blob: 6ff71a37189cd0019ab98a04e8933ad934110911 [file] [log] [blame]
/*
* Copyright 2019 The Hafnium Authors.
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/BSD-3-Clause.
*/
#include "hf/vcpu.h"
#include "hf/arch/cpu.h"
#include "hf/check.h"
#include "hf/dlog.h"
#include "hf/std.h"
#include "hf/vm.h"
static struct list_entry boot_list = LIST_INIT(boot_list);
/** GP register to be used to pass the current vCPU ID, at core bring up. */
#define PHYS_CORE_IDX_GP_REG 4
/**
* Locks the given vCPU and updates `locked` to hold the newly locked vCPU.
*/
struct vcpu_locked vcpu_lock(struct vcpu *vcpu)
{
struct vcpu_locked locked = {
.vcpu = vcpu,
};
sl_lock(&vcpu->lock);
return locked;
}
/**
* Locks two vCPUs ensuring that the locking order is according to the locks'
* addresses.
*/
struct two_vcpu_locked vcpu_lock_both(struct vcpu *vcpu1, struct vcpu *vcpu2)
{
struct two_vcpu_locked dual_lock;
sl_lock_both(&vcpu1->lock, &vcpu2->lock);
dual_lock.vcpu1.vcpu = vcpu1;
dual_lock.vcpu2.vcpu = vcpu2;
return dual_lock;
}
/**
* Unlocks a vCPU previously locked with vpu_lock, and updates `locked` to
* reflect the fact that the vCPU is no longer locked.
*/
void vcpu_unlock(struct vcpu_locked *locked)
{
sl_unlock(&locked->vcpu->lock);
locked->vcpu = NULL;
}
void vcpu_init(struct vcpu *vcpu, struct vm *vm)
{
memset_s(vcpu, sizeof(*vcpu), 0, sizeof(*vcpu));
sl_init(&vcpu->lock);
vcpu->regs_available = true;
vcpu->vm = vm;
vcpu->state = VCPU_STATE_OFF;
vcpu->direct_request_origin.is_ffa_req2 = false;
vcpu->direct_request_origin.vm_id = HF_INVALID_VM_ID;
vcpu->rt_model = RTM_SP_INIT;
list_init(&vcpu->boot_list_node);
list_init(&vcpu->timer_node);
list_init(&vcpu->ipi_list_node);
}
/**
* Initialise the registers for the given vCPU and set the state to
* VCPU_STATE_WAITING. The caller must hold the vCPU lock while calling this.
*/
void vcpu_on(struct vcpu_locked vcpu, ipaddr_t entry, uintreg_t arg)
{
arch_regs_set_pc_arg(&vcpu.vcpu->regs, entry, arg);
vcpu.vcpu->state = VCPU_STATE_WAITING;
}
ffa_vcpu_index_t vcpu_index(const struct vcpu *vcpu)
{
size_t index = vcpu - vcpu->vm->vcpus;
CHECK(index < UINT16_MAX);
return index;
}
/**
* Check whether the given vcpu_state is an off state, for the purpose of
* turning vCPUs on and off. Note that Aborted still counts as ON for the
* purposes of PSCI, because according to the PSCI specification (section
* 5.7.1) a core is only considered to be off if it has been turned off
* with a CPU_OFF call or hasn't yet been turned on with a CPU_ON call.
*/
bool vcpu_is_off(struct vcpu_locked vcpu)
{
return (vcpu.vcpu->state == VCPU_STATE_OFF);
}
/**
* Starts a vCPU of a secondary VM.
*
* Returns true if the secondary was reset and started, or false if it was
* already on and so nothing was done.
*/
bool vcpu_secondary_reset_and_start(struct vcpu_locked vcpu_locked,
ipaddr_t entry, uintreg_t arg)
{
struct vm *vm = vcpu_locked.vcpu->vm;
bool vcpu_was_off;
CHECK(vm->id != HF_PRIMARY_VM_ID);
vcpu_was_off = vcpu_is_off(vcpu_locked);
if (vcpu_was_off) {
/*
* Set vCPU registers to a clean state ready for boot. As this
* is a secondary which can migrate between pCPUs, the ID of the
* vCPU is defined as the index and does not match the ID of the
* pCPU it is running on.
