blob: 0aebb5446b07f7a098005da756b7527632b7c82b [file] [log] [blame]
/*
* Copyright 2018 The Hafnium Authors.
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/BSD-3-Clause.
*/
#include "hf/load.h"
#include <stdbool.h>
#include "hf/arch/other_world.h"
#include "hf/arch/plat/ffa.h"
#include "hf/arch/vm.h"
#include "hf/api.h"
#include "hf/boot_params.h"
#include "hf/check.h"
#include "hf/dlog.h"
#include "hf/fdt_patch.h"
#include "hf/layout.h"
#include "hf/memiter.h"
#include "hf/mm.h"
#include "hf/plat/console.h"
#include "hf/plat/interrupts.h"
#include "hf/plat/iommu.h"
#include "hf/static_assert.h"
#include "hf/std.h"
#include "hf/vm.h"
#include "vmapi/hf/call.h"
#include "vmapi/hf/ffa.h"
/**
* Copies data to an unmapped location by mapping it for write, copying the
* data, then unmapping it.
*
* The data is written so that it is available to all cores with the cache
* disabled. When switching to the partitions, the caching is initially disabled
* so the data must be available without the cache.
*/
static bool copy_to_unmapped(struct mm_stage1_locked stage1_locked, paddr_t to,
struct memiter *from_it, struct mpool *ppool)
{
const void *from = memiter_base(from_it);
size_t size = memiter_size(from_it);
paddr_t to_end = pa_add(to, size);
void *ptr;
ptr = mm_identity_map(stage1_locked, to, to_end, MM_MODE_W, ppool);
if (!ptr) {
return false;
}
memcpy_s(ptr, size, from, size);
arch_mm_flush_dcache(ptr, size);
CHECK(mm_unmap(stage1_locked, to, to_end, ppool));
return true;
}
/**
* Loads the secondary VM's kernel.
* Stores the kernel size in kernel_size (if kernel_size is not NULL).
* Returns false if it cannot load the kernel.
*/
static bool load_kernel(struct mm_stage1_locked stage1_locked, paddr_t begin,
paddr_t end, const struct manifest_vm *manifest_vm,
const struct memiter *cpio, struct mpool *ppool,
size_t *kernel_size)
{
struct memiter kernel;
size_t size;
if (!cpio_get_file(cpio, &manifest_vm->kernel_filename, &kernel)) {
dlog_error("Could not find kernel file \"%s\".\n",
string_data(&manifest_vm->kernel_filename));
return false;
}
size = memiter_size(&kernel);
if (pa_difference(begin, end) < size) {
dlog_error("Kernel is larger than available memory.\n");
return false;
}
if (!copy_to_unmapped(stage1_locked, begin, &kernel, ppool)) {
dlog_error("Unable to copy kernel.\n");
return false;
}
if (kernel_size) {
*kernel_size = size;
}
return true;
}
/*
* Link RX/TX buffers provided in partition manifest to mailbox
*/
static bool link_rxtx_to_mailbox(struct mm_stage1_locked stage1_locked,
struct vm_locked vm_locked, struct rx_tx rxtx,
struct mpool *ppool)
{
struct ffa_value ret;
ipaddr_t send;
ipaddr_t recv;
uint32_t page_count;
send = ipa_init(rxtx.tx_buffer->base_address);
recv = ipa_init(rxtx.rx_buffer->base_address);
page_count = rxtx.tx_buffer->page_count;
ret = api_vm_configure_pages(stage1_locked, vm_locked, send, recv,
page_count, ppool);
if (ret.func != FFA_SUCCESS_32) {
return false;
}
dlog_verbose(" mailbox: send = %#x, recv = %#x\n",
vm_locked.vm->mailbox.send, vm_locked.vm->mailbox.recv);
return true;
}
static void infer_interrupt(struct interrupt interrupt,
struct interrupt_descriptor *int_desc)
{
uint32_t attr = interrupt.attributes;
interrupt_desc_set_id(int_desc, interrupt.id);
interrupt_desc_set_priority(int_desc,
(attr >> INT_DESC_PRIORITY_SHIFT) & 0xff);
/* Refer to the comments in interrupt_descriptor struct definition. */
interrupt_desc_set_type_config_sec_state(
int_desc,
(((attr >> INT_DESC_TYPE_SHIFT) & 0x3) << 2) |
(((attr >> INT_DESC_CONFIG_SHIFT) & 0x1) << 1) |
((attr >> INT_DESC_SEC_STATE_SHIFT) & 0x1));
interrupt_desc_set_valid(int_desc, true);
}
/**
* Performs VM loading activities that are common between the primary and
* secondaries.
