blob: 114048b95c5618718901c4421d97ac725724f0d5 [file] [log] [blame]
/*
* Copyright 2019 The Hafnium Authors.
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/BSD-3-Clause.
*/
#include "hf/vcpu.h"
#include "hf/arch/cpu.h"
#include "hf/check.h"
#include "hf/dlog.h"
#include "hf/std.h"
#include "hf/vm.h"
/** GP register to be used to pass the current vCPU ID, at core bring up. */
#define PHYS_CORE_IDX_GP_REG 4
/**
* Locks the given vCPU and updates `locked` to hold the newly locked vCPU.
*/
struct vcpu_locked vcpu_lock(struct vcpu *vcpu)
{
struct vcpu_locked locked = {
.vcpu = vcpu,
};
sl_lock(&vcpu->lock);
return locked;
}
/**
* Locks two vCPUs ensuring that the locking order is according to the locks'
* addresses.
*/
struct two_vcpu_locked vcpu_lock_both(struct vcpu *vcpu1, struct vcpu *vcpu2)
{
struct two_vcpu_locked dual_lock;
sl_lock_both(&vcpu1->lock, &vcpu2->lock);
dual_lock.vcpu1.vcpu = vcpu1;
dual_lock.vcpu2.vcpu = vcpu2;
return dual_lock;
}
/**
* Unlocks a vCPU previously locked with vpu_lock, and updates `locked` to
* reflect the fact that the vCPU is no longer locked.
*/
void vcpu_unlock(struct vcpu_locked *locked)
{
sl_unlock(&locked->vcpu->lock);
locked->vcpu = NULL;
}
void vcpu_init(struct vcpu *vcpu, struct vm *vm)
{
memset_s(vcpu, sizeof(*vcpu), 0, sizeof(*vcpu));
sl_init(&vcpu->lock);
vcpu->regs_available = true;
vcpu->vm = vm;
vcpu->state = VCPU_STATE_OFF;
vcpu->direct_request_origin.is_ffa_req2 = false;
vcpu->direct_request_origin.vm_id = HF_INVALID_VM_ID;
vcpu->rt_model = RTM_SP_INIT;
list_init(&vcpu->timer_node);
list_init(&vcpu->ipi_list_node);
}
/**
* Initialise the registers for the given vCPU and set the state to
* VCPU_STATE_WAITING. The caller must hold the vCPU lock while calling this.
*/
void vcpu_on(struct vcpu_locked vcpu, ipaddr_t entry, uintreg_t arg)
{
arch_regs_set_pc_arg(&vcpu.vcpu->regs, entry, arg);
vcpu.vcpu->state = VCPU_STATE_WAITING;
}
ffa_vcpu_index_t vcpu_index(const struct vcpu *vcpu)
{
size_t index = vcpu - vcpu->vm->vcpus;
CHECK(index < UINT16_MAX);
return index;
}
/**
* Check whether the given vcpu_state is an off state, for the purpose of
* turning vCPUs on and off. Note that Aborted still counts as ON for the
* purposes of PSCI, because according to the PSCI specification (section
* 5.7.1) a core is only considered to be off if it has been turned off
* with a CPU_OFF call or hasn't yet been turned on with a CPU_ON call.
*/
bool vcpu_is_off(struct vcpu_locked vcpu)
{
return (vcpu.vcpu->state == VCPU_STATE_OFF);
}
/**
* Starts a vCPU of a secondary VM.
*
* Returns true if the secondary was reset and started, or false if it was
* already on and so nothing was done.
*/
bool vcpu_secondary_reset_and_start(struct vcpu_locked vcpu_locked,
ipaddr_t entry, uintreg_t arg)
{
struct vm *vm = vcpu_locked.vcpu->vm;
bool vcpu_was_off;
CHECK(vm->id != HF_PRIMARY_VM_ID);
vcpu_was_off = vcpu_is_off(vcpu_locked);
if (vcpu_was_off) {
/*
* Set vCPU registers to a clean state ready for boot. As this
* is a secondary which can migrate between pCPUs, the ID of the
* vCPU is defined as the index and does not match the ID of the
* pCPU it is running on.
