| /* |
| * Copyright 2018 The Hafnium Authors. |
| * |
| * Use of this source code is governed by a BSD-style |
| * license that can be found in the LICENSE file or at |
| * https://opensource.org/licenses/BSD-3-Clause. |
| */ |
| |
| #include <stdnoreturn.h> |
| |
| #include "hf/arch/barriers.h" |
| #include "hf/arch/init.h" |
| #include "hf/arch/mmu.h" |
| #include "hf/arch/plat/smc.h" |
| |
| #include "hf/api.h" |
| #include "hf/check.h" |
| #include "hf/cpu.h" |
| #include "hf/dlog.h" |
| #include "hf/ffa.h" |
| #include "hf/ffa_internal.h" |
| #include "hf/panic.h" |
| #include "hf/plat/interrupts.h" |
| #include "hf/vm.h" |
| |
| #include "vmapi/hf/call.h" |
| |
| #include "debug_el1.h" |
| #include "feature_id.h" |
| #include "msr.h" |
| #include "perfmon.h" |
| #include "psci.h" |
| #include "psci_handler.h" |
| #include "smc.h" |
| #include "sysregs.h" |
| |
| /** |
| * Hypervisor Fault Address Register Non-Secure. |
| */ |
| #define HPFAR_EL2_NS (UINT64_C(0x1) << 63) |
| |
| /** |
| * Hypervisor Fault Address Register Faulting IPA. |
| */ |
| #define HPFAR_EL2_FIPA (UINT64_C(0xFFFFFFFFFF0)) |
| |
| /** |
| * Gets the value to increment for the next PC. |
| * The ESR encodes whether the instruction is 2 bytes or 4 bytes long. |
| */ |
| #define GET_NEXT_PC_INC(esr) (GET_ESR_IL(esr) ? 4 : 2) |
| |
| /** |
| * The Client ID field within X7 for an SMC64 call. |
| */ |
| #define CLIENT_ID_MASK UINT64_C(0xffff) |
| |
| /** |
| * Returns a reference to the currently executing vCPU. |
| */ |
| static struct vcpu *current(void) |
| { |
| return (struct vcpu *)read_msr(tpidr_el2); |
| } |
| |
| /** |
| * Saves the state of per-vCPU peripherals, such as the virtual timer, and |
| * informs the arch-independent sections that registers have been saved. |
| */ |
| void complete_saving_state(struct vcpu *vcpu) |
| { |
| if (has_vhe_support()) { |
| vcpu->regs.peripherals.cntv_cval_el0 = |
| read_msr(MSR_CNTV_CVAL_EL02); |
| vcpu->regs.peripherals.cntv_ctl_el0 = |
| read_msr(MSR_CNTV_CTL_EL02); |
| } else { |
| vcpu->regs.peripherals.cntv_cval_el0 = read_msr(cntv_cval_el0); |
| vcpu->regs.peripherals.cntv_ctl_el0 = read_msr(cntv_ctl_el0); |
| } |
| |
| api_regs_state_saved(vcpu); |
| |
| /* |
| * If switching away from the primary, copy the current EL0 virtual |
| * timer registers to the corresponding EL2 physical timer registers. |
| * This is used to emulate the virtual timer for the primary in case it |
| * should fire while the secondary is running. |
| */ |
| if (vcpu->vm->id == HF_PRIMARY_VM_ID) { |
| /* |
| * Clear timer control register before copying compare value, to |
| * avoid a spurious timer interrupt. This could be a problem if |
| * the interrupt is configured as edge-triggered, as it would |
| * then be latched in. |
| */ |
| write_msr(cnthp_ctl_el2, 0); |
| |
| if (has_vhe_support()) { |
| write_msr(cnthp_cval_el2, read_msr(MSR_CNTV_CVAL_EL02)); |
| write_msr(cnthp_ctl_el2, read_msr(MSR_CNTV_CTL_EL02)); |
| } else { |
| write_msr(cnthp_cval_el2, read_msr(cntv_cval_el0)); |
| write_msr(cnthp_ctl_el2, read_msr(cntv_ctl_el0)); |
| } |
| } |
| } |
| |
| /** |
| * Restores the state of per-vCPU peripherals, such as the virtual timer. |
| */ |
| void begin_restoring_state(struct vcpu *vcpu) |
| { |
| /* |
| * Clear timer control register before restoring compare value, to avoid |
| * a spurious timer interrupt. This could be a problem if the interrupt |
| * is configured as edge-triggered, as it would then be latched in. |
| */ |
| if (has_vhe_support()) { |
| write_msr(MSR_CNTV_CTL_EL02, 0); |
| write_msr(MSR_CNTV_CVAL_EL02, |
| vcpu->regs.peripherals.cntv_cval_el0); |
| write_msr(MSR_CNTV_CTL_EL02, |
| vcpu->regs.peripherals.cntv_ctl_el0); |
| } else { |
| write_msr(cntv_ctl_el0, 0); |
| write_msr(cntv_cval_el0, vcpu->regs.peripherals.cntv_cval_el0); |
| write_msr(cntv_ctl_el0, vcpu->regs.peripherals.cntv_ctl_el0); |
| } |
| |
| /* |
| * If we are switching (back) to the primary, disable the EL2 physical |
| * timer which was being used to emulate the EL0 virtual timer, as the |
| * virtual timer is now running for the primary again. |
