| /* |
| * Copyright 2019 The Hafnium Authors. |
| * |
| * Use of this source code is governed by a BSD-style |
| * license that can be found in the LICENSE file or at |
| * https://opensource.org/licenses/BSD-3-Clause. |
| */ |
| |
| #include "hf/vcpu.h" |
| |
| #include "hf/arch/cpu.h" |
| |
| #include "hf/check.h" |
| #include "hf/dlog.h" |
| #include "hf/std.h" |
| #include "hf/vm.h" |
| |
| /** GP register to be used to pass the current vCPU ID, at core bring up. */ |
| #define PHYS_CORE_IDX_GP_REG 4 |
| |
| /** |
| * Locks the given vCPU and updates `locked` to hold the newly locked vCPU. |
| */ |
| struct vcpu_locked vcpu_lock(struct vcpu *vcpu) |
| { |
| struct vcpu_locked locked = { |
| .vcpu = vcpu, |
| }; |
| |
| sl_lock(&vcpu->lock); |
| |
| return locked; |
| } |
| |
| /** |
| * Locks two vCPUs ensuring that the locking order is according to the locks' |
| * addresses. |
| */ |
| struct two_vcpu_locked vcpu_lock_both(struct vcpu *vcpu1, struct vcpu *vcpu2) |
| { |
| struct two_vcpu_locked dual_lock; |
| |
| sl_lock_both(&vcpu1->lock, &vcpu2->lock); |
| dual_lock.vcpu1.vcpu = vcpu1; |
| dual_lock.vcpu2.vcpu = vcpu2; |
| |
| return dual_lock; |
| } |
| |
| /** |
| * Unlocks a vCPU previously locked with vpu_lock, and updates `locked` to |
| * reflect the fact that the vCPU is no longer locked. |
| */ |
| void vcpu_unlock(struct vcpu_locked *locked) |
| { |
| sl_unlock(&locked->vcpu->lock); |
| locked->vcpu = NULL; |
| } |
| |
| void vcpu_init(struct vcpu *vcpu, struct vm *vm) |
| { |
| memset_s(vcpu, sizeof(*vcpu), 0, sizeof(*vcpu)); |
| sl_init(&vcpu->lock); |
| vcpu->regs_available = true; |
| vcpu->vm = vm; |
| vcpu->state = VCPU_STATE_OFF; |
| vcpu->direct_request_origin.is_ffa_req2 = false; |
| vcpu->direct_request_origin.vm_id = HF_INVALID_VM_ID; |
| vcpu->rt_model = RTM_SP_INIT; |
| list_init(&vcpu->timer_node); |
| list_init(&vcpu->ipi_list_node); |
| } |
| |
| /** |
| * Initialise the registers for the given vCPU and set the state to |
| * VCPU_STATE_WAITING. The caller must hold the vCPU lock while calling this. |
| */ |
| void vcpu_on(struct vcpu_locked vcpu, ipaddr_t entry, uintreg_t arg) |
| { |
| arch_regs_set_pc_arg(&vcpu.vcpu->regs, entry, arg); |
| vcpu.vcpu->state = VCPU_STATE_WAITING; |
| } |
| |
| ffa_vcpu_index_t vcpu_index(const struct vcpu *vcpu) |
| { |
| size_t index = vcpu - vcpu->vm->vcpus; |
| |
| CHECK(index < UINT16_MAX); |
| return index; |
| } |
| |
| /** |
| * Check whether the given vcpu_state is an off state, for the purpose of |
| * turning vCPUs on and off. Note that Aborted still counts as ON for the |
| * purposes of PSCI, because according to the PSCI specification (section |
| * 5.7.1) a core is only considered to be off if it has been turned off |
| * with a CPU_OFF call or hasn't yet been turned on with a CPU_ON call. |
| */ |
| bool vcpu_is_off(struct vcpu_locked vcpu) |
| { |
| return (vcpu.vcpu->state == VCPU_STATE_OFF); |
| } |
| |
| /** |
| * Starts a vCPU of a secondary VM. |
| * |
| * Returns true if the secondary was reset and started, or false if it was |
| * already on and so nothing was done. |
| */ |
| bool vcpu_secondary_reset_and_start(struct vcpu_locked vcpu_locked, |