*/
arch_regs_reset(vcpu_locked.vcpu);
vcpu_on(vcpu_locked, entry, arg);
}
return vcpu_was_off;
}
/**
* Handles a page fault. It does so by determining if it's a legitimate or
* spurious fault, and recovering from the latter.
*
* Returns true if the caller should resume the current vCPU, or false if its VM
* should be aborted.
*/
bool vcpu_handle_page_fault(const struct vcpu *current,
struct vcpu_fault_info *f)
{
struct vm *vm = current->vm;
uint32_t mode;
uint32_t mask = f->mode | MM_MODE_INVALID;
bool resume;
struct vm_locked locked_vm;
locked_vm = vm_lock(vm);
/*
* Check if this is a legitimate fault, i.e., if the page table doesn't
* allow the access attempted by the VM.
*
* Otherwise, this is a spurious fault, likely because another CPU is
* updating the page table. It is responsible for issuing global TLB
* invalidations while holding the VM lock, so we don't need to do
* anything else to recover from it. (Acquiring/releasing the lock
* ensured that the invalidations have completed.)
*/
if (!locked_vm.vm->el0_partition) {
resume = vm_mem_get_mode(locked_vm, f->ipaddr,
ipa_add(f->ipaddr, 1), &mode) &&
(mode & mask) == f->mode;
} else {
/*
* For EL0 partitions we need to get the mode for the faulting
* vaddr.
*/
resume =
vm_mem_get_mode(locked_vm, ipa_init(va_addr(f->vaddr)),
ipa_add(ipa_init(va_addr(f->vaddr)), 1),
&mode) &&
(mode & mask) == f->mode;
/*
* For EL0 partitions, if there is an instruction abort and the
* mode of the page is RWX, we don't resume since Hafnium does
* not allow write and executable pages.
*/
if ((f->mode == MM_MODE_X) &&
((mode & MM_MODE_W) == MM_MODE_W)) {
resume = false;
}
}
vm_unlock(&locked_vm);
if (!resume) {
dlog_warning(
"Stage-%d page fault: pc=%#lx, vmid=%#x, vcpu=%u, "
"vaddr=%#lx, ipaddr=%#lx, mode=%#x %#x\n",
current->vm->el0_partition ? 1 : 2, va_addr(f->pc),
vm->id, vcpu_index(current), va_addr(f->vaddr),
ipa_addr(f->ipaddr), f->mode, mode);
}
return resume;
}
void vcpu_set_phys_core_idx(struct vcpu *vcpu)
{
arch_regs_set_gp_reg(&vcpu->regs, cpu_index(vcpu->cpu),
PHYS_CORE_IDX_GP_REG);
}
/**
* Sets the designated GP register through which the vCPU expects to receive the
* boot info's address.
*/
void vcpu_set_boot_info_gp_reg(struct vcpu *vcpu)
{
struct vm *vm = vcpu->vm;
uint32_t gp_register_num = vm->boot_info.gp_register_num;
if (vm->boot_info.blob_addr.ipa != 0U) {
arch_regs_set_gp_reg(&vcpu->regs,
ipa_addr(vm->boot_info.blob_addr),
gp_register_num);
}
}
/**
* The 'boot_list' is used as the start and end of the list.
* Start: the nodes it points to is the first vCPU to boot.
* End: the last node's next points to the entry.
*/
static bool vcpu_is_boot_list_end(struct vcpu *vcpu)
{
return vcpu->boot_list_node.next == &boot_list;
}
/**
* Gets the first partition to boot, according to Boot Protocol from FFA spec.
*/
struct vcpu *vcpu_get_boot_vcpu(void)
{
assert(!list_empty(&boot_list));
return CONTAINER_OF(boot_list.next, struct vcpu, boot_list_node);
}
/**
* Returns the next element in the boot order list, if there is one.
*/
struct vcpu *vcpu_get_next_boot(struct vcpu *vcpu)
{
return vcpu_is_boot_list_end(vcpu)
? NULL
: CONTAINER_OF(vcpu->boot_list_node.next, struct vcpu,
boot_list_node);
}
/**
* Insert in boot list, sorted by `boot_order` parameter in the vm structure
* and rooted in `first_boot_vm`.