*/
arch_regs_reset(vcpu_locked.vcpu);
vcpu_on(vcpu_locked, entry, arg);
}
return vcpu_was_off;
}
/**
* Handles a page fault. It does so by determining if it's a legitimate or
* spurious fault, and recovering from the latter.
*
* Returns true if the caller should resume the current vCPU, or false if its VM
* should be aborted.
*/
bool vcpu_handle_page_fault(const struct vcpu *current,
struct vcpu_fault_info *f)
{
struct vm *vm = current->vm;
mm_mode_t mode;
uint32_t mask = f->mode | MM_MODE_INVALID;
bool resume;
struct vm_locked locked_vm;
locked_vm = vm_lock(vm);
/*
* Check if this is a legitimate fault, i.e., if the page table doesn't
* allow the access attempted by the VM.
*
* Otherwise, this is a spurious fault, likely because another CPU is
* updating the page table. It is responsible for issuing global TLB
* invalidations while holding the VM lock, so we don't need to do
* anything else to recover from it. (Acquiring/releasing the lock
* ensured that the invalidations have completed.)
*/
if (!locked_vm.vm->el0_partition) {
resume = vm_mem_get_mode(locked_vm, f->ipaddr,
ipa_add(f->ipaddr, 1), &mode) &&
(mode & mask) == f->mode;
} else {
/*
* For EL0 partitions we need to get the mode for the faulting
* vaddr.
*/
resume =
vm_mem_get_mode(locked_vm, ipa_init(va_addr(f->vaddr)),
ipa_add(ipa_init(va_addr(f->vaddr)), 1),
&mode) &&
(mode & mask) == f->mode;
/*
* For EL0 partitions, if there is an instruction abort and the
* mode of the page is RWX, we don't resume since Hafnium does
* not allow write and executable pages.
*/
if ((f->mode == MM_MODE_X) &&
((mode & MM_MODE_W) == MM_MODE_W)) {
resume = false;
}
}
vm_unlock(&locked_vm);
if (!resume) {
dlog_warning(
"Stage-%d page fault: pc=%#lx, vmid=%#x, vcpu=%u, "
"vaddr=%#lx, ipaddr=%#lx, mode=%#x %#x\n",
current->vm->el0_partition ? 1 : 2, va_addr(f->pc),
vm->id, vcpu_index(current), va_addr(f->vaddr),
ipa_addr(f->ipaddr), f->mode, mode);
}
return resume;
}
void vcpu_set_phys_core_idx(struct vcpu *vcpu)
{
arch_regs_set_gp_reg(&vcpu->regs, cpu_index(vcpu->cpu),
PHYS_CORE_IDX_GP_REG);
}
/**
* Sets the designated GP register through which the vCPU expects to receive the
* boot info's address.
*/
void vcpu_set_boot_info_gp_reg(struct vcpu *vcpu)
{
struct vm *vm = vcpu->vm;
uint32_t gp_register_num = vm->boot_info.gp_register_num;
if (vm->boot_info.blob_addr.ipa != 0U) {
arch_regs_set_gp_reg(&vcpu->regs,
ipa_addr(vm->boot_info.blob_addr),
gp_register_num);
}
}
static bool vcpu_is_virt_interrupt_enabled(struct interrupts *interrupts,
uint32_t intid)
{
return interrupt_bitmap_get_value(&interrupts->interrupt_enabled,
intid) == 1U;
}
static void vcpu_virt_interrupt_set_enabled(struct interrupts *interrupts,
uint32_t intid)
{
interrupt_bitmap_set_value(&interrupts->interrupt_enabled, intid);
}
static void vcpu_virt_interrupt_clear_enabled(struct interrupts *interrupts,
uint32_t intid)
{
interrupt_bitmap_clear_value(&interrupts->interrupt_enabled, intid);
}
static void vcpu_virt_interrupt_set_pending(struct interrupts *interrupts,
uint32_t intid)
{
interrupt_bitmap_set_value(&interrupts->interrupt_pending, intid);
}
static void vcpu_virt_interrupt_clear_pending(struct interrupts *interrupts,
uint32_t intid)
{
interrupt_bitmap_clear_value(&interrupts->interrupt_pending, intid);
}
static void vcpu_irq_count_increment(struct vcpu_locked vcpu_locked)
{
vcpu_locked.vcpu->interrupts.enabled_and_pending_irq_count++;
}
static void vcpu_irq_count_decrement(struct vcpu_locked vcpu_locked)
{