*/
static bool load_common(struct mm_stage1_locked stage1_locked,
struct vm_locked vm_locked,
const struct manifest_vm *manifest_vm,
struct mpool *ppool)
{
struct device_region dev_region;
struct interrupt interrupt;
uint32_t k = 0;
vm_locked.vm->smc_whitelist = manifest_vm->smc_whitelist;
vm_locked.vm->uuid = manifest_vm->partition.uuid;
/* Populate the interrupt descriptor for current VM. */
for (uint8_t i = 0; i < SP_MAX_DEVICE_REGIONS; i++) {
dev_region = manifest_vm->partition.dev_regions[i];
CHECK(dev_region.interrupt_count <=
SP_MAX_INTERRUPTS_PER_DEVICE);
for (uint8_t j = 0; j < dev_region.interrupt_count; j++) {
struct interrupt_descriptor int_desc;
interrupt = dev_region.interrupts[j];
infer_interrupt(interrupt, &int_desc);
vm_locked.vm->interrupt_desc[k] = int_desc;
/*
* Configure the physical interrupts allocated for this
* VM in its partition manifest.
*/
plat_interrupts_configure_interrupt(int_desc);
k++;
CHECK(k <= VM_MANIFEST_MAX_INTERRUPTS);
}
}
dlog_verbose("VM has %d physical interrupts defined in manifest.\n", k);
if (manifest_vm->is_ffa_partition) {
vm_locked.vm->ffa_version = manifest_vm->partition.ffa_version;
/* Link rxtx buffers to mailbox */
if (manifest_vm->partition.rxtx.available) {
if (!link_rxtx_to_mailbox(stage1_locked, vm_locked,
manifest_vm->partition.rxtx,
ppool)) {
dlog_error(
"Unable to Link RX/TX buffer with "
"mailbox.\n");
return false;
}
}
vm_locked.vm->messaging_method =
manifest_vm->partition.messaging_method;
vm_locked.vm->managed_exit =
manifest_vm->partition.managed_exit;
vm_locked.vm->notifications.enabled =
manifest_vm->partition.notification_support;
vm_locked.vm->boot_order = manifest_vm->partition.boot_order;
/* Updating boot list according to boot_order */
vm_update_boot(vm_locked.vm);
if (vm_locked_are_notifications_enabled(vm_locked) &&
!plat_ffa_notifications_bitmap_create_call(
vm_locked.vm->id, vm_locked.vm->vcpu_count)) {
return false;
}
}
/* Initialize architecture-specific features. */
arch_vm_features_set(vm_locked.vm);
if (!plat_iommu_attach_peripheral(stage1_locked, vm_locked, manifest_vm,
ppool)) {
dlog_error("Unable to attach upstream peripheral device\n");
return false;
}
return true;
}
/**
* Loads the primary VM.
*/
static bool load_primary(struct mm_stage1_locked stage1_locked,
const struct manifest_vm *manifest_vm,
const struct memiter *cpio,
const struct boot_params *params, struct mpool *ppool)
{
paddr_t primary_begin;
ipaddr_t primary_entry;
struct vm *vm;
struct vm_locked vm_locked;
struct vcpu_locked vcpu_locked;
size_t i;
bool ret;
if (manifest_vm->is_ffa_partition) {
primary_begin = pa_init(manifest_vm->partition.load_addr);
primary_entry = ipa_add(ipa_from_pa(primary_begin),
manifest_vm->partition.ep_offset);
} else {
primary_begin =
(manifest_vm->primary.boot_address ==
MANIFEST_INVALID_ADDRESS)
? layout_primary_begin()
: pa_init(manifest_vm->primary.boot_address);
primary_entry = ipa_from_pa(primary_begin);
}
paddr_t primary_end = pa_add(primary_begin, RSIZE_MAX);
/* Primary VM must be a VM */
CHECK(manifest_vm->partition.run_time_el == EL1);
/*
* Load the kernel if a filename is specified in the VM manifest.
