should be populated with the permissions of the retriever. */
*permissions = 0;
for (uint32_t i = 0U; i < retrieve_request->receiver_count; i++) {
ffa_memory_access_permissions_t sent_permissions;
struct ffa_memory_access *current_receiver =
&retrieve_request->receivers[i];
ffa_memory_access_permissions_t requested_permissions =
current_receiver->receiver_permissions.permissions;
ffa_vm_id_t current_receiver_id =
current_receiver->receiver_permissions.receiver;
bool found_to_id = current_receiver_id == to_vm_id;
/*
* Find the current receiver in the transaction descriptor from
* sender.
*/
uint32_t mem_region_receiver_index =
ffa_memory_region_get_receiver(memory_region,
current_receiver_id);
if (mem_region_receiver_index ==
memory_region->receiver_count) {
dlog_verbose("%s: receiver %x not found\n", __func__,
current_receiver_id);
return ffa_error(FFA_DENIED);
}
sent_permissions =
memory_region->receivers[mem_region_receiver_index]
.receiver_permissions.permissions;
if (found_to_id) {
retrieve_receiver_index = i;
}
/*
* Since we are traversing the list of receivers, save the index
* of the caller. As it needs to be there.
*/
if (current_receiver->composite_memory_region_offset != 0U) {
dlog_verbose(
"Retriever specified address ranges not "
"supported (got offset %d).\n",
current_receiver
->composite_memory_region_offset);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Check permissions from sender against permissions requested
* by receiver.
*/
if (!ffa_memory_retrieve_is_memory_access_valid(
ffa_get_data_access_attr(sent_permissions),
ffa_get_data_access_attr(requested_permissions),
ffa_get_instruction_access_attr(sent_permissions),
ffa_get_instruction_access_attr(
requested_permissions),
found_to_id ? permissions : NULL)) {
return ffa_error(FFA_DENIED);
}
/*
* Can't request PM to clear memory if only provided with RO
* permissions.
*/
if (found_to_id &&
(ffa_get_data_access_attr(*permissions) ==
FFA_DATA_ACCESS_RO) &&
(retrieve_request->flags & FFA_MEMORY_REGION_FLAG_CLEAR) !=
0U) {
dlog_verbose(
"Receiver has RO permissions can not request "
"clear.\n");
return ffa_error(FFA_DENIED);
}
}
if (retrieve_receiver_index == retrieve_request->receiver_count) {
dlog_verbose(
"Retrieve request does not contain caller's (%x) "
"permissions\n",
to_vm_id);
return ffa_error(FFA_INVALID_PARAMETERS);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/*
* According to section 16.4.3 of FF-A v1.1 EAC0 specification, the hypervisor
* may issue an FFA_MEM_RETRIEVE_REQ to obtain the memory region description
* of a pending memory sharing operation whose allocator is the SPM, for
* validation purposes before forwarding an FFA_MEM_RECLAIM call. In doing so
* the memory region descriptor of the retrieve request must be zeroed with the
* exception of the sender ID and handle.
*/
bool is_ffa_memory_retrieve_borrower_request(struct ffa_memory_region *request,
struct vm_locked to_locked)
{
return to_locked.vm->id == HF_HYPERVISOR_VM_ID &&
request->attributes == 0U && request->flags == 0U &&
request->tag == 0U && request->receiver_count == 0U &&
plat_ffa_memory_handle_allocated_by_current_world(
request->handle);
}
/*
* Helper to reset count of fragments retrieved by the hypervisor.
*/
static void ffa_memory_retrieve_complete_from_hyp(
struct ffa_memory_share_state *share_state)
{
if (share_state->hypervisor_fragment_count ==
share_state->fragment_count) {
share_state->hypervisor_fragment_count = 0;
}
}
/**
* Validate that the memory region descriptor provided by the borrower on
* FFA_MEM_RETRIEVE_REQ, against saved memory region provided by lender at the
* memory sharing call.