| ipaddr_t entry, uintreg_t arg) |
| { |
| struct vm *vm = vcpu_locked.vcpu->vm; |
| bool vcpu_was_off; |
| |
| CHECK(vm->id != HF_PRIMARY_VM_ID); |
| |
| vcpu_was_off = vcpu_is_off(vcpu_locked); |
| if (vcpu_was_off) { |
| /* |
| * Set vCPU registers to a clean state ready for boot. As this |
| * is a secondary which can migrate between pCPUs, the ID of the |
| * vCPU is defined as the index and does not match the ID of the |
| * pCPU it is running on. |
| */ |
| arch_regs_reset(vcpu_locked.vcpu); |
| vcpu_on(vcpu_locked, entry, arg); |
| } |
| |
| return vcpu_was_off; |
| } |
| |
| /** |
| * Handles a page fault. It does so by determining if it's a legitimate or |
| * spurious fault, and recovering from the latter. |
| * |
| * Returns true if the caller should resume the current vCPU, or false if its VM |
| * should be aborted. |
| */ |
| bool vcpu_handle_page_fault(const struct vcpu *current, |
| struct vcpu_fault_info *f) |
| { |
| struct vm *vm = current->vm; |
| mm_mode_t mode; |
| uint32_t mask = f->mode | MM_MODE_INVALID; |
| bool resume; |
| struct vm_locked locked_vm; |
| |
| locked_vm = vm_lock(vm); |
| /* |
| * Check if this is a legitimate fault, i.e., if the page table doesn't |
| * allow the access attempted by the VM. |
| * |
| * Otherwise, this is a spurious fault, likely because another CPU is |
| * updating the page table. It is responsible for issuing global TLB |
| * invalidations while holding the VM lock, so we don't need to do |
| * anything else to recover from it. (Acquiring/releasing the lock |
| * ensured that the invalidations have completed.) |
| */ |
| if (!locked_vm.vm->el0_partition) { |
| resume = vm_mem_get_mode(locked_vm, f->ipaddr, |
| ipa_add(f->ipaddr, 1), &mode) && |
| (mode & mask) == f->mode; |
| } else { |
| /* |
| * For EL0 partitions we need to get the mode for the faulting |
| * vaddr. |
| */ |
| resume = |
| vm_mem_get_mode(locked_vm, ipa_init(va_addr(f->vaddr)), |
| ipa_add(ipa_init(va_addr(f->vaddr)), 1), |
| &mode) && |
| (mode & mask) == f->mode; |
| |
| /* |
| * For EL0 partitions, if there is an instruction abort and the |
| * mode of the page is RWX, we don't resume since Hafnium does |
| * not allow write and executable pages. |
| */ |
| if ((f->mode == MM_MODE_X) && |
| ((mode & MM_MODE_W) == MM_MODE_W)) { |
| resume = false; |
| } |
| } |
| |
| vm_unlock(&locked_vm); |
| |
| if (!resume) { |
| dlog_warning( |
| "Stage-%d page fault: pc=%#lx, vmid=%#x, vcpu=%u, " |
| "vaddr=%#lx, ipaddr=%#lx, mode=%#x %#x\n", |
| current->vm->el0_partition ? 1 : 2, va_addr(f->pc), |
| vm->id, vcpu_index(current), va_addr(f->vaddr), |
| ipa_addr(f->ipaddr), f->mode, mode); |
| } |
| |
| return resume; |
| } |
| |
| void vcpu_set_phys_core_idx(struct vcpu *vcpu) |
| { |
| arch_regs_set_gp_reg(&vcpu->regs, cpu_index(vcpu->cpu), |
| PHYS_CORE_IDX_GP_REG); |
| } |
| |
| /** |
| * Sets the designated GP register through which the vCPU expects to receive the |
| * boot info's address. |
| */ |
| void vcpu_set_boot_info_gp_reg(struct vcpu *vcpu) |
| { |
| struct vm *vm = vcpu->vm; |
| uint32_t gp_register_num = vm->boot_info.gp_register_num; |
| |
| if (vm->boot_info.blob_addr.ipa != 0U) { |
| arch_regs_set_gp_reg(&vcpu->regs, |