* For an FF-A partition, kernel_filename is undefined indicating
* the partition package has already been loaded prior to Hafnium
* booting.
*/
if (!string_is_empty(&manifest_vm->kernel_filename)) {
if (!load_kernel(stage1_locked, primary_begin, primary_end,
manifest_vm, cpio, ppool, NULL)) {
dlog_error("Unable to load primary kernel.\n");
return false;
}
}
if (!vm_init_next(MAX_CPUS, ppool, &vm, false)) {
dlog_error("Unable to initialise primary VM.\n");
return false;
}
if (vm->id != HF_PRIMARY_VM_ID) {
dlog_error("Primary VM was not given correct ID.\n");
return false;
}
vm_locked = vm_lock(vm);
if (params->device_mem_ranges_count == 0) {
/*
* Map 1TB of address space as device memory to, most likely,
* make all devices available to the primary VM.
*
* TODO: remove this once all targets provide valid ranges.
*/
dlog_warning(
"Device memory not provided, defaulting to 1 TB.\n");
if (!vm_identity_map(
vm_locked, pa_init(0),
pa_init(UINT64_C(1024) * 1024 * 1024 * 1024),
MM_MODE_R | MM_MODE_W | MM_MODE_D, ppool, NULL)) {
dlog_error(
"Unable to initialise address space for "
"primary VM.\n");
ret = false;
goto out;
}
}
/* Map normal memory as such to permit caching, execution, etc. */
for (i = 0; i < params->mem_ranges_count; ++i) {
if (!vm_identity_map(vm_locked, params->mem_ranges[i].begin,
params->mem_ranges[i].end,
MM_MODE_R | MM_MODE_W | MM_MODE_X, ppool,
NULL)) {
dlog_error(
"Unable to initialise memory for primary "
"VM.\n");
ret = false;
goto out;
}
}
/* Map device memory as such to prevent execution, speculation etc. */
for (i = 0; i < params->device_mem_ranges_count; ++i) {
if (!vm_identity_map(
vm_locked, params->device_mem_ranges[i].begin,
params->device_mem_ranges[i].end,
MM_MODE_R | MM_MODE_W | MM_MODE_D, ppool, NULL)) {
dlog("Unable to initialise device memory for primary "
"VM.\n");
ret = false;
goto out;
}
}
if (!load_common(stage1_locked, vm_locked, manifest_vm, ppool)) {
ret = false;
goto out;
}
if (!vm_unmap_hypervisor(vm_locked, ppool)) {
dlog_error("Unable to unmap hypervisor from primary VM.\n");
ret = false;
goto out;
}
if (!plat_iommu_unmap_iommus(vm_locked, ppool)) {
dlog_error("Unable to unmap IOMMUs from primary VM.\n");
ret = false;
goto out;
}
dlog_info("Loaded primary VM with %u vCPUs, entry at %#x.\n",
vm->vcpu_count, pa_addr(primary_begin));
/* Mark the primary to be the first booted VM */
vm_update_boot(vm);
vcpu_locked = vcpu_lock(vm_get_vcpu(vm, 0));
vcpu_on(vcpu_locked, primary_entry, params->kernel_arg);
vcpu_unlock(&vcpu_locked);
ret = true;
out:
vm_unlock(&vm_locked);
return ret;
}
/**
* Loads the secondary VM's FDT.
* Stores the total allocated size for the FDT in fdt_allocated_size (if
* fdt_allocated_size is not NULL). The allocated size includes additional space
* for potential patching.
*/
static bool load_secondary_fdt(struct mm_stage1_locked stage1_locked,
paddr_t end, size_t fdt_max_size,
const struct manifest_vm *manifest_vm,
const struct memiter *cpio, struct mpool *ppool,
paddr_t *fdt_addr, size_t *fdt_allocated_size)
{
struct memiter fdt;
size_t allocated_size;
CHECK(!string_is_empty(&manifest_vm->secondary.fdt_filename));
if (!cpio_get_file(cpio, &manifest_vm->secondary.fdt_filename, &fdt)) {
dlog_error("Cannot open the secondary VM's FDT.\n");
return false;
}
/*
* Ensure the FDT has one additional page at the end for patching, and
* and align it to the page boundary.