*/
static struct ffa_value ffa_memory_retrieve_validate(
ffa_vm_id_t receiver_id, struct ffa_memory_region *retrieve_request,
struct ffa_memory_region *memory_region, uint32_t *receiver_index,
uint32_t share_func)
{
ffa_memory_region_flags_t transaction_type =
retrieve_request->flags &
FFA_MEMORY_REGION_TRANSACTION_TYPE_MASK;
enum ffa_memory_security security_state;
assert(retrieve_request != NULL);
assert(memory_region != NULL);
assert(receiver_index != NULL);
assert(retrieve_request->sender == memory_region->sender);
/*
* Check that the transaction type expected by the receiver is
* correct, if it has been specified.
*/
if (transaction_type !=
FFA_MEMORY_REGION_TRANSACTION_TYPE_UNSPECIFIED &&
transaction_type != (memory_region->flags &
FFA_MEMORY_REGION_TRANSACTION_TYPE_MASK)) {
dlog_verbose(
"Incorrect transaction type %#x for "
"FFA_MEM_RETRIEVE_REQ, expected %#x for handle %#x.\n",
transaction_type,
memory_region->flags &
FFA_MEMORY_REGION_TRANSACTION_TYPE_MASK,
retrieve_request->handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (retrieve_request->tag != memory_region->tag) {
dlog_verbose(
"Incorrect tag %d for FFA_MEM_RETRIEVE_REQ, expected "
"%d for handle %#x.\n",
retrieve_request->tag, memory_region->tag,
retrieve_request->handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
*receiver_index =
ffa_memory_region_get_receiver(memory_region, receiver_id);
if (*receiver_index == memory_region->receiver_count) {
dlog_verbose(
"Incorrect receiver VM ID %d for "
"FFA_MEM_RETRIEVE_REQ, for handle %#x.\n",
receiver_id, memory_region->handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if ((retrieve_request->flags &
FFA_MEMORY_REGION_ADDRESS_RANGE_HINT_VALID) != 0U) {
dlog_verbose(
"Retriever specified 'address range alignment 'hint' "
"not supported.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if ((retrieve_request->flags &
FFA_MEMORY_REGION_ADDRESS_RANGE_HINT_MASK) != 0) {
dlog_verbose(
"Bits 8-5 must be zero in memory region's flags "
"(address range alignment hint not supported).\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if ((retrieve_request->flags & ~0x7FF) != 0U) {
dlog_verbose(
"Bits 31-10 must be zero in memory region's flags.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_func == FFA_MEM_SHARE_32 &&
(retrieve_request->flags &
(FFA_MEMORY_REGION_FLAG_CLEAR |
FFA_MEMORY_REGION_FLAG_CLEAR_RELINQUISH)) != 0U) {
dlog_verbose(
"Memory Share operation can't clean after relinquish "
"memory region.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* If the borrower needs the memory to be cleared before mapping
* to its address space, the sender should have set the flag
* when calling FFA_MEM_LEND/FFA_MEM_DONATE, else return
* FFA_DENIED.
*/
if ((retrieve_request->flags & FFA_MEMORY_REGION_FLAG_CLEAR) != 0U &&
(memory_region->flags & FFA_MEMORY_REGION_FLAG_CLEAR) == 0U) {
dlog_verbose(
"Borrower needs memory cleared. Sender needs to set "
"flag for clearing memory.\n");
return ffa_error(FFA_DENIED);
}
/* Memory region attributes NS-Bit MBZ for FFA_MEM_RETRIEVE_REQ. */
security_state =
ffa_get_memory_security_attr(retrieve_request->attributes);
if (security_state != FFA_MEMORY_SECURITY_UNSPECIFIED) {
dlog_verbose(
"Invalid security state for memory retrieve request "
"operation.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* If memory type is not specified, bypass validation of memory
* attributes in the retrieve request. The retriever is expecting to
* obtain this information from the SPMC.
*/
if (ffa_get_memory_type_attr(retrieve_request->attributes) ==
FFA_MEMORY_NOT_SPECIFIED_MEM) {
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/*
* Ensure receiver's attributes are compatible with how
* Hafnium maps memory: Normal Memory, Inner shareable,
* Write-Back Read-Allocate Write-Allocate Cacheable.