| ipa_addr(vm->boot_info.blob_addr), |
| gp_register_num); |
| } |
| } |
| |
| static bool vcpu_is_virt_interrupt_enabled(struct interrupts *interrupts, |
| uint32_t intid) |
| { |
| return interrupt_bitmap_get_value(&interrupts->interrupt_enabled, |
| intid) == 1U; |
| } |
| |
| static void vcpu_virt_interrupt_set_enabled(struct interrupts *interrupts, |
| uint32_t intid) |
| { |
| interrupt_bitmap_set_value(&interrupts->interrupt_enabled, intid); |
| } |
| |
| static void vcpu_virt_interrupt_clear_enabled(struct interrupts *interrupts, |
| uint32_t intid) |
| { |
| interrupt_bitmap_clear_value(&interrupts->interrupt_enabled, intid); |
| } |
| |
| static void vcpu_virt_interrupt_set_pending(struct interrupts *interrupts, |
| uint32_t intid) |
| { |
| interrupt_bitmap_set_value(&interrupts->interrupt_pending, intid); |
| } |
| |
| static void vcpu_virt_interrupt_clear_pending(struct interrupts *interrupts, |
| uint32_t intid) |
| { |
| interrupt_bitmap_clear_value(&interrupts->interrupt_pending, intid); |
| } |
| |
| static void vcpu_irq_count_increment(struct vcpu_locked vcpu_locked) |
| { |
| vcpu_locked.vcpu->interrupts.enabled_and_pending_irq_count++; |
| } |
| |
| static void vcpu_irq_count_decrement(struct vcpu_locked vcpu_locked) |
| { |
| vcpu_locked.vcpu->interrupts.enabled_and_pending_irq_count--; |
| } |
| |
| static void vcpu_fiq_count_increment(struct vcpu_locked vcpu_locked) |
| { |
| vcpu_locked.vcpu->interrupts.enabled_and_pending_fiq_count++; |
| } |
| |
| static void vcpu_fiq_count_decrement(struct vcpu_locked vcpu_locked) |
| { |
| vcpu_locked.vcpu->interrupts.enabled_and_pending_fiq_count--; |
| } |
| |
| static void vcpu_interrupt_count_increment(struct vcpu_locked vcpu_locked, |
| uint32_t intid) |
| { |
| struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts; |
| |
| if (vcpu_virt_interrupt_get_type(interrupts, intid) == |
| INTERRUPT_TYPE_IRQ) { |
| vcpu_irq_count_increment(vcpu_locked); |
| } else { |
| vcpu_fiq_count_increment(vcpu_locked); |
| } |
| } |
| |
| static void vcpu_interrupt_count_decrement(struct vcpu_locked vcpu_locked, |
| uint32_t intid) |
| { |
| struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts; |
| |
| if (vcpu_virt_interrupt_get_type(interrupts, intid) == |
| INTERRUPT_TYPE_IRQ) { |
| vcpu_irq_count_decrement(vcpu_locked); |
| } else { |
| vcpu_fiq_count_decrement(vcpu_locked); |
| } |
| } |
| |
| uint32_t vcpu_virt_interrupt_irq_count_get(struct vcpu_locked vcpu_locked) |
| { |
| return vcpu_locked.vcpu->interrupts.enabled_and_pending_irq_count; |
| } |
| |
| uint32_t vcpu_virt_interrupt_fiq_count_get(struct vcpu_locked vcpu_locked) |
| { |
| return vcpu_locked.vcpu->interrupts.enabled_and_pending_fiq_count; |
| } |
| |
| uint32_t vcpu_virt_interrupt_count_get(struct vcpu_locked vcpu_locked) |
| { |
| return vcpu_virt_interrupt_irq_count_get(vcpu_locked) + |
| vcpu_virt_interrupt_fiq_count_get(vcpu_locked); |
| } |
| |
| static void vcpu_interrupt_clear_decrement(struct vcpu_locked vcpu_locked, |
| uint32_t intid) |
| { |
| struct interrupts *interrupts = &(vcpu_locked.vcpu->interrupts); |
| |
| /* Clear any specifics for the current intid. */ |
| switch (intid) { |