*/
allocated_size = align_up(memiter_size(&fdt), PAGE_SIZE) + PAGE_SIZE;
if (allocated_size > fdt_max_size) {
dlog_error(
"FDT allocated space (%u) is more than the specified "
"maximum to use (%u).\n",
allocated_size, fdt_max_size);
return false;
}
/* Load the FDT to the end of the VM's allocated memory space. */
*fdt_addr = pa_init(pa_addr(pa_sub(end, allocated_size)));
dlog_info("Loading secondary FDT of allocated size %u at 0x%x.\n",
allocated_size, pa_addr(*fdt_addr));
if (!copy_to_unmapped(stage1_locked, *fdt_addr, &fdt, ppool)) {
dlog_error("Unable to copy FDT.\n");
return false;
}
if (fdt_allocated_size) {
*fdt_allocated_size = allocated_size;
}
return true;
}
/*
* Loads a secondary VM.
*/
static bool load_secondary(struct mm_stage1_locked stage1_locked,
struct vm_locked primary_vm_locked,
paddr_t mem_begin, paddr_t mem_end,
const struct manifest_vm *manifest_vm,
const struct memiter *cpio, struct mpool *ppool)
{
struct vm *vm;
struct vm_locked vm_locked;
struct vcpu_locked vcpu_locked;
struct vcpu *vcpu;
ipaddr_t secondary_entry;
bool ret;
paddr_t fdt_addr;
bool has_fdt;
size_t kernel_size = 0;
const size_t mem_size = pa_difference(mem_begin, mem_end);
uint32_t map_mode;
/*
* Load the kernel if a filename is specified in the VM manifest.
* For an FF-A partition, kernel_filename is undefined indicating
* the partition package has already been loaded prior to Hafnium
* booting.
*/
if (!string_is_empty(&manifest_vm->kernel_filename)) {
if (!load_kernel(stage1_locked, mem_begin, mem_end, manifest_vm,
cpio, ppool, &kernel_size)) {
dlog_error("Unable to load kernel.\n");
return false;
}
}
has_fdt = !string_is_empty(&manifest_vm->secondary.fdt_filename);
if (has_fdt) {
/*
* Ensure that the FDT does not overwrite the kernel or overlap
* its page, for the FDT to start at a page boundary.
*/
const size_t fdt_max_size =
mem_size - align_up(kernel_size, PAGE_SIZE);
size_t fdt_allocated_size;
if (!load_secondary_fdt(stage1_locked, mem_end, fdt_max_size,
manifest_vm, cpio, ppool, &fdt_addr,
&fdt_allocated_size)) {
dlog_error("Unable to load FDT.\n");
return false;
}
if (!fdt_patch_mem(stage1_locked, fdt_addr, fdt_allocated_size,
mem_begin, mem_end, ppool)) {
dlog_error("Unable to patch FDT.\n");
return false;
}
}
/*
* An S-EL0 partition must contain only 1 vCPU (UP migratable) per the
* FF-A 1.0 spec.
*/
CHECK(manifest_vm->partition.run_time_el != S_EL0 ||
manifest_vm->secondary.vcpu_count == 1);
if (!vm_init_next(manifest_vm->secondary.vcpu_count, ppool, &vm,
(manifest_vm->partition.run_time_el == S_EL0))) {
dlog_error("Unable to initialise VM.\n");
return false;
}
vm_locked = vm_lock(vm);
/*
* Grant the VM access to the memory. For VM's we mark all memory in
* stage-2 tables as RWX and the VM can control permissions using
* stage-1 translations. For S-EL0 partitions, hafnium maps the entire
* region of memory for the partition as RX. The partition is then
* expected to perform its owns relocations and call the FFA_MEM_PERM_*
* API's to change permissions on its image layout.