| */ |
| if (vcpu->vm->id == HF_PRIMARY_VM_ID) { |
| write_msr(cnthp_ctl_el2, 0); |
| write_msr(cnthp_cval_el2, 0); |
| } |
| } |
| |
| /** |
| * Invalidate all stage 1 TLB entries on the current (physical) CPU for the |
| * current VMID. |
| */ |
| static void invalidate_vm_tlb(void) |
| { |
| /* |
| * Ensure that the last VTTBR write has taken effect so we invalidate |
| * the right set of TLB entries. |
| */ |
| isb(); |
| |
| __asm__ volatile("tlbi vmalle1"); |
| |
| /* |
| * Ensure that no instructions are fetched for the VM until after the |
| * TLB invalidation has taken effect. |
| */ |
| isb(); |
| |
| /* |
| * Ensure that no data reads or writes for the VM happen until after the |
| * TLB invalidation has taken effect. Non-shareable is enough because |
| * the TLB is local to the CPU. |
| */ |
| dsb(nsh); |
| } |
| |
| /** |
| * Invalidates the TLB if a different vCPU is being run than the last vCPU of |
| * the same VM which was run on the current pCPU. |
| * |
| * This is necessary because VMs may (contrary to the architecture |
| * specification) use inconsistent ASIDs across vCPUs. c.f. KVM's similar |
| * workaround: |
| * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=94d0e5980d6791b9 |
| */ |
| void maybe_invalidate_tlb(struct vcpu *vcpu) |
| { |
| size_t current_cpu_index = cpu_index(vcpu->cpu); |
| ffa_vcpu_index_t new_vcpu_index = vcpu_index(vcpu); |
| |
| if (vcpu->vm->arch.last_vcpu_on_cpu[current_cpu_index] != |
| new_vcpu_index) { |
| /* |
| * The vCPU has changed since the last time this VM was run on |
| * this pCPU, so we need to invalidate the TLB. |
| */ |
| invalidate_vm_tlb(); |
| |
| /* Record the fact that this vCPU is now running on this CPU. */ |
| vcpu->vm->arch.last_vcpu_on_cpu[current_cpu_index] = |
| new_vcpu_index; |
| } |
| } |
| |
| noreturn void irq_current_exception_noreturn(uintreg_t elr, uintreg_t spsr) |
| { |
| (void)elr; |
| (void)spsr; |
| |
| panic("IRQ from current exception level."); |
| } |
| |
| noreturn void fiq_current_exception_noreturn(uintreg_t elr, uintreg_t spsr) |
| { |
| (void)elr; |
| (void)spsr; |
| |
| panic("FIQ from current exception level."); |
| } |
| |
| noreturn void serr_current_exception_noreturn(uintreg_t elr, uintreg_t spsr) |
| { |
| (void)elr; |
| (void)spsr; |
| |
| panic("SError from current exception level."); |
| } |
| |
| noreturn void sync_current_exception_noreturn(uintreg_t elr, uintreg_t spsr) |
| { |
| uintreg_t esr = read_msr(esr_el2); |
| uintreg_t ec = GET_ESR_EC(esr); |
| |
| (void)spsr; |
| |
| switch (ec) { |
| case EC_DATA_ABORT_SAME_EL: |
| if (!(esr & (1U << 10))) { /* Check FnV bit. */ |
| dlog_error( |
| "Data abort: pc=%#x, esr=%#x, ec=%#x, " |
| "far=%#x\n", |
| elr, esr, ec, read_msr(far_el2)); |
| } else { |
| dlog_error( |
| "Data abort: pc=%#x, esr=%#x, ec=%#x, " |
| "far=invalid\n", |
| elr, esr, ec); |
| } |
| |
| break; |
| |
| default: |
| dlog_error( |
| "Unknown current sync exception pc=%#x, esr=%#x, " |
| "ec=%#x\n", |
| elr, esr, ec); |
| break; |
| } |
| |
| panic("EL2 exception"); |
| } |
| |
| /** |
| * Sets or clears the VI bit in the HCR_EL2 register saved in the given |
| * arch_regs. |
| */ |
| static void set_virtual_irq(struct arch_regs *r, bool enable) |
| { |
| if (enable) { |
| r->hcr_el2 |= HCR_EL2_VI; |
| } else { |
| r->hcr_el2 &= ~HCR_EL2_VI; |
| } |
| } |
| |
| /** |
| * Sets or clears the VI bit in the HCR_EL2 register. |
| */ |
| static void set_virtual_irq_current(bool enable) |
| { |
| uintreg_t hcr_el2 = current()->regs.hcr_el2; |
| |
| if (enable) { |
| hcr_el2 |= HCR_EL2_VI; |
| } else { |
| hcr_el2 &= ~HCR_EL2_VI; |
| } |
| current()->regs.hcr_el2 = hcr_el2; |
| } |
| |
| /** |
| * Sets or clears the VF bit in the HCR_EL2 register saved in the given |
| * arch_regs. |
| */ |
| static void set_virtual_fiq(struct arch_regs *r, bool enable) |
| { |
| if (enable) { |
| r->hcr_el2 |= HCR_EL2_VF; |
| } else { |
| r->hcr_el2 &= ~HCR_EL2_VF; |
| } |
| } |
| |
| /** |
| * Sets or clears the VF bit in the HCR_EL2 register. |
| */ |
| static void set_virtual_fiq_current(bool enable) |
| { |