| case HF_IPI_INTID: |
| vcpu_ipi_clear_info_get_retrieved(vcpu_locked); |
| break; |
| default: |
| /* Do no additional work. */ |
| break; |
| } |
| |
| /* |
| * Mark the virtual interrupt as no longer pending and decrement |
| * the interrupt count if it is enabled. |
| */ |
| vcpu_virt_interrupt_clear_pending(interrupts, intid); |
| if (vcpu_is_virt_interrupt_enabled(interrupts, intid)) { |
| vcpu_interrupt_count_decrement(vcpu_locked, intid); |
| } |
| } |
| |
| /** |
| * Sets the vcpu in the VCPU_STATE_RUNNING. |
| * With that, its register are set as "not available". |
| * If there are registers to be written to vCPU's context, do so. |
| * However, this action is restricted to WAITING and BLOCKED states, |
| * as such, assert accordingly. |
| */ |
| void vcpu_set_running(struct vcpu_locked target_locked, |
| const struct ffa_value *args) |
| { |
| struct vcpu *target_vcpu = target_locked.vcpu; |
| |
| if (args != NULL) { |
| CHECK(target_vcpu->regs_available); |
| assert(target_vcpu->state == VCPU_STATE_WAITING || |
| target_vcpu->state == VCPU_STATE_BLOCKED); |
| |
| arch_regs_set_retval(&target_vcpu->regs, *args); |
| } |
| |
| /* Mark the registers as unavailable now. */ |
| target_vcpu->regs_available = false; |
| |
| /* We are about to resume target vCPU. */ |
| target_vcpu->state = VCPU_STATE_RUNNING; |
| } |
| |
| void vcpu_enter_secure_interrupt_rtm(struct vcpu_locked vcpu_locked) |
| { |
| struct vcpu *target_vcpu = vcpu_locked.vcpu; |
| |
| assert(target_vcpu->scheduling_mode == NONE); |
| assert(target_vcpu->call_chain.prev_node == NULL); |
| assert(target_vcpu->call_chain.next_node == NULL); |
| assert(target_vcpu->rt_model == RTM_NONE); |
| |
| target_vcpu->scheduling_mode = SPMC_MODE; |
| target_vcpu->rt_model = RTM_SEC_INTERRUPT; |
| } |
| |
| static uint16_t queue_increment_index(uint16_t current_idx) |
| { |
| /* Look at the next index. Wrap around if necessary. */ |
| if (current_idx == VINT_QUEUE_MAX - 1) { |
| return 0; |
| } |
| |
| return current_idx + 1; |
| } |
| |
| /** |
| * If tail reaches head of the queue, and the count of queued interrupts |
| * 0, then the queue is empty. |
| */ |
| static bool is_queue_empty(struct interrupt_queue *q) |
| { |
| return q->head == q->tail && q->queued_vint_count == 0U; |
| } |
| |
| /** |
| * If tail reaches head of the queue, and the count of queued interrupts |
| * matches the size of the buffer, then the queue is full. |
| */ |
| static bool is_queue_full(struct interrupt_queue *q) |
| { |
| return q->head == q->tail && q->queued_vint_count == VINT_QUEUE_MAX; |
| } |
| |
| /** |
| * Queue the pending virtual interrupt for target vCPU. |
| * |
| * Returns true if successful in pushing a new entry to the queue, or false |
| * otherwise. |
| */ |
| static bool vcpu_interrupt_queue_push(struct vcpu_locked vcpu_locked, |
| uint32_t vint_id) |
| { |
| struct interrupt_queue *q; |
| uint16_t new_tail; |
| |
| assert(vint_id != HF_INVALID_INTID); |
| |
| q = &vcpu_locked.vcpu->interrupts.vint_q; |
| |
| /* |
| * A new entry is pushed at the tail of the queue. Upon successful |
| * push operation, the tail increments or wraps around. |
| */ |
| new_tail = queue_increment_index(q->tail); |