vcpu_locked.vcpu->interrupts.enabled_and_pending_irq_count--;
}
static void vcpu_fiq_count_increment(struct vcpu_locked vcpu_locked)
{
vcpu_locked.vcpu->interrupts.enabled_and_pending_fiq_count++;
}
static void vcpu_fiq_count_decrement(struct vcpu_locked vcpu_locked)
{
vcpu_locked.vcpu->interrupts.enabled_and_pending_fiq_count--;
}
static void vcpu_interrupt_count_increment(struct vcpu_locked vcpu_locked,
uint32_t intid)
{
struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts;
if (vcpu_virt_interrupt_get_type(interrupts, intid) ==
INTERRUPT_TYPE_IRQ) {
vcpu_irq_count_increment(vcpu_locked);
} else {
vcpu_fiq_count_increment(vcpu_locked);
}
}
static void vcpu_interrupt_count_decrement(struct vcpu_locked vcpu_locked,
uint32_t intid)
{
struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts;
if (vcpu_virt_interrupt_get_type(interrupts, intid) ==
INTERRUPT_TYPE_IRQ) {
vcpu_irq_count_decrement(vcpu_locked);
} else {
vcpu_fiq_count_decrement(vcpu_locked);
}
}
uint32_t vcpu_virt_interrupt_irq_count_get(struct vcpu_locked vcpu_locked)
{
return vcpu_locked.vcpu->interrupts.enabled_and_pending_irq_count;
}
uint32_t vcpu_virt_interrupt_fiq_count_get(struct vcpu_locked vcpu_locked)
{
return vcpu_locked.vcpu->interrupts.enabled_and_pending_fiq_count;
}
uint32_t vcpu_virt_interrupt_count_get(struct vcpu_locked vcpu_locked)
{
return vcpu_virt_interrupt_irq_count_get(vcpu_locked) +
vcpu_virt_interrupt_fiq_count_get(vcpu_locked);
}
static void vcpu_interrupt_clear_decrement(struct vcpu_locked vcpu_locked,
uint32_t intid)
{
struct interrupts *interrupts = &(vcpu_locked.vcpu->interrupts);
/* Clear any specifics for the current intid. */
switch (intid) {
case HF_IPI_INTID:
vcpu_ipi_clear_info_get_retrieved(vcpu_locked);
break;
default:
/* Do no additional work. */
break;
}
/*
* Mark the virtual interrupt as no longer pending and decrement
* the interrupt count if it is enabled.
*/
vcpu_virt_interrupt_clear_pending(interrupts, intid);
if (vcpu_is_virt_interrupt_enabled(interrupts, intid)) {
vcpu_interrupt_count_decrement(vcpu_locked, intid);
}
}
/**
* Sets the vcpu in the VCPU_STATE_RUNNING.
* With that, its register are set as "not available".
* If there are registers to be written to vCPU's context, do so.
* However, this action is restricted to WAITING and BLOCKED states,
* as such, assert accordingly.
*/
void vcpu_set_running(struct vcpu_locked target_locked,
const struct ffa_value *args)
{
struct vcpu *target_vcpu = target_locked.vcpu;
if (args != NULL) {
CHECK(target_vcpu->regs_available);
assert(target_vcpu->state == VCPU_STATE_WAITING ||
target_vcpu->state == VCPU_STATE_BLOCKED);
arch_regs_set_retval(&target_vcpu->regs, *args);
}
/* Mark the registers as unavailable now. */
target_vcpu->regs_available = false;
/* We are about to resume target vCPU. */
target_vcpu->state = VCPU_STATE_RUNNING;
}
void vcpu_enter_secure_interrupt_rtm(struct vcpu_locked vcpu_locked)
{
struct vcpu *target_vcpu = vcpu_locked.vcpu;
assert(target_vcpu->scheduling_mode == NONE);
assert(target_vcpu->call_chain.prev_node == NULL);
assert(target_vcpu->call_chain.next_node == NULL);
assert(target_vcpu->rt_model == RTM_NONE);
target_vcpu->scheduling_mode = SPMC_MODE;
target_vcpu->rt_model = RTM_SEC_INTERRUPT;
}
static uint16_t queue_increment_index(uint16_t current_idx)
{
/* Look at the next index. Wrap around if necessary. */
if (current_idx == VINT_QUEUE_MAX - 1) {
return 0;
}
return current_idx + 1;
}
/**
* If tail reaches head of the queue, and the count of queued interrupts
* 0, then the queue is empty.