*/
return ffa_memory_attributes_validate(retrieve_request->attributes);
}
struct ffa_value ffa_memory_retrieve(struct vm_locked to_locked,
struct ffa_memory_region *retrieve_request,
uint32_t retrieve_request_length,
struct mpool *page_pool)
{
uint32_t expected_retrieve_request_length =
sizeof(struct ffa_memory_region) +
retrieve_request->receiver_count *
sizeof(struct ffa_memory_access);
ffa_memory_handle_t handle = retrieve_request->handle;
struct ffa_memory_region *memory_region;
ffa_memory_access_permissions_t permissions = 0;
uint32_t memory_to_attributes;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_value ret;
struct ffa_composite_memory_region *composite;
uint32_t total_length;
uint32_t fragment_length;
ffa_vm_id_t receiver_id = to_locked.vm->id;
bool is_send_complete = false;
dump_share_states();
if (retrieve_request_length != expected_retrieve_request_length) {
dlog_verbose(
"Invalid length for FFA_MEM_RETRIEVE_REQ, expected %d "
"but was %d.\n",
expected_retrieve_request_length,
retrieve_request_length);
return ffa_error(FFA_INVALID_PARAMETERS);
}
share_states = share_states_lock();
if (!get_share_state(share_states, handle, &share_state)) {
dlog_verbose("Invalid handle %#x for FFA_MEM_RETRIEVE_REQ.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#x not fully sent, can't "
"retrieve.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memory_region = share_state->memory_region;
CHECK(memory_region != NULL);
if (retrieve_request->sender != memory_region->sender) {
dlog_verbose(
"Memory with handle %#x not fully sent, can't "
"retrieve.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!is_ffa_memory_retrieve_borrower_request(retrieve_request,
to_locked)) {
uint32_t receiver_index;
/*
* The SPMC can only process retrieve requests to memory share
* operations with one borrower from the other world. It can't
* determine the ID of the NWd VM that invoked the retrieve
* request interface call. It relies on the hypervisor to
* validate the caller's ID against that provided in the
* `receivers` list of the retrieve response.
* In case there is only one borrower from the NWd in the
* transaction descriptor, record that in the `receiver_id` for
* later use, and validate in the retrieve request message.
*/
if (to_locked.vm->id == HF_HYPERVISOR_VM_ID) {
uint32_t other_world_count = 0;
for (uint32_t i = 0; i < memory_region->receiver_count;
i++) {
receiver_id =
retrieve_request->receivers[0]
.receiver_permissions.receiver;
if (!vm_id_is_current_world(receiver_id)) {
other_world_count++;
}
}
if (other_world_count > 1) {
dlog_verbose(
"Support one receiver from the other "
"world.\n");
return ffa_error(FFA_NOT_SUPPORTED);
}
}
/*
* Validate retrieve request, according to what was sent by the
* sender. Function will output the `receiver_index` from the
* provided memory region, and will output `permissions` from
* the validated requested permissions.
*/
ret = ffa_memory_retrieve_validate(
receiver_id, retrieve_request, memory_region,
&receiver_index, share_state->share_func);
if (ret.func != FFA_SUCCESS_32) {
goto out;
}
if (share_state->retrieved_fragment_count[receiver_index] !=
0U) {
dlog_verbose(
"Memory with handle %#x already retrieved.\n",
handle);
ret = ffa_error(FFA_DENIED);
goto out;
}
ret = ffa_memory_retrieve_validate_memory_access_list(
memory_region, retrieve_request, receiver_id,
&permissions);
if (ret.func != FFA_SUCCESS_32) {
goto out;
}
memory_to_attributes = ffa_memory_permissions_to_mode(
permissions, share_state->sender_orig_mode);
if (to_locked.vm->el0_partition) {
/*
* Get extra mapping attributes for the given VM ID.
* If the memory is shared by a VM executing in non
* secure world, attribute MM_MODE_NS has to be set
* while mapping that in a SP executing in secure world.