*/
if (vm->el0_partition) {
map_mode = MM_MODE_R | MM_MODE_X | MM_MODE_USER | MM_MODE_NG;
} else {
map_mode = MM_MODE_R | MM_MODE_W | MM_MODE_X;
}
if (!vm_identity_map(vm_locked, mem_begin, mem_end, map_mode, ppool,
&secondary_entry)) {
dlog_error("Unable to initialise memory.\n");
ret = false;
goto out;
}
if (manifest_vm->is_ffa_partition) {
int j = 0;
paddr_t region_begin;
paddr_t region_end;
paddr_t alloc_base = mem_end;
size_t size;
size_t total_alloc = 0;
/* Map memory-regions */
while (j < manifest_vm->partition.mem_region_count) {
size = manifest_vm->partition.mem_regions[j]
.page_count *
PAGE_SIZE;
/*
* For memory-regions without base-address, memory
* should be allocated inside partition's page table.
* Start allocating memory regions in partition's
* page table, starting from the end.
* TODO: Add mechanism to let partition know of these
* memory regions
*/
if (manifest_vm->partition.mem_regions[j]
.base_address == MANIFEST_INVALID_ADDRESS) {
total_alloc += size;
/* Don't go beyond half the VM's memory space */
if (total_alloc >
(manifest_vm->secondary.mem_size / 2)) {
dlog_error(
"Not enough space for memory-"
"region allocation");
ret = false;
goto out;
}
region_end = alloc_base;
region_begin = pa_subtract(alloc_base, size);
alloc_base = region_begin;
map_mode = manifest_vm->partition.mem_regions[j]
.attributes;
if (vm->el0_partition) {
map_mode |= MM_MODE_USER | MM_MODE_NG;
}
if (!vm_identity_map(vm_locked, region_begin,
region_end, map_mode,
ppool, NULL)) {
dlog_error(
"Unable to map secondary VM "
"memory-region.\n");
ret = false;
goto out;
}
dlog_verbose(
" Memory region %#x - %#x allocated\n",
region_begin, region_end);
} else {
/*
* Identity map memory region for both case,
* VA(S-EL0) or IPA(S-EL1).
*/
region_begin = pa_init(
manifest_vm->partition.mem_regions[j]
.base_address);
region_end = pa_add(region_begin, size);
map_mode = manifest_vm->partition.mem_regions[j]
.attributes;
if (vm->el0_partition) {
map_mode |= MM_MODE_USER | MM_MODE_NG;
}
if (!vm_identity_map(vm_locked, region_begin,
region_end, map_mode,
ppool, NULL)) {
dlog_error(
"Unable to map secondary VM "
"memory-region.\n");
ret = false;
goto out;
}
}
/* Deny the primary VM access to this memory */
if (!vm_unmap(primary_vm_locked, region_begin,
region_end, ppool)) {
dlog_error(
"Unable to unmap secondary VM memory-"
"region from primary VM.\n");
ret = false;
goto out;
}
j++;
}
/* Map device-regions */
j = 0;
while (j < manifest_vm->partition.dev_region_count) {
region_begin =
pa_init(manifest_vm->partition.dev_regions[j]
.base_address);
size = manifest_vm->partition.dev_regions[j]
.page_count *
PAGE_SIZE;
region_end = pa_add(region_begin, size);
map_mode = manifest_vm->partition.dev_regions[j]
.attributes;
if (vm->el0_partition) {
map_mode |= MM_MODE_USER | MM_MODE_NG;
}
if (!vm_identity_map(vm_locked, region_begin,
region_end, map_mode, ppool,
NULL)) {
dlog_error(
"Unable to map secondary VM "
"device-region.\n");
ret = false;
goto out;
}
/* Deny primary VM access to this region */
if (!vm_unmap(primary_vm_locked, region_begin,
region_end, ppool)) {
dlog_error(
"Unable to unmap secondary VM device-"
"region from primary VM.\n");
ret = false;
goto out;
}
j++;
}
secondary_entry = ipa_add(secondary_entry,
manifest_vm->partition.ep_offset);
}
/*
* Map hypervisor into the VM's page table. The hypervisor pages will
* not be accessible from EL0 since it will not be marked for user
* access.
* TODO: Map only the exception vectors and data that exception vectors
* require and not the entire hypervisor. This helps with speculative
* side-channel attacks.