| uintreg_t hcr_el2 = current()->regs.hcr_el2; |
| |
| if (enable) { |
| hcr_el2 |= HCR_EL2_VF; |
| } else { |
| hcr_el2 &= ~HCR_EL2_VF; |
| } |
| current()->regs.hcr_el2 = hcr_el2; |
| } |
| |
| #if SECURE_WORLD == 1 |
| |
| static bool sp_boot_next(struct vcpu *current, struct vcpu **next, |
| struct ffa_value *ffa_ret) |
| { |
| struct vm_locked current_vm_locked; |
| struct vm *vm_next = NULL; |
| bool ret = false; |
| |
| /* |
| * If VM hasn't been initialized, initialize it and traverse |
| * booting list following "next_boot" field in the VM structure. |
| * Once all the SPs have been booted (when "next_boot" is NULL), |
| * return execution to the NWd. |
| */ |
| current_vm_locked = vm_lock(current->vm); |
| if (current_vm_locked.vm->initialized == false) { |
| current_vm_locked.vm->initialized = true; |
| dlog_verbose("Initialized VM: %#x, boot_order: %u\n", |
| current_vm_locked.vm->id, |
| current_vm_locked.vm->boot_order); |
| |
| if (current_vm_locked.vm->next_boot != NULL) { |
| current->state = VCPU_STATE_BLOCKED_MAILBOX; |
| vm_next = current_vm_locked.vm->next_boot; |
| CHECK(vm_next->initialized == false); |
| *next = vm_get_vcpu(vm_next, vcpu_index(current)); |
| arch_regs_reset(*next); |
| (*next)->cpu = current->cpu; |
| (*next)->state = VCPU_STATE_RUNNING; |
| (*next)->regs_available = false; |
| |
| *ffa_ret = (struct ffa_value){.func = FFA_INTERRUPT_32}; |
| ret = true; |
| goto out; |
| } |
| |
| dlog_verbose("Finished initializing all VMs.\n"); |
| } |
| |
| out: |
| vm_unlock(¤t_vm_locked); |
| return ret; |
| } |
| |
| /** |
| * Handle special direct messages from SPMD to SPMC. For now related to power |
| * management only. |
| */ |
| static bool spmd_handler(struct ffa_value *args, struct vcpu *current) |
| { |
| ffa_vm_id_t sender = ffa_sender(*args); |
| ffa_vm_id_t receiver = ffa_receiver(*args); |
| ffa_vm_id_t current_vm_id = current->vm->id; |
| |
| /* |
| * Check if direct message request is originating from the SPMD and |
| * directed to the SPMC. |
| */ |
| if (!(sender == HF_SPMD_VM_ID && receiver == HF_SPMC_VM_ID && |
| current_vm_id == HF_OTHER_WORLD_ID)) { |
| return false; |
| } |
| |
| switch (args->arg3) { |
| case PSCI_CPU_OFF: { |
| struct vm *vm = vm_get_first_boot(); |
| struct vcpu *vcpu = vm_get_vcpu(vm, vcpu_index(current)); |
| |
| /* |
| * TODO: the PM event reached the SPMC. In a later iteration, |
| * the PM event can be passed to the SP by resuming it. |
| */ |
| *args = (struct ffa_value){ |
| .func = FFA_MSG_SEND_DIRECT_RESP_32, |
| .arg1 = ((uint64_t)HF_SPMC_VM_ID << 16) | HF_SPMD_VM_ID, |
| .arg2 = 0U}; |
| |
| dlog_verbose("%s cpu off notification cpuid %#x\n", __func__, |
| vcpu->cpu->id); |
| cpu_off(vcpu->cpu); |
| break; |
| } |
| default: |
| dlog_verbose("%s message not handled %#x\n", __func__, |
| args->arg3); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| #endif |
| |
| /** |
| * Checks whether to block an SMC being forwarded from a VM. |
| */ |
| static bool smc_is_blocked(const struct vm *vm, uint32_t func) |
| { |
| bool block_by_default = !vm->smc_whitelist.permissive; |
| |
| for (size_t i = 0; i < vm->smc_whitelist.smc_count; ++i) { |
| if (func == vm->smc_whitelist.smcs[i]) { |
| return false; |
| } |
| } |
| |
| dlog_notice("SMC %#010x attempted from VM %#x, blocked=%u\n", func, |
| vm->id, block_by_default); |
| |
| /* Access is still allowed in permissive mode. */ |
| return block_by_default; |
| } |
| |
| /** |
| * Applies SMC access control according to manifest and forwards the call if |
| * access is granted. |
| */ |
| static void smc_forwarder(const struct vm *vm, struct ffa_value *args) |
| { |
| struct ffa_value ret; |
| uint32_t client_id = vm->id; |
| uintreg_t arg7 = args->arg7; |
| |
| if (smc_is_blocked(vm, args->func)) { |
| args->func = SMCCC_ERROR_UNKNOWN; |
| return; |
| } |
| |
| /* |
| * Set the Client ID but keep the existing Secure OS ID and anything |
| * else (currently unspecified) that the client may have passed in the |
| * upper bits. |
| */ |
| args->arg7 = client_id | (arg7 & ~CLIENT_ID_MASK); |
| ret = smc_forward(args->func, args->arg1, args->arg2, args->arg3, |