*/
memory_to_attributes |=
arch_mm_extra_attributes_from_vm(
retrieve_request->sender);
}
ret = ffa_retrieve_check_update(
to_locked, memory_region->sender,
share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, memory_to_attributes,
share_state->share_func, false, page_pool);
if (ret.func != FFA_SUCCESS_32) {
goto out;
}
share_state->retrieved_fragment_count[receiver_index] = 1;
is_send_complete =
share_state->retrieved_fragment_count[receiver_index] ==
share_state->fragment_count;
} else {
if (share_state->hypervisor_fragment_count != 0U) {
dlog_verbose(
"Memory with handle %#x already retrieved by "
"the hypervisor.\n",
handle);
ret = ffa_error(FFA_DENIED);
goto out;
}
share_state->hypervisor_fragment_count = 1;
ffa_memory_retrieve_complete_from_hyp(share_state);
}
/* VMs acquire the RX buffer from SPMC. */
CHECK(plat_ffa_acquire_receiver_rx(to_locked, &ret));
/*
* Copy response to RX buffer of caller and deliver the message.
* This must be done before the share_state is (possibly) freed.
*/
/* TODO: combine attributes from sender and request. */
composite = ffa_memory_region_get_composite(memory_region, 0);
/*
* Constituents which we received in the first fragment should
* always fit in the first fragment we are sending, because the
* header is the same size in both cases and we have a fixed
* message buffer size. So `ffa_retrieved_memory_region_init`
* should never fail.
*/
CHECK(ffa_retrieved_memory_region_init(
to_locked.vm->mailbox.recv, to_locked.vm->ffa_version,
HF_MAILBOX_SIZE, memory_region->sender,
memory_region->attributes, memory_region->flags, handle,
receiver_id, permissions, composite->page_count,
composite->constituent_count, share_state->fragments[0],
share_state->fragment_constituent_counts[0], &total_length,
&fragment_length));
to_locked.vm->mailbox.recv_size = fragment_length;
to_locked.vm->mailbox.recv_sender = HF_HYPERVISOR_VM_ID;
to_locked.vm->mailbox.recv_func = FFA_MEM_RETRIEVE_RESP_32;
to_locked.vm->mailbox.state = MAILBOX_STATE_FULL;
if (is_send_complete) {
ffa_memory_retrieve_complete(share_states, share_state,
page_pool);
}
ret = (struct ffa_value){.func = FFA_MEM_RETRIEVE_RESP_32,
.arg1 = total_length,
.arg2 = fragment_length};
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
/**
* Determine expected fragment offset according to the FF-A version of
* the caller.
*/
static uint32_t ffa_memory_retrieve_expected_offset_per_ffa_version(
struct ffa_memory_region *memory_region,
uint32_t retrieved_constituents_count, uint32_t ffa_version)
{
uint32_t expected_fragment_offset;
uint32_t composite_constituents_offset;
if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
/*
* Hafnium operates memory regions in FF-A v1.1 format, so we
* can retrieve the constituents offset from descriptor.
*/
composite_constituents_offset =
ffa_composite_constituent_offset(memory_region, 0);
} else if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
/*
* If retriever is FF-A v1.0, determine the composite offset
* as it is expected to have been configured in the
* retrieve response.
*/
composite_constituents_offset =
sizeof(struct ffa_memory_region_v1_0) +
RECEIVERS_COUNT_IN_RETRIEVE_RESP *
sizeof(struct ffa_memory_access) +
sizeof(struct ffa_composite_memory_region);
} else {
panic("%s received an invalid FF-A version.\n", __func__);
}
expected_fragment_offset =
composite_constituents_offset +
retrieved_constituents_count *
sizeof(struct ffa_memory_region_constituent) -
sizeof(struct ffa_memory_access) *
(memory_region->receiver_count - 1);
return expected_fragment_offset;
}
struct ffa_value ffa_memory_retrieve_continue(struct vm_locked to_locked,
ffa_memory_handle_t handle,
uint32_t fragment_offset,
ffa_vm_id_t sender_vm_id,
struct mpool *page_pool)
{
struct ffa_memory_region *memory_region;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_value ret;
uint32_t fragment_index;
uint32_t retrieved_constituents_count;
uint32_t i;
uint32_t expected_fragment_offset;
uint32_t remaining_constituent_count;
uint32_t fragment_length;
uint32_t receiver_index;
bool continue_ffa_hyp_mem_retrieve_req;
dump_share_states();
share_states = share_states_lock();
if (!get_share_state(share_states, handle, &share_state)) {
dlog_verbose("Invalid handle %#x for FFA_MEM_FRAG_RX.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memory_region = share_state->memory_region;
CHECK(memory_region != NULL);
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#x not fully sent, can't "
"retrieve.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* If retrieve request from the hypervisor has been initiated in the
* given share_state, continue it, else assume it is a continuation of
* retrieve request from a NWd VM.