*/
static bool is_queue_empty(struct interrupt_queue *q)
{
return q->head == q->tail && q->queued_vint_count == 0U;
}
/**
* If tail reaches head of the queue, and the count of queued interrupts
* matches the size of the buffer, then the queue is full.
*/
static bool is_queue_full(struct interrupt_queue *q)
{
return q->head == q->tail && q->queued_vint_count == VINT_QUEUE_MAX;
}
/**
* Queue the pending virtual interrupt for target vCPU.
*
* Returns true if successful in pushing a new entry to the queue, or false
* otherwise.
*/
static bool vcpu_interrupt_queue_push(struct vcpu_locked vcpu_locked,
uint32_t vint_id)
{
struct interrupt_queue *q;
uint16_t new_tail;
assert(vint_id != HF_INVALID_INTID);
q = &vcpu_locked.vcpu->interrupts.vint_q;
/*
* A new entry is pushed at the tail of the queue. Upon successful
* push operation, the tail increments or wraps around.
*/
new_tail = queue_increment_index(q->tail);
if (is_queue_full(q)) {
return false;
}
/* Add the virtual interrupt to the queue. */
q->vint_buffer[q->tail] = vint_id;
q->tail = new_tail;
assert(q->queued_vint_count < VINT_QUEUE_MAX);
q->queued_vint_count++;
return true;
}
/**
* Remove an entry from the specified vCPU's queue at the head.
* Returns true if successful in removing the entry, or false otherwise.
*/
static uint32_t vcpu_interrupt_queue_pop(struct vcpu_locked vcpu_locked)
{
struct interrupt_queue *q;
uint16_t new_head;
uint32_t vint_id;
q = &vcpu_locked.vcpu->interrupts.vint_q;
/* Check if queue is empty. */
if (is_queue_empty(q)) {
return HF_INVALID_INTID;
}
/*
* An entry is removed from the head of the queue. Once successful, the
* head is incremented or wrapped around if needed.
*/
new_head = queue_increment_index(q->head);
vint_id = q->vint_buffer[q->head];
q->head = new_head;
assert(q->queued_vint_count > 0);
q->queued_vint_count--;
return vint_id;
}
/**
* Look for the first pending virtual interrupt from the vcpu's queue. Note
* that the entry is not removed from the queue.
*
* Returns true if a valid entry exists in the queue, or false otherwise.
*/
static uint32_t vcpu_interrupt_queue_peek(struct vcpu_locked vcpu_locked)
{
struct interrupt_queue *q;
uint32_t queued_vint;
q = &vcpu_locked.vcpu->interrupts.vint_q;
/* Check if queue is empty. */
if (is_queue_empty(q)) {
return HF_INVALID_INTID;
}
queued_vint = q->vint_buffer[q->head];
assert(queued_vint != HF_INVALID_INTID);
return queued_vint;
}
/**
* When interrupt handling is complete the preempted_vcpu field should go back
* to NULL.
*/
void vcpu_secure_interrupt_complete(struct vcpu_locked vcpu_locked)
{
struct vcpu *vcpu;
vcpu = vcpu_locked.vcpu;
vcpu->preempted_vcpu = NULL;
}
void vcpu_virt_interrupt_enable(struct vcpu_locked vcpu_locked,
uint32_t vint_id, bool enable)
{
struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts;
if (enable) {
/*
* If it is pending and was not enabled before, increment the
* count.
*/
if (vcpu_is_virt_interrupt_pending(interrupts, vint_id) &&
!vcpu_is_virt_interrupt_enabled(interrupts, vint_id)) {
vcpu_interrupt_count_increment(vcpu_locked, vint_id);
}
vcpu_virt_interrupt_set_enabled(interrupts, vint_id);
} else {
/*
* If it is pending and was enabled before, decrement the count.