| args->arg4, args->arg5, args->arg6, args->arg7); |
| |
| /* |
| * Preserve the value passed by the caller, rather than the generated |
| * client_id. Note that this would also overwrite any return value that |
| * may be in x7, but the SMCs that we are forwarding are legacy calls |
| * from before SMCCC 1.2 so won't have more than 4 return values anyway. |
| */ |
| ret.arg7 = arg7; |
| |
| plat_smc_post_forward(*args, &ret); |
| |
| *args = ret; |
| } |
| |
| /** |
| * In the normal world, ffa_handler is always called from the virtual FF-A |
| * instance (from a VM in EL1). In the secure world, ffa_handler may be called |
| * from the virtual (a secure partition in S-EL1) or physical FF-A instance |
| * (from the normal world via EL3). The function returns true when the call is |
| * handled. The *next pointer is updated to the next vCPU to run, which might be |
| * the 'other world' vCPU if the call originated from the virtual FF-A instance |
| * and has to be forwarded down to EL3, or left as is to resume the current |
| * vCPU. |
| */ |
| static bool ffa_handler(struct ffa_value *args, struct vcpu *current, |
| struct vcpu **next) |
| { |
| uint32_t func = args->func; |
| |
| /* |
| * NOTE: When adding new methods to this handler update |
| * api_ffa_features accordingly. |
| */ |
| switch (func) { |
| case FFA_VERSION_32: |
| *args = api_ffa_version(args->arg1); |
| return true; |
| case FFA_PARTITION_INFO_GET_32: { |
| struct ffa_uuid uuid; |
| |
| ffa_uuid_init(args->arg1, args->arg2, args->arg3, args->arg4, |
| &uuid); |
| *args = api_ffa_partition_info_get(current, &uuid); |
| return true; |
| } |
| case FFA_ID_GET_32: |
| *args = api_ffa_id_get(current); |
| return true; |
| case FFA_SPM_ID_GET_32: |
| *args = api_ffa_spm_id_get(); |
| return true; |
| case FFA_FEATURES_32: |
| *args = api_ffa_features(args->arg1); |
| return true; |
| case FFA_RX_RELEASE_32: |
| *args = api_ffa_rx_release(current, next); |
| return true; |
| case FFA_RXTX_MAP_64: |
| *args = api_ffa_rxtx_map(ipa_init(args->arg1), |
| ipa_init(args->arg2), args->arg3, |
| current, next); |
| return true; |
| case FFA_YIELD_32: |
| *args = api_yield(current, next); |
| return true; |
| case FFA_MSG_SEND_32: |
| *args = api_ffa_msg_send(ffa_sender(*args), ffa_receiver(*args), |
| ffa_msg_send_size(*args), |
| ffa_msg_send_attributes(*args), |
| current, next); |
| return true; |
| case FFA_MSG_WAIT_32: |
| #if SECURE_WORLD == 1 |
| if (sp_boot_next(current, next, args)) { |
| return true; |
| } |
| #endif |
| *args = api_ffa_msg_recv(true, current, next); |
| return true; |
| case FFA_MSG_POLL_32: |
| *args = api_ffa_msg_recv(false, current, next); |
| return true; |
| case FFA_RUN_32: |
| *args = api_ffa_run(ffa_vm_id(*args), ffa_vcpu_index(*args), |
| current, next); |
| return true; |
| case FFA_MEM_DONATE_32: |
| case FFA_MEM_LEND_32: |
| case FFA_MEM_SHARE_32: |
| *args = api_ffa_mem_send(func, args->arg1, args->arg2, |
| ipa_init(args->arg3), args->arg4, |
| current); |
| return true; |
| case FFA_MEM_RETRIEVE_REQ_32: |
| *args = api_ffa_mem_retrieve_req(args->arg1, args->arg2, |
| ipa_init(args->arg3), |
| args->arg4, current); |
| return true; |
| case FFA_MEM_RELINQUISH_32: |
| *args = api_ffa_mem_relinquish(current); |
| return true; |
| case FFA_MEM_RECLAIM_32: |
| *args = api_ffa_mem_reclaim( |
| ffa_assemble_handle(args->arg1, args->arg2), args->arg3, |
| current); |
| return true; |
| case FFA_MEM_FRAG_RX_32: |
| *args = api_ffa_mem_frag_rx(ffa_frag_handle(*args), args->arg3, |
| (args->arg4 >> 16) & 0xffff, |
| current); |
| return true; |
| case FFA_MEM_FRAG_TX_32: |
| *args = api_ffa_mem_frag_tx(ffa_frag_handle(*args), args->arg3, |
| (args->arg4 >> 16) & 0xffff, |
| current); |
| return true; |
| case FFA_MSG_SEND_DIRECT_REQ_64: |
| case FFA_MSG_SEND_DIRECT_REQ_32: { |
| #if SECURE_WORLD == 1 |
| if (spmd_handler(args, current)) { |
| return true; |
| } |
| #endif |
| *args = api_ffa_msg_send_direct_req(ffa_sender(*args), |
| ffa_receiver(*args), *args, |
| current, next); |
| return true; |
| } |
| case FFA_MSG_SEND_DIRECT_RESP_64: |