*/
continue_ffa_hyp_mem_retrieve_req =
(to_locked.vm->id == HF_HYPERVISOR_VM_ID) &&
(share_state->hypervisor_fragment_count != 0U) &&
plat_ffa_is_vm_id(sender_vm_id);
if (!continue_ffa_hyp_mem_retrieve_req) {
receiver_index = ffa_memory_region_get_receiver(
memory_region, to_locked.vm->id);
if (receiver_index == memory_region->receiver_count) {
dlog_verbose(
"Caller of FFA_MEM_FRAG_RX (%x) is not a "
"borrower to memory sharing transaction (%x)\n",
to_locked.vm->id, handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (share_state->retrieved_fragment_count[receiver_index] ==
0 ||
share_state->retrieved_fragment_count[receiver_index] >=
share_state->fragment_count) {
dlog_verbose(
"Retrieval of memory with handle %#x not yet "
"started or already completed (%d/%d fragments "
"retrieved).\n",
handle,
share_state->retrieved_fragment_count
[receiver_index],
share_state->fragment_count);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
fragment_index =
share_state->retrieved_fragment_count[receiver_index];
} else {
if (share_state->hypervisor_fragment_count == 0 ||
share_state->hypervisor_fragment_count >=
share_state->fragment_count) {
dlog_verbose(
"Retrieve of memory with handle %x not "
"started from hypervisor.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (memory_region->sender != sender_vm_id) {
dlog_verbose(
"Sender ID (%x) is not as expected for memory "
"handle %x\n",
sender_vm_id, handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
fragment_index = share_state->hypervisor_fragment_count;
receiver_index = 0;
}
/*
* Check that the given fragment offset is correct by counting
* how many constituents were in the fragments previously sent.
*/
retrieved_constituents_count = 0;
for (i = 0; i < fragment_index; ++i) {
retrieved_constituents_count +=
share_state->fragment_constituent_counts[i];
}
CHECK(memory_region->receiver_count > 0);
expected_fragment_offset =
ffa_memory_retrieve_expected_offset_per_ffa_version(
memory_region, retrieved_constituents_count,
to_locked.vm->ffa_version);
if (fragment_offset != expected_fragment_offset) {
dlog_verbose("Fragment offset was %d but expected %d.\n",
fragment_offset, expected_fragment_offset);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/* VMs acquire the RX buffer from SPMC. */
CHECK(plat_ffa_acquire_receiver_rx(to_locked, &ret));
remaining_constituent_count = ffa_memory_fragment_init(
to_locked.vm->mailbox.recv, HF_MAILBOX_SIZE,
share_state->fragments[fragment_index],
share_state->fragment_constituent_counts[fragment_index],
&fragment_length);
CHECK(remaining_constituent_count == 0);
to_locked.vm->mailbox.recv_size = fragment_length;
to_locked.vm->mailbox.recv_sender = HF_HYPERVISOR_VM_ID;
to_locked.vm->mailbox.recv_func = FFA_MEM_FRAG_TX_32;
to_locked.vm->mailbox.state = MAILBOX_STATE_FULL;
if (!continue_ffa_hyp_mem_retrieve_req) {
share_state->retrieved_fragment_count[receiver_index]++;
if (share_state->retrieved_fragment_count[receiver_index] ==
share_state->fragment_count) {
ffa_memory_retrieve_complete(share_states, share_state,
page_pool);
}
} else {
share_state->hypervisor_fragment_count++;
ffa_memory_retrieve_complete_from_hyp(share_state);
}
ret = (struct ffa_value){.func = FFA_MEM_FRAG_TX_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = fragment_length};
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
struct ffa_value ffa_memory_relinquish(
struct vm_locked from_locked,
struct ffa_mem_relinquish *relinquish_request, struct mpool *page_pool)
{
ffa_memory_handle_t handle = relinquish_request->handle;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_memory_region *memory_region;
bool clear;
struct ffa_value ret;
uint32_t receiver_index;
if (relinquish_request->endpoint_count != 1) {
dlog_verbose(
"Stream endpoints not supported (got %d "
"endpoints on "
"FFA_MEM_RELINQUISH, expected 1).\n",