| |
| if (is_queue_full(q)) { |
| return false; |
| } |
| |
| /* Add the virtual interrupt to the queue. */ |
| q->vint_buffer[q->tail] = vint_id; |
| q->tail = new_tail; |
| |
| assert(q->queued_vint_count < VINT_QUEUE_MAX); |
| q->queued_vint_count++; |
| |
| return true; |
| } |
| |
| /** |
| * Remove an entry from the specified vCPU's queue at the head. |
| * Returns true if successful in removing the entry, or false otherwise. |
| */ |
| static uint32_t vcpu_interrupt_queue_pop(struct vcpu_locked vcpu_locked) |
| { |
| struct interrupt_queue *q; |
| uint16_t new_head; |
| uint32_t vint_id; |
| |
| q = &vcpu_locked.vcpu->interrupts.vint_q; |
| |
| /* Check if queue is empty. */ |
| if (is_queue_empty(q)) { |
| return HF_INVALID_INTID; |
| } |
| |
| /* |
| * An entry is removed from the head of the queue. Once successful, the |
| * head is incremented or wrapped around if needed. |
| */ |
| new_head = queue_increment_index(q->head); |
| vint_id = q->vint_buffer[q->head]; |
| q->head = new_head; |
| |
| assert(q->queued_vint_count > 0); |
| q->queued_vint_count--; |
| |
| return vint_id; |
| } |
| |
| /** |
| * Look for the first pending virtual interrupt from the vcpu's queue. Note |
| * that the entry is not removed from the queue. |
| * |
| * Returns true if a valid entry exists in the queue, or false otherwise. |
| */ |
| static uint32_t vcpu_interrupt_queue_peek(struct vcpu_locked vcpu_locked) |
| { |
| struct interrupt_queue *q; |
| uint32_t queued_vint; |
| |
| q = &vcpu_locked.vcpu->interrupts.vint_q; |
| |
| /* Check if queue is empty. */ |
| if (is_queue_empty(q)) { |
| return HF_INVALID_INTID; |
| } |
| |
| queued_vint = q->vint_buffer[q->head]; |
| assert(queued_vint != HF_INVALID_INTID); |
| |
| return queued_vint; |
| } |
| |
| /** |
| * When interrupt handling is complete the preempted_vcpu field should go back |
| * to NULL. |
| */ |
| void vcpu_secure_interrupt_complete(struct vcpu_locked vcpu_locked) |
| { |
| struct vcpu *vcpu; |
| |
| vcpu = vcpu_locked.vcpu; |
| vcpu->preempted_vcpu = NULL; |
| } |
| |
| void vcpu_virt_interrupt_enable(struct vcpu_locked vcpu_locked, |
| uint32_t vint_id, bool enable) |
| { |
| struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts; |
| |
| if (enable) { |
| /* |
| * If it is pending and was not enabled before, increment the |
| * count. |
| */ |
| if (vcpu_is_virt_interrupt_pending(interrupts, vint_id) && |
| !vcpu_is_virt_interrupt_enabled(interrupts, vint_id)) { |
| vcpu_interrupt_count_increment(vcpu_locked, vint_id); |
| } |
| vcpu_virt_interrupt_set_enabled(interrupts, vint_id); |
| } else { |
| /* |
| * If it is pending and was enabled before, decrement the count. |
| */ |
| if (vcpu_is_virt_interrupt_pending(interrupts, vint_id) && |
| vcpu_is_virt_interrupt_enabled(interrupts, vint_id)) { |
| vcpu_interrupt_count_decrement(vcpu_locked, vint_id); |
| } |
| vcpu_virt_interrupt_clear_enabled(interrupts, vint_id); |
| } |
| } |
| |
| /* |
| * Find and return the first intid that is pending and enabled, the interrupt |
| * struct for this intid will be at the head of the list so can be popped later. |
| */ |
| uint32_t vcpu_virt_interrupt_peek_pending_and_enabled( |