*/
void vcpu_update_boot(struct vcpu *vcpu)
{
struct vcpu *current = NULL;
if (list_empty(&boot_list)) {
list_prepend(&boot_list, &vcpu->boot_list_node);
return;
}
/*
* When getting to this point the first insertion should have
* been done.
*/
current = vcpu_get_boot_vcpu();
assert(current != NULL);
/*
* Iterate until the position is found according to boot order, or
* until we reach end of the list.
*/
while (!vcpu_is_boot_list_end(current) &&
current->vm->boot_order <= vcpu->vm->boot_order) {
current = vcpu_get_next_boot(current);
}
current->vm->boot_order > vcpu->vm->boot_order
? list_prepend(&current->boot_list_node, &vcpu->boot_list_node)
: list_append(&current->boot_list_node, &vcpu->boot_list_node);
}
void vcpu_interrupt_clear_decrement(struct vcpu_locked vcpu_locked,
uint32_t intid)
{
struct interrupts *interrupts = &(vcpu_locked.vcpu->interrupts);
/* Clear any specifics for the current intid. */
switch (intid) {
case HF_IPI_INTID:
vcpu_ipi_clear_info_get_retrieved(vcpu_locked);
break;
default:
/* Do no additional work. */
break;
}
vcpu_virt_interrupt_clear_pending(interrupts, intid);
vcpu_interrupt_count_decrement(vcpu_locked, interrupts, intid);
}
/**
* Sets the vcpu in the VCPU_STATE_RUNNING.
* With that, its register are set as "not available".
* If there are registers to be written to vCPU's context, do so.
* However, this action is restricted to WAITING and BLOCKED states,
* as such, assert accordingly.
*/
void vcpu_set_running(struct vcpu_locked target_locked,
const struct ffa_value *args)
{
struct vcpu *target_vcpu = target_locked.vcpu;
if (args != NULL) {
CHECK(target_vcpu->regs_available);
assert(target_vcpu->state == VCPU_STATE_WAITING ||
target_vcpu->state == VCPU_STATE_BLOCKED);
arch_regs_set_retval(&target_vcpu->regs, *args);
}
/* Mark the registers as unavailable now. */
target_vcpu->regs_available = false;
/* We are about to resume target vCPU. */
target_vcpu->state = VCPU_STATE_RUNNING;
}
/**
* It injects a virtual interrupt in the vcpu if is enabled and is not pending.
*/
void vcpu_interrupt_inject(struct vcpu_locked target_locked, uint32_t intid)
{
struct vcpu *target_vcpu = target_locked.vcpu;
struct interrupts *interrupts = &target_vcpu->interrupts;
/*
* We only need to change state and (maybe) trigger a virtual interrupt
* if it is enabled and was not previously pending. Otherwise we can
* skip everything except setting the pending bit.
*/
if (!(vcpu_is_virt_interrupt_enabled(interrupts, intid) &&
!vcpu_is_virt_interrupt_pending(interrupts, intid))) {
goto out;
}
/* Increment the count. */
vcpu_interrupt_count_increment(target_locked, interrupts, intid);
/*
* Only need to update state if there was not already an
* interrupt enabled and pending.
*/
if (vcpu_interrupt_count_get(target_locked) != 1) {
goto out;
}
out:
/* Either way, make it pending. */
vcpu_virt_interrupt_set_pending(interrupts, intid);
}
void vcpu_enter_secure_interrupt_rtm(struct vcpu_locked vcpu_locked)
{
struct vcpu *target_vcpu = vcpu_locked.vcpu;
assert(target_vcpu->scheduling_mode == NONE);
assert(target_vcpu->call_chain.prev_node == NULL);
assert(target_vcpu->call_chain.next_node == NULL);
assert(target_vcpu->rt_model == RTM_NONE);
target_vcpu->scheduling_mode = SPMC_MODE;
target_vcpu->rt_model = RTM_SEC_INTERRUPT;
}
static uint16_t queue_increment_index(uint16_t current_idx)
{
/* Look at the next index. Wrap around if necessary. */
if (current_idx == VINT_QUEUE_MAX - 1) {
return 0;
}
return current_idx + 1;
}
static bool is_queue_empty(struct interrupt_queue *q)
{
if (q->head == q->tail) {
return true;
}
return false;
}
/**
* Queue the pending virtual interrupt for target vCPU.