relinquish_request->endpoint_count);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (relinquish_request->endpoints[0] != from_locked.vm->id) {
dlog_verbose(
"VM ID %d in relinquish message doesn't match "
"calling "
"VM ID %d.\n",
relinquish_request->endpoints[0], from_locked.vm->id);
return ffa_error(FFA_INVALID_PARAMETERS);
}
dump_share_states();
share_states = share_states_lock();
if (!get_share_state(share_states, handle, &share_state)) {
dlog_verbose("Invalid handle %#x for FFA_MEM_RELINQUISH.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#x not fully sent, can't "
"relinquish.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memory_region = share_state->memory_region;
CHECK(memory_region != NULL);
receiver_index = ffa_memory_region_get_receiver(memory_region,
from_locked.vm->id);
if (receiver_index == memory_region->receiver_count) {
dlog_verbose(
"VM ID %d tried to relinquish memory region "
"with "
"handle %#x and it is not a valid borrower.\n",
from_locked.vm->id, handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (share_state->retrieved_fragment_count[receiver_index] !=
share_state->fragment_count) {
dlog_verbose(
"Memory with handle %#x not yet fully "
"retrieved, "
"receiver %x can't relinquish.\n",
handle, from_locked.vm->id);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
clear = relinquish_request->flags & FFA_MEMORY_REGION_FLAG_CLEAR;
/*
* Clear is not allowed for memory that was shared, as the
* original sender still has access to the memory.
*/
if (clear && share_state->share_func == FFA_MEM_SHARE_32) {
dlog_verbose("Memory which was shared can't be cleared.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
ret = ffa_relinquish_check_update(
from_locked, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, page_pool, clear);
if (ret.func == FFA_SUCCESS_32) {
/*
* Mark memory handle as not retrieved, so it can be
* reclaimed (or retrieved again).
*/
share_state->retrieved_fragment_count[receiver_index] = 0;
}
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
/**
* Validates that the reclaim transition is allowed for the given
* handle, updates the page table of the reclaiming VM, and frees the
* internal state associated with the handle.
*/
struct ffa_value ffa_memory_reclaim(struct vm_locked to_locked,
ffa_memory_handle_t handle,
ffa_memory_region_flags_t flags,
struct mpool *page_pool)
{
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_memory_region *memory_region;
struct ffa_value ret;
dump_share_states();
share_states = share_states_lock();
if (get_share_state(share_states, handle, &share_state)) {
memory_region = share_state->memory_region;
} else {
dlog_verbose("Invalid handle %#x for FFA_MEM_RECLAIM.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
CHECK(memory_region != NULL);
if (vm_id_is_current_world(to_locked.vm->id) &&
to_locked.vm->id != memory_region->sender) {
dlog_verbose(
"VM %#x attempted to reclaim memory handle %#x "
"originally sent by VM %#x.\n",
to_locked.vm->id, handle, memory_region->sender);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#x not fully sent, can't "
"reclaim.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
for (uint32_t i = 0; i < memory_region->receiver_count; i++) {
if (share_state->retrieved_fragment_count[i] != 0) {
dlog_verbose(
"Tried to reclaim memory handle %#x "
"that has "
"not been relinquished by all "
"borrowers(%x).\n",
handle,
memory_region->receivers[i]
.receiver_permissions.receiver);
ret = ffa_error(FFA_DENIED);
goto out;
}
}
ret = ffa_retrieve_check_update(
to_locked, memory_region->sender, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, share_state->sender_orig_mode,
FFA_MEM_RECLAIM_32, flags & FFA_MEM_RECLAIM_CLEAR, page_pool);
if (ret.func == FFA_SUCCESS_32) {
share_state_free(share_states, share_state, page_pool);
dlog_verbose(
"Freed share state after successful "
"reclaim.\n");
}
out:
share_states_unlock(&share_states);
return ret;
}