*/
if (vcpu_is_virt_interrupt_pending(interrupts, vint_id) &&
vcpu_is_virt_interrupt_enabled(interrupts, vint_id)) {
vcpu_interrupt_count_decrement(vcpu_locked, vint_id);
}
vcpu_virt_interrupt_clear_enabled(interrupts, vint_id);
}
}
/*
* Find and return the first intid that is pending and enabled, the interrupt
* struct for this intid will be at the head of the list so can be popped later.
*/
uint32_t vcpu_virt_interrupt_peek_pending_and_enabled(
struct vcpu_locked vcpu_locked)
{
uint32_t vint_id;
struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts;
uint32_t pending_and_enabled_count =
vcpu_virt_interrupt_count_get(vcpu_locked);
/* First check there is a pending and enabled interrupt to return. */
if (pending_and_enabled_count == 0) {
return HF_INVALID_INTID;
}
/*
* We know here there is a pending and enabled interrupt in
* the queue. So push any interrupts that are not enabled to
* the back of the queue until we reach the first enabled one.
*/
vint_id = vcpu_interrupt_queue_peek(vcpu_locked);
while (!vcpu_is_virt_interrupt_enabled(interrupts, vint_id)) {
vcpu_interrupt_queue_pop(vcpu_locked);
vcpu_interrupt_queue_push(vcpu_locked, vint_id);
vint_id = vcpu_interrupt_queue_peek(vcpu_locked);
}
assert(vint_id != HF_INVALID_INTID);
return vint_id;
}
/*
* Get the next pending and enabled virtual interrupt ID.
* Pops from the queue and clears the bitmap.
*/
uint32_t vcpu_virt_interrupt_get_pending_and_enabled(
struct vcpu_locked vcpu_locked)
{
uint32_t vint_id =
vcpu_virt_interrupt_peek_pending_and_enabled(vcpu_locked);
if (vint_id != HF_INVALID_INTID) {
vcpu_interrupt_queue_pop(vcpu_locked);
vcpu_interrupt_clear_decrement(vcpu_locked, vint_id);
}
return vint_id;
}
/*
* Set a virtual interrupt to pending. Add it to the queue and set the bitmap.
*/
void vcpu_virt_interrupt_inject(struct vcpu_locked vcpu_locked,
uint32_t vint_id)
{
struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts;
/*
* An interrupt can only be pending once so return if it is
* already pending.
*/
if (vcpu_is_virt_interrupt_pending(interrupts, vint_id)) {
return;
}
/* Push to the queue and set the bitmap. */
if (!vcpu_interrupt_queue_push(vcpu_locked, vint_id)) {
dlog_verbose(
"Exhausted interrupt queue for vCPU %u of SP %#x\n",
vcpu_index(vcpu_locked.vcpu), vcpu_locked.vcpu->vm->id);
assert(false);
return;
}
vcpu_virt_interrupt_set_pending(interrupts, vint_id);
if (vcpu_is_virt_interrupt_enabled(interrupts, vint_id)) {
vcpu_interrupt_count_increment(vcpu_locked, vint_id);
}
}
void vcpu_virt_interrupt_clear(struct vcpu_locked vcpu_locked, uint32_t vint_id)
{
struct interrupts *interrupts = &vcpu_locked.vcpu->interrupts;
uint32_t queued_vint_count = interrupts->vint_q.queued_vint_count;
/* See if interrupt is pending and therefore needs to be cleared. */
if (!vcpu_is_virt_interrupt_pending(interrupts, vint_id)) {
return;
}
for (uint32_t i = 0; i < queued_vint_count; i++) {
uint32_t intid = vcpu_interrupt_queue_pop(vcpu_locked);
if (intid == vint_id) {
vcpu_interrupt_clear_decrement(vcpu_locked, intid);
} else {
/*
* If the interrupt is not the one we wish to remove,
* inject it again. We must pop and push all interrupts
* to ensure the FIFO ordering is maintained.
*/
vcpu_interrupt_queue_push(vcpu_locked, intid);
}
}
}