*
* Returns true if successful in pushing a new entry to the queue, or false
* otherwise.
*/
bool vcpu_interrupt_queue_push(struct vcpu_locked vcpu_locked, uint32_t vint_id)
{
struct interrupt_queue *q;
uint16_t new_tail;
assert(vint_id != HF_INVALID_INTID);
q = &vcpu_locked.vcpu->interrupts.vint_q;
/*
* A new entry is pushed at the tail of the queue. Upon successful
* push operation, the tail increments or wraps around.
*/
new_tail = queue_increment_index(q->tail);
/* If new_tail reaches head of the queue, then the queue is full. */
if (new_tail == q->head) {
return false;
}
/* Add the virtual interrupt to the queue. */
q->vint_buffer[q->tail] = vint_id;
q->tail = new_tail;
return true;
}
/**
* Remove an entry from the specified vCPU's queue at the head.
*
* Returns true if successful in removing the entry, or false otherwise.
*/
bool vcpu_interrupt_queue_pop(struct vcpu_locked vcpu_locked, uint32_t *vint_id)
{
struct interrupt_queue *q;
uint16_t new_head;
assert(vint_id != NULL);
q = &vcpu_locked.vcpu->interrupts.vint_q;
/* Check if queue is empty. */
if (is_queue_empty(q)) {
return false;
}
/*
* An entry is removed from the head of the queue. Once successful, the
* head is incremented or wrapped around if needed.
*/
new_head = queue_increment_index(q->head);
*vint_id = q->vint_buffer[q->head];
q->head = new_head;
return true;
}
/**
* Look for the first pending virtual interrupt from the vcpu's queue. Note
* that the entry is not removed from the queue.
*
* Returns true if a valid entry exists in the queue, or false otherwise.
*/
bool vcpu_interrupt_queue_peek(struct vcpu_locked vcpu_locked,
uint32_t *vint_id)
{
struct interrupt_queue *q;
uint32_t queued_vint;
assert(vint_id != NULL);
q = &vcpu_locked.vcpu->interrupts.vint_q;
/* Check if queue is empty. */
if (is_queue_empty(q)) {
return false;
}
queued_vint = q->vint_buffer[q->head];
assert(queued_vint != HF_INVALID_INTID);
*vint_id = queued_vint;
return true;
}
/**
* Find if a specific virtual interrupt exists in the specified vCPU's queue.
*
* Returns true if such an entry exists in the queue, or false otherwise.
*/
bool vcpu_is_interrupt_in_queue(struct vcpu_locked vcpu_locked,
uint32_t vint_id)
{
struct interrupt_queue *q;
uint16_t next;
assert(vint_id != HF_INVALID_INTID);
q = &vcpu_locked.vcpu->interrupts.vint_q;
/* Check if the queue is empty. */
if (is_queue_empty(q)) {
return false;
}
next = q->head;
while (true) {
/* Match found. */
if (q->vint_buffer[next] == vint_id) {
return true;
}
next = queue_increment_index(next);
/* Reached the end of queue. */
if (next == q->tail) {
break;
}
}
return false;
}
/**
* Check if there are any entries in the interrupt queue.
*
* Returns true if queue is empty, or false otherwise.
*/
bool vcpu_is_interrupt_queue_empty(struct vcpu_locked vcpu_locked)
{
struct interrupt_queue *q;
q = &vcpu_locked.vcpu->interrupts.vint_q;
if (is_queue_empty(q)) {
return true;
}
return false;
}
/**
* When interrupt handling is complete the preempted_vcpu field should go back
* to NULL.
*/
void vcpu_secure_interrupt_complete(struct vcpu_locked vcpu_locked)
{
struct vcpu *vcpu;
vcpu = vcpu_locked.vcpu;
vcpu->preempted_vcpu = NULL;
vcpu->requires_deactivate_call = false;
}