| case FFA_MSG_SEND_DIRECT_RESP_32: |
| *args = api_ffa_msg_send_direct_resp(ffa_sender(*args), |
| ffa_receiver(*args), *args, |
| current, next); |
| return true; |
| case FFA_SECONDARY_EP_REGISTER_64: |
| *args = api_ffa_secondary_ep_register(ipa_init(args->arg1), |
| current); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * Set or clear VI/VF bits according to pending interrupts. |
| */ |
| static void vcpu_update_virtual_interrupts(struct vcpu *next) |
| { |
| struct vcpu_locked vcpu_locked; |
| |
| if (next == NULL) { |
| /* |
| * Not switching vCPUs, set the bit for the current vCPU |
| * directly in the register. |
| */ |
| |
| vcpu_locked = vcpu_lock(current()); |
| set_virtual_irq_current( |
| vcpu_interrupt_irq_count_get(vcpu_locked) > 0); |
| set_virtual_fiq_current( |
| vcpu_interrupt_fiq_count_get(vcpu_locked) > 0); |
| vcpu_unlock(&vcpu_locked); |
| } else if (vm_id_is_current_world(next->vm->id)) { |
| /* |
| * About to switch vCPUs, set the bit for the vCPU to which we |
| * are switching in the saved copy of the register. |
| */ |
| |
| vcpu_locked = vcpu_lock(next); |
| set_virtual_irq(&next->regs, |
| vcpu_interrupt_irq_count_get(vcpu_locked) > 0); |
| set_virtual_fiq(&next->regs, |
| vcpu_interrupt_fiq_count_get(vcpu_locked) > 0); |
| vcpu_unlock(&vcpu_locked); |
| } |
| } |
| |
| /** |
| * Handles PSCI and FF-A calls and writes the return value back to the registers |
| * of the vCPU. This is shared between smc_handler and hvc_handler. |
| * |
| * Returns true if the call was handled. |
| */ |
| static bool hvc_smc_handler(struct ffa_value args, struct vcpu *vcpu, |
| struct vcpu **next) |
| { |
| /* Do not expect PSCI calls emitted from within the secure world. */ |
| #if SECURE_WORLD == 0 |
| if (psci_handler(vcpu, args.func, args.arg1, args.arg2, args.arg3, |
| &vcpu->regs.r[0], next)) { |
| return true; |
| } |
| #endif |
| |
| if (ffa_handler(&args, vcpu, next)) { |
| arch_regs_set_retval(&vcpu->regs, args); |
| vcpu_update_virtual_interrupts(*next); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * Processes SMC instruction calls. |
| */ |
| static struct vcpu *smc_handler(struct vcpu *vcpu) |
| { |
| struct ffa_value args = arch_regs_get_args(&vcpu->regs); |
| struct vcpu *next = NULL; |
| |
| if (hvc_smc_handler(args, vcpu, &next)) { |
| return next; |
| } |
| |
| switch (args.func & ~SMCCC_CONVENTION_MASK) { |
| case HF_DEBUG_LOG: |
| vcpu->regs.r[0] = api_debug_log(args.arg1, vcpu); |
| return NULL; |
| } |
| |
| smc_forwarder(vcpu->vm, &args); |
| arch_regs_set_retval(&vcpu->regs, args); |
| return NULL; |
| } |
| |
| #if SECURE_WORLD == 1 |
| |
| /** |
| * Called from other_world_loop return from SMC. |
| * Processes SMC calls originating from the NWd. |
| */ |
| struct vcpu *smc_handler_from_nwd(struct vcpu *vcpu) |
| { |
| struct ffa_value args = arch_regs_get_args(&vcpu->regs); |
| struct vcpu *next = NULL; |
| |
| if (hvc_smc_handler(args, vcpu, &next)) { |
| return next; |
| } |
| |
| /* |
| * If the SMC emitted by the normal world is not handled in the secure |
| * world then return an error stating such ABI is not supported. Only |
| * FF-A calls are supported. We cannot return SMCCC_ERROR_UNKNOWN |
| * directly because the SPMD smc handler would not recognize it as a |
| * standard FF-A call returning from the SPMC. |
| */ |
| arch_regs_set_retval(&vcpu->regs, ffa_error(FFA_NOT_SUPPORTED)); |
| |
| return NULL; |
| } |
| |
| #endif |
| |
| /* |
| * Exception vector offsets. |
| * See Arm Architecture Reference Manual Armv8-A, D1.10.2. |
| */ |
| |
| /** |
| * Offset for synchronous exceptions at current EL with SPx. |
| */ |
| #define OFFSET_CURRENT_SPX UINT64_C(0x200) |
| |
| /** |
| * Offset for synchronous exceptions at lower EL using AArch64. |
| */ |
| #define OFFSET_LOWER_EL_64 UINT64_C(0x400) |
| |
| /** |
| * Offset for synchronous exceptions at lower EL using AArch32. |
| */ |
| #define OFFSET_LOWER_EL_32 UINT64_C(0x600) |
| |
| /** |
| * Returns the address for the exception handler at EL1. |
| */ |
| static uintreg_t get_el1_exception_handler_addr(const struct vcpu *vcpu) |
| { |