*/
if (vm->el0_partition) {
CHECK(vm_identity_map(vm_locked, layout_text_begin(),
layout_text_end(), MM_MODE_X, ppool,
NULL));
CHECK(vm_identity_map(vm_locked, layout_rodata_begin(),
layout_rodata_end(), MM_MODE_R, ppool,
NULL));
CHECK(vm_identity_map(vm_locked, layout_data_begin(),
layout_data_end(), MM_MODE_R | MM_MODE_W,
ppool, NULL));
plat_console_mm_init(mm_lock_ptable_unsafe(&vm->ptable), ppool);
}
if (!load_common(stage1_locked, vm_locked, manifest_vm, ppool)) {
ret = false;
goto out;
}
dlog_info("Loaded with %u vCPUs, entry at %#x.\n",
manifest_vm->secondary.vcpu_count, pa_addr(mem_begin));
vcpu = vm_get_vcpu(vm, 0);
vcpu_locked = vcpu_lock(vcpu);
if (has_fdt) {
vcpu_secondary_reset_and_start(vcpu_locked, secondary_entry,
pa_addr(fdt_addr));
} else {
/*
* Without an FDT, secondary VMs expect the memory size to be
* passed in register x0, which is what
* vcpu_secondary_reset_and_start does in this case.
*/
vcpu_secondary_reset_and_start(vcpu_locked, secondary_entry,
mem_size);
}
vcpu_unlock(&vcpu_locked);
ret = true;
out:
vm_unlock(&vm_locked);
return ret;
}
/**
* Try to find a memory range of the given size within the given ranges, and
* remove it from them. Return true on success, or false if no large enough
* contiguous range is found.
*/
static bool carve_out_mem_range(struct mem_range *mem_ranges,
size_t mem_ranges_count, uint64_t size_to_find,
paddr_t *found_begin, paddr_t *found_end)
{
size_t i;
/*
* TODO(b/116191358): Consider being cleverer about how we pack VMs
* together, with a non-greedy algorithm.
*/
for (i = 0; i < mem_ranges_count; ++i) {
if (size_to_find <=
pa_difference(mem_ranges[i].begin, mem_ranges[i].end)) {
/*
* This range is big enough, take some of it from the
* end and reduce its size accordingly.
*/
*found_end = mem_ranges[i].end;
*found_begin = pa_init(pa_addr(mem_ranges[i].end) -
size_to_find);
mem_ranges[i].end = *found_begin;
return true;
}
}
return false;
}
/**
* Given arrays of memory ranges before and after memory was removed for
* secondary VMs, add the difference to the reserved ranges of the given update.
* Return true on success, or false if there would be more than MAX_MEM_RANGES
* reserved ranges after adding the new ones.
* `before` and `after` must be arrays of exactly `mem_ranges_count` elements.
*/
static bool update_reserved_ranges(struct boot_params_update *update,
const struct mem_range *before,
const struct mem_range *after,
size_t mem_ranges_count)
{
size_t i;
for (i = 0; i < mem_ranges_count; ++i) {
if (pa_addr(after[i].begin) > pa_addr(before[i].begin)) {
if (update->reserved_ranges_count >= MAX_MEM_RANGES) {
dlog_error(
"Too many reserved ranges after "
"loading secondary VMs.\n");
return false;
}
update->reserved_ranges[update->reserved_ranges_count]
.begin = before[i].begin;
update->reserved_ranges[update->reserved_ranges_count]
.end = after[i].begin;
update->reserved_ranges_count++;
}
if (pa_addr(after[i].end) < pa_addr(before[i].end)) {
if (update->reserved_ranges_count >= MAX_MEM_RANGES) {
dlog_error(
"Too many reserved ranges after "
"loading secondary VMs.\n");
return false;
}
update->reserved_ranges[update->reserved_ranges_count]
.begin = after[i].end;
update->reserved_ranges[update->reserved_ranges_count]
.end = before[i].end;
update->reserved_ranges_count++;
}
}
return true;
}
static bool init_other_world_vm(struct mpool *ppool)
{
struct vm *other_world_vm;
size_t i;
/*
* Initialise the dummy VM which represents the opposite world:
* -TrustZone (or the SPMC) when running the Hypervisor
* -the Hypervisor when running TZ/SPMC
*/
other_world_vm = vm_init(HF_OTHER_WORLD_ID, MAX_CPUS, ppool, false);
CHECK(other_world_vm != NULL);
for (i = 0; i < MAX_CPUS; i++) {
struct vcpu *vcpu = vm_get_vcpu(other_world_vm, i);
struct cpu *cpu = cpu_find_index(i);
vcpu->cpu = cpu;
}
return arch_other_world_vm_init(other_world_vm, ppool);
}
/*
* Loads alls VMs from the manifest.