| struct vcpu_locked vcpu_locked) |
| { |
| uint32_t vint_id; |
| struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts; |
| uint32_t pending_and_enabled_count = |
| vcpu_virt_interrupt_count_get(vcpu_locked); |
| |
| /* First check there is a pending and enabled interrupt to return. */ |
| if (pending_and_enabled_count == 0) { |
| return HF_INVALID_INTID; |
| } |
| |
| /* |
| * We know here there is a pending and enabled interrupt in |
| * the queue. So push any interrupts that are not enabled to |
| * the back of the queue until we reach the first enabled one. |
| */ |
| vint_id = vcpu_interrupt_queue_peek(vcpu_locked); |
| while (!vcpu_is_virt_interrupt_enabled(interrupts, vint_id)) { |
| vcpu_interrupt_queue_pop(vcpu_locked); |
| vcpu_interrupt_queue_push(vcpu_locked, vint_id); |
| vint_id = vcpu_interrupt_queue_peek(vcpu_locked); |
| } |
| |
| assert(vint_id != HF_INVALID_INTID); |
| |
| return vint_id; |
| } |
| |
| /* |
| * Get the next pending and enabled virtual interrupt ID. |
| * Pops from the queue and clears the bitmap. |
| */ |
| uint32_t vcpu_virt_interrupt_get_pending_and_enabled( |
| struct vcpu_locked vcpu_locked) |
| { |
| uint32_t vint_id = |
| vcpu_virt_interrupt_peek_pending_and_enabled(vcpu_locked); |
| |
| if (vint_id != HF_INVALID_INTID) { |
| vcpu_interrupt_queue_pop(vcpu_locked); |
| vcpu_interrupt_clear_decrement(vcpu_locked, vint_id); |
| } |
| |
| return vint_id; |
| } |
| |
| /* |
| * Set a virtual interrupt to pending. Add it to the queue and set the bitmap. |
| */ |
| void vcpu_virt_interrupt_inject(struct vcpu_locked vcpu_locked, |
| uint32_t vint_id) |
| { |
| struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts; |
| |
| /* |
| * An interrupt can only be pending once so return if it is |
| * already pending. |
| */ |
| if (vcpu_is_virt_interrupt_pending(interrupts, vint_id)) { |
| return; |
| } |
| |
| /* Push to the queue and set the bitmap. */ |
| if (!vcpu_interrupt_queue_push(vcpu_locked, vint_id)) { |
| dlog_verbose( |
| "Exhausted interrupt queue for vCPU %u of SP %#x\n", |
| vcpu_index(vcpu_locked.vcpu), vcpu_locked.vcpu->vm->id); |
| assert(false); |
| return; |
| } |
| vcpu_virt_interrupt_set_pending(interrupts, vint_id); |
| |
| if (vcpu_is_virt_interrupt_enabled(interrupts, vint_id)) { |
| vcpu_interrupt_count_increment(vcpu_locked, vint_id); |
| } |
| } |
| |
| void vcpu_virt_interrupt_clear(struct vcpu_locked vcpu_locked, uint32_t vint_id) |
| { |
| struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts; |
| uint32_t queued_vint_count = interrupts->vint_q.queued_vint_count; |
| |
| /* See if interrupt is pending and therefore needs to be cleared. */ |
| if (!vcpu_is_virt_interrupt_pending(interrupts, vint_id)) { |
| return; |
| } |
| |
| for (uint32_t i = 0; i < queued_vint_count; i++) { |
| uint32_t intid = vcpu_interrupt_queue_pop(vcpu_locked); |
| |
| if (intid == vint_id) { |
| vcpu_interrupt_clear_decrement(vcpu_locked, intid); |
| } else { |
| /* |
| * If the interrupt is not the one we wish to remove, |
| * inject it again. We must pop and push all interrupts |
| * to ensure the FIFO ordering is maintained. |
| */ |
| vcpu_interrupt_queue_push(vcpu_locked, intid); |
| } |
| } |
| } |