| uintreg_t base_addr = has_vhe_support() ? read_msr(MSR_VBAR_EL12) |
| : read_msr(vbar_el1); |
| uintreg_t pe_mode = vcpu->regs.spsr & PSR_PE_MODE_MASK; |
| bool is_arch32 = vcpu->regs.spsr & PSR_ARCH_MODE_32; |
| |
| if (pe_mode == PSR_PE_MODE_EL0T) { |
| if (is_arch32) { |
| base_addr += OFFSET_LOWER_EL_32; |
| } else { |
| base_addr += OFFSET_LOWER_EL_64; |
| } |
| } else { |
| CHECK(!is_arch32); |
| base_addr += OFFSET_CURRENT_SPX; |
| } |
| |
| return base_addr; |
| } |
| |
| /** |
| * Injects an exception with the specified Exception Syndrom Register value into |
| * the EL1. |
| * |
| * NOTE: This function assumes that the lazy registers haven't been saved, and |
| * writes to the lazy registers of the CPU directly instead of the vCPU. |
| */ |
| static void inject_el1_exception(struct vcpu *vcpu, uintreg_t esr_el1_value, |
| uintreg_t far_el1_value) |
| { |
| uintreg_t handler_address = get_el1_exception_handler_addr(vcpu); |
| |
| /* Update the CPU state to inject the exception. */ |
| if (has_vhe_support()) { |
| write_msr(MSR_ESR_EL12, esr_el1_value); |
| write_msr(MSR_FAR_EL12, far_el1_value); |
| write_msr(MSR_ELR_EL12, vcpu->regs.pc); |
| write_msr(MSR_SPSR_EL12, vcpu->regs.spsr); |
| } else { |
| write_msr(esr_el1, esr_el1_value); |
| write_msr(far_el1, far_el1_value); |
| write_msr(elr_el1, vcpu->regs.pc); |
| write_msr(spsr_el1, vcpu->regs.spsr); |
| } |
| |
| /* |
| * Mask (disable) interrupts and run in EL1h mode. |
| * EL1h mode is used because by default, taking an exception selects the |
| * stack pointer for the target Exception level. The software can change |
| * that later in the handler if needed. |
| */ |
| vcpu->regs.spsr = PSR_D | PSR_A | PSR_I | PSR_F | PSR_PE_MODE_EL1H; |
| |
| /* Transfer control to the exception hander. */ |
| vcpu->regs.pc = handler_address; |
| } |
| |
| /** |
| * Injects a Data Abort exception (same exception level). |
| */ |
| static void inject_el1_data_abort_exception(struct vcpu *vcpu, |
| uintreg_t esr_el2, |
| uintreg_t far_el2) |
| { |
| /* |
| * ISS encoding remains the same, but the EC is changed to reflect |
| * where the exception came from. |
| * See Arm Architecture Reference Manual Armv8-A, pages D13-2943/2982. |
| */ |
| uintreg_t esr_el1_value = GET_ESR_ISS(esr_el2) | GET_ESR_IL(esr_el2) | |
| (EC_DATA_ABORT_SAME_EL << ESR_EC_OFFSET); |
| |
| dlog_notice("Injecting Data Abort exception into VM %#x.\n", |
| vcpu->vm->id); |
| |
| inject_el1_exception(vcpu, esr_el1_value, far_el2); |
| } |
| |
| /** |
| * Injects a Data Abort exception (same exception level). |
| */ |
| static void inject_el1_instruction_abort_exception(struct vcpu *vcpu, |
| uintreg_t esr_el2, |
| uintreg_t far_el2) |
| { |
| /* |
| * ISS encoding remains the same, but the EC is changed to reflect |
| * where the exception came from. |
| * See Arm Architecture Reference Manual Armv8-A, pages D13-2941/2980. |
| */ |
| uintreg_t esr_el1_value = |
| GET_ESR_ISS(esr_el2) | GET_ESR_IL(esr_el2) | |
| (EC_INSTRUCTION_ABORT_SAME_EL << ESR_EC_OFFSET); |
| |
| dlog_notice("Injecting Instruction Abort exception into VM %#x.\n", |
| vcpu->vm->id); |
| |
| inject_el1_exception(vcpu, esr_el1_value, far_el2); |
| } |
| |
| /** |
| * Injects an exception with an unknown reason into the EL1. |
| */ |
| static void inject_el1_unknown_exception(struct vcpu *vcpu, uintreg_t esr_el2) |
| { |
| uintreg_t esr_el1_value = |
| GET_ESR_IL(esr_el2) | (EC_UNKNOWN << ESR_EC_OFFSET); |
| |
| /* |
| * The value of the far_el2 register is UNKNOWN in this case, |
| * therefore, don't propagate it to avoid leaking sensitive information. |
| */ |
| uintreg_t far_el1_value = 0; |
| char *direction_str; |
| |
| direction_str = ISS_IS_READ(esr_el2) ? "read" : "write"; |
| dlog_notice( |
| "Trapped access to system register %s: op0=%d, op1=%d, crn=%d, " |
| "crm=%d, op2=%d, rt=%d.\n", |
| direction_str, GET_ISS_OP0(esr_el2), GET_ISS_OP1(esr_el2), |
| GET_ISS_CRN(esr_el2), GET_ISS_CRM(esr_el2), |
| GET_ISS_OP2(esr_el2), GET_ISS_RT(esr_el2)); |
| |
| dlog_notice("Injecting Unknown Reason exception into VM %#x.\n", |
| vcpu->vm->id); |
| |