*/
bool load_vms(struct mm_stage1_locked stage1_locked,
const struct manifest *manifest, const struct memiter *cpio,
const struct boot_params *params,
struct boot_params_update *update, struct mpool *ppool)
{
struct vm *primary;
struct mem_range mem_ranges_available[MAX_MEM_RANGES];
struct vm_locked primary_vm_locked;
size_t i;
bool success = true;
/**
* Only try to load the primary VM if it is supposed to be in this
* world.
*/
if (vm_id_is_current_world(HF_PRIMARY_VM_ID)) {
if (!load_primary(stage1_locked,
&manifest->vm[HF_PRIMARY_VM_INDEX], cpio,
params, ppool)) {
dlog_error("Unable to load primary VM.\n");
return false;
}
}
if (!init_other_world_vm(ppool)) {
return false;
}
static_assert(
sizeof(mem_ranges_available) == sizeof(params->mem_ranges),
"mem_range arrays must be the same size for memcpy.");
static_assert(sizeof(mem_ranges_available) < 500,
"This will use too much stack, either make "
"MAX_MEM_RANGES smaller or change this.");
memcpy_s(mem_ranges_available, sizeof(mem_ranges_available),
params->mem_ranges, sizeof(params->mem_ranges));
/* Round the last addresses down to the page size. */
for (i = 0; i < params->mem_ranges_count; ++i) {
mem_ranges_available[i].end = pa_init(align_down(
pa_addr(mem_ranges_available[i].end), PAGE_SIZE));
}
primary = vm_find(HF_PRIMARY_VM_ID);
primary_vm_locked = vm_lock(primary);
for (i = 0; i < manifest->vm_count; ++i) {
const struct manifest_vm *manifest_vm = &manifest->vm[i];
ffa_vm_id_t vm_id = HF_VM_ID_OFFSET + i;
uint64_t mem_size;
paddr_t secondary_mem_begin;
paddr_t secondary_mem_end;
if (vm_id == HF_PRIMARY_VM_ID) {
continue;
}
dlog_info("Loading VM id %#x: %s.\n", vm_id,
manifest_vm->debug_name);
mem_size = align_up(manifest_vm->secondary.mem_size, PAGE_SIZE);
if (manifest_vm->is_ffa_partition) {
secondary_mem_begin =
pa_init(manifest_vm->partition.load_addr);
secondary_mem_end = pa_init(
manifest_vm->partition.load_addr + mem_size);
} else if (!carve_out_mem_range(mem_ranges_available,
params->mem_ranges_count,
mem_size, &secondary_mem_begin,
&secondary_mem_end)) {
dlog_error("Not enough memory (%u bytes).\n", mem_size);
continue;
}
if (!load_secondary(stage1_locked, primary_vm_locked,
secondary_mem_begin, secondary_mem_end,
manifest_vm, cpio, ppool)) {
dlog_error("Unable to load VM.\n");
continue;
}
/* Deny the primary VM access to this memory. */
if (!vm_unmap(primary_vm_locked, secondary_mem_begin,
secondary_mem_end, ppool)) {
dlog_error(
"Unable to unmap secondary VM from primary "
"VM.\n");
success = false;
break;
}
}
vm_unlock(&primary_vm_locked);
if (!success) {
return false;
}
/*
* Add newly reserved areas to update params by looking at the
* difference between the available ranges from the original params and
* the updated mem_ranges_available. We assume that the number and order
* of available ranges is the same, i.e. we don't remove any ranges
* above only make them smaller.
*/
return update_reserved_ranges(update, params->mem_ranges,
mem_ranges_available,
params->mem_ranges_count);
}