| inject_el1_exception(vcpu, esr_el1_value, far_el1_value); |
| } |
| |
| static struct vcpu *hvc_handler(struct vcpu *vcpu) |
| { |
| struct ffa_value args = arch_regs_get_args(&vcpu->regs); |
| struct vcpu *next = NULL; |
| |
| if (hvc_smc_handler(args, vcpu, &next)) { |
| return next; |
| } |
| |
| switch (args.func) { |
| case HF_MAILBOX_WRITABLE_GET: |
| vcpu->regs.r[0] = api_mailbox_writable_get(vcpu); |
| break; |
| |
| case HF_MAILBOX_WAITER_GET: |
| vcpu->regs.r[0] = api_mailbox_waiter_get(args.arg1, vcpu); |
| break; |
| |
| case HF_INTERRUPT_ENABLE: |
| vcpu->regs.r[0] = api_interrupt_enable(args.arg1, args.arg2, |
| args.arg3, vcpu); |
| break; |
| |
| case HF_INTERRUPT_GET: |
| vcpu->regs.r[0] = api_interrupt_get(vcpu); |
| break; |
| |
| case HF_INTERRUPT_INJECT: |
| vcpu->regs.r[0] = api_interrupt_inject(args.arg1, args.arg2, |
| args.arg3, vcpu, &next); |
| break; |
| |
| case HF_DEBUG_LOG: |
| vcpu->regs.r[0] = api_debug_log(args.arg1, vcpu); |
| break; |
| |
| default: |
| vcpu->regs.r[0] = SMCCC_ERROR_UNKNOWN; |
| } |
| |
| vcpu_update_virtual_interrupts(next); |
| |
| return next; |
| } |
| |
| struct vcpu *irq_lower(void) |
| { |
| /* |
| * Switch back to primary VM, interrupts will be handled there. |
| * |
| * If the VM has aborted, this vCPU will be aborted when the scheduler |
| * tries to run it again. This means the interrupt will not be delayed |
| * by the aborted VM. |
| * |
| * TODO: Only switch when the interrupt isn't for the current VM. |
| */ |
| return api_preempt(current()); |
| } |
| |
| struct vcpu *fiq_lower(void) |
| { |
| #if SECURE_WORLD == 1 |
| struct vcpu_locked current_locked; |
| struct vcpu *current_vcpu = current(); |
| int ret; |
| |
| if (current_vcpu->vm->supports_managed_exit) { |
| /* Mask all interrupts */ |
| plat_interrupts_set_priority_mask(0x0); |
| |
| current_locked = vcpu_lock(current_vcpu); |
| ret = api_interrupt_inject_locked(current_locked, |
| HF_MANAGED_EXIT_INTID, |
| current_vcpu, NULL); |
| if (ret != 0) { |
| panic("Failed to inject managed exit interrupt\n"); |
| } |
| |
| /* Entering managed exit sequence. */ |
| current_vcpu->processing_managed_exit = true; |
| |
| vcpu_unlock(¤t_locked); |
| |
| /* |
| * Since we are in interrupt context, set the bit for the |
| * current vCPU directly in the register. |
| */ |
| vcpu_update_virtual_interrupts(NULL); |
| |
| /* Resume current vCPU. */ |
| return NULL; |
| } |
| |
| /* |
| * SP does not support managed exit. It is pre-empted and execution |
| * handed back to the normal world through the FFA_INTERRUPT ABI. |
| * The SP can be resumed later by ffa_run. The call to irq_lower |
| * and api_preempt is equivalent to calling api_switch_to_other_world |
| * for current vCPU passing FFA_INTERRUPT_32. |
| */ |
| #endif |
| |
| return irq_lower(); |
| } |
| |
| noreturn struct vcpu *serr_lower(void) |
| { |
| /* |
| * SError exceptions should be isolated and handled by the responsible |
| * VM/exception level. Getting here indicates a bug, that isolation is |
| * not working, or a processor that does not support ARMv8.2-IESB, in |
| * which case Hafnium routes SError exceptions to EL2 (here). |
| */ |
| panic("SError from a lower exception level."); |
| } |
| |
| /** |
| * Initialises a fault info structure. It assumes that an FnV bit exists at |
| * bit offset 10 of the ESR, and that it is only valid when the bottom 6 bits of |
| * the ESR (the fault status code) are 010000; this is the case for both |
| * instruction and data aborts, but not necessarily for other exception reasons. |
| */ |
| static struct vcpu_fault_info fault_info_init(uintreg_t esr, |
| const struct vcpu *vcpu, |
| uint32_t mode) |
| { |
| uint32_t fsc = esr & 0x3f; |
| struct vcpu_fault_info r; |
| uint64_t hpfar_el2_val; |
| uint64_t hpfar_el2_fipa; |
| |
| r.mode = mode; |
| r.pc = va_init(vcpu->regs.pc); |
| |
| /* Get Hypervisor IPA Fault Address value. */ |
| hpfar_el2_val = read_msr(hpfar_el2); |
| |
| /* Extract Faulting IPA. */ |
| hpfar_el2_fipa = (hpfar_el2_val & HPFAR_EL2_FIPA) << 8; |
| |
| #if SECURE_WORLD == 1 |
| |
| /** |
| * Determine if faulting IPA targets NS space. |
| * At NS-EL2 hpfar_el2 bit 63 is RES0. At S-EL2, this bit determines if |
| * the faulting Stage-1 address output is a secure or non-secure IPA. |
| */ |
| if ((hpfar_el2_val & HPFAR_EL2_NS) != 0) { |
| r.mode |= MM_MODE_NS; |
| } |
| |
| #endif |
| |
| /* |
| * Check the FnV bit, which is only valid if dfsc/ifsc is 010000. It |
| * indicates that we cannot rely on far_el2. |
| */ |
| if (fsc == 0x10 && esr & (1U << 10)) { |
| r.vaddr = va_init(0); |
| r.ipaddr = ipa_init(hpfar_el2_fipa); |
| } else { |
| r.vaddr = va_init(read_msr(far_el2)); |
| r.ipaddr = ipa_init(hpfar_el2_fipa | |
| (read_msr(far_el2) & (PAGE_SIZE - 1))); |
| } |
| |
| return r; |
| } |
| |
| struct vcpu *sync_lower_exception(uintreg_t esr, uintreg_t far) |
| { |
| struct vcpu *vcpu = current(); |
| struct vcpu_fault_info info; |
| struct vcpu *new_vcpu; |
| uintreg_t ec = GET_ESR_EC(esr); |
| |
| switch (ec) { |
| case EC_WFI_WFE: |
| /* Skip the instruction. */ |
| vcpu->regs.pc += GET_NEXT_PC_INC(esr); |
| /* Check TI bit of ISS, 0 = WFI, 1 = WFE. */ |
| if (esr & 1) { |
| /* WFE */ |
| /* |
| * TODO: consider giving the scheduler more context, |
| * somehow. |
| */ |
| api_yield(vcpu, &new_vcpu); |
| return new_vcpu; |
| } |
| /* WFI */ |
| return api_wait_for_interrupt(vcpu); |
| |
| case EC_DATA_ABORT_LOWER_EL: |
| info = fault_info_init( |
| esr, vcpu, (esr & (1U << 6)) ? MM_MODE_W : MM_MODE_R); |
| if (vcpu_handle_page_fault(vcpu, &info)) { |
| return NULL; |
| } |
| /* Inform the EL1 of the data abort. */ |
| inject_el1_data_abort_exception(vcpu, esr, far); |
| |
| /* Schedule the same VM to continue running. */ |
| return NULL; |
| |
| case EC_INSTRUCTION_ABORT_LOWER_EL: |
| info = fault_info_init(esr, vcpu, MM_MODE_X); |
| if (vcpu_handle_page_fault(vcpu, &info)) { |
| return NULL; |
| } |
| /* Inform the EL1 of the instruction abort. */ |
| inject_el1_instruction_abort_exception(vcpu, esr, far); |
| |
| /* Schedule the same VM to continue running. */ |
| return NULL; |
| |
| case EC_HVC: |
| return hvc_handler(vcpu); |
| |
| case EC_SMC: { |
| uintreg_t smc_pc = vcpu->regs.pc; |
| struct vcpu *next = smc_handler(vcpu); |
| |
| /* Skip the SMC instruction. */ |
| vcpu->regs.pc = smc_pc + GET_NEXT_PC_INC(esr); |
| |
| return next; |
| } |
| |
| case EC_MSR: |
| /* |
| * NOTE: This should never be reached because it goes through a |
| * separate path handled by handle_system_register_access(). |
| */ |
| panic("Handled by handle_system_register_access()."); |
| |
| default: |
| dlog_notice( |
| "Unknown lower sync exception pc=%#x, esr=%#x, " |
| "ec=%#x\n", |
| vcpu->regs.pc, esr, ec); |
| break; |
| } |
| |
| /* |
| * The exception wasn't handled. Inject to the VM to give it chance to |
| * handle as an unknown exception. |
| */ |
| inject_el1_unknown_exception(vcpu, esr); |
| |
| /* Schedule the same VM to continue running. */ |
| return NULL; |
| } |
| |
| /** |
| * Handles EC = 011000, MSR, MRS instruction traps. |
| * Returns non-null ONLY if the access failed and the vCPU is changing. |
| */ |
| void handle_system_register_access(uintreg_t esr_el2) |
| { |
| struct vcpu *vcpu = current(); |
| ffa_vm_id_t vm_id = vcpu->vm->id; |
| uintreg_t ec = GET_ESR_EC(esr_el2); |
| |
| CHECK(ec == EC_MSR); |
| /* |
| * Handle accesses to debug and performance monitor registers. |
| * Inject an exception for unhandled/unsupported registers. |
| */ |
| if (debug_el1_is_register_access(esr_el2)) { |
| if (!debug_el1_process_access(vcpu, vm_id, esr_el2)) { |
| inject_el1_unknown_exception(vcpu, esr_el2); |
| return; |
| } |
| } else if (perfmon_is_register_access(esr_el2)) { |
| if (!perfmon_process_access(vcpu, vm_id, esr_el2)) { |
| inject_el1_unknown_exception(vcpu, esr_el2); |
| return; |
| } |
| } else if (feature_id_is_register_access(esr_el2)) { |
| if (!feature_id_process_access(vcpu, esr_el2)) { |
| inject_el1_unknown_exception(vcpu, esr_el2); |
| return; |
| } |
| } else { |
| inject_el1_unknown_exception(vcpu, esr_el2); |
| return; |
| } |
| |
| /* Instruction was fulfilled. Skip it and run the next one. */ |
| vcpu->regs.pc += GET_NEXT_PC_INC(esr_el2); |
| } |