blob: e80d412c24d84422d7f4ef10bd0d3e9eaaa3109a [file] [log] [blame]
/*
* Copyright (c) 2022-2024, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <ffa_api.h>
#include <ffa_internal_api.h>
#include <ffa_memory_descriptors.h>
#include <sp_api.h>
#include <sp_discovery.h>
#include <sp_memory_management.h>
#include <sp_rxtx.h>
#include <string.h>
#include <trace.h>
#include "config/interface/config_store.h"
#include "config/loader/sp/sp_config_loader.h"
#include "config/ramstore/config_ramstore.h"
#include "platform/interface/memory_region.h"
#define SP_TEST_OK 0xaa
static volatile uint8_t tx_buffer[4096] __aligned(4096);
static volatile uint8_t rx_buffer[4096] __aligned(4096);
static volatile uint8_t my_buf[4096] __aligned(4096);
static volatile uint8_t *shared_buffer;
static size_t shared_buffer_size;
enum errors {
ERR_OK,
ERR_VERSION,
ERR_ID_GET,
ERR_FEATURES,
ERR_SP_COMMUNICATION,
ERR_RXTX_MAP,
ERR_PARTITION,
ERR_RXTX_UNMAP,
ERR_MEM_INCORRECT_ACCESS,
ERR_MEM_RETRIEVE,
ERR_MEM_RELINQUISH,
ERR_SP_SHARE,
ERR_SP_SHARE_EXC,
ERR_TEST_NOT_FOUND
};
enum sp_tests {
EP_TEST_SP,
EP_TEST_SP_COMMUNICATION,
EP_TEST_SP_INCREASE,
EP_TRY_R_ACCESS,
EP_TRY_W_ACCESS,
EP_RETRIEVE,
EP_RELINQUISH,
EP_SP_MEM_SHARING,
EP_SP_MEM_SHARING_MULTI,
EP_SP_MEM_SHARING_EXC,
EP_SP_MEM_INCORRECT_ACCESS,
EP_SP_NOP,
EP_TEST_SP_COMMUNICATION_RESPONSE,
};
const char* sp_test_str[]= {
"EP_TEST_SP",
"EP_TEST_SP_COMMUNICATION",
"EP_TEST_SP_INCREASE",
"EP_TRY_R_ACCESS",
"EP_TRY_W_ACCESS",
"EP_RETRIEVE",
"EP_RELINQUISH",
"EP_SP_MEM_SHARING",
"EP_SP_MEM_SHARING_MULTI",
"EP_SP_MEM_SHARING_EXC",
"EP_SP_MEM_INCORRECT_ACCESS",
"EP_SP_NOP"
};
static bool test_ffa_version(void)
{
sp_result result = SP_RESULT_OK;
uint16_t major = 0;
uint16_t minor = 0;
IMSG("Testing ffa_version()\n");
result = sp_discovery_ffa_version_get(&major, &minor);
if (result == SP_RESULT_OK) {
IMSG("ffa_version(): %"PRIu32".%"PRIu32"\n", major, minor);
return true;
} else if (result == FFA_NOT_SUPPORTED) {
IMSG("ffa_version(): not supported\n");
} else {
EMSG("ffa_version(): unknown error %"PRId32"\n", result);
}
return false;
}
static bool test_ffa_id_get(uint16_t *id)
{
sp_result result = SP_RESULT_OK;
IMSG("Testing ffa_id_get()\n");
result = sp_discovery_own_id_get(id);
if (result == SP_RESULT_OK) {
IMSG("ffa_id_get(): 0x%"PRIx16"\n", *id);
return true;
} else if (result == FFA_NOT_SUPPORTED) {
IMSG("ffa_id_get(): not supported\n");
} else {
EMSG("ffa_id_get(): unknown error %"PRId32"\n", result);
}
return false;
}
static bool test_ffa_features(void)
{
ffa_result result = FFA_OK;
struct ffa_interface_properties properties = {0};
IMSG("Testing ffa_features(FFA_RXTX_MAP)\n");
result = ffa_features(FFA_RXTX_MAP_32, &properties);
if (result == FFA_OK) {
static const char * const sizes[] = {
"4kB", "64kB", "16kB", "reserved"};
uint32_t buffer_size = properties.interface_properties[0] &
0x3U;
IMSG("ffa_features(): minimum buffer size=%s\n",
sizes[buffer_size]);
return true;
} else if (result == FFA_NOT_SUPPORTED) {
IMSG("ffa_features(): not supported\n");
} else {
EMSG("ffa_features(): unknown error %"PRId32"\n", result);
}
return false;
}
static bool test_ffa_rxtx_map(void)
{
sp_result result = SP_RESULT_OK;
IMSG("Testing ffa_rxtx_map(%p %p, 1)\n", tx_buffer, rx_buffer);
result = sp_rxtx_buffer_map((void*)tx_buffer,(void*)rx_buffer,
sizeof(rx_buffer));
if (result == FFA_OK) {
IMSG("ffa_rxtx_map(): success\n");
return true;
} else if (result == FFA_NOT_SUPPORTED) {
IMSG("ffa_rxtx_map(): not supported\n");
} else {
EMSG("ffa_rxtx_map(): unknown error %"PRId32"\n", result);
}
return false;
}
static bool ffa_partition_info_get_process(sp_result result, uint32_t count,
struct sp_partition_info *partitions)
{
uint32_t i = 0;
if (result != SP_RESULT_OK) {
if (result == FFA_NOT_SUPPORTED) {
IMSG("ffa_partition_info_get(): not supported\n");
return false;
}
EMSG("ffa_partition_info_get(): unknown error %"PRId32"\n", result);
return false;
}
IMSG("ffa_partition_info_get(): count=%"PRIu32"\n", count);
for (i = 0; i < count; i++) {
IMSG("partition #%u: ID=%u, execution_count=%u \
direct request = %c, send direcy request = %c, \
indirect request = %c\n",
i, partitions[i].partition_id,
partitions[i].execution_context_count,
partitions[i].supports_direct_requests ? '1' : '0',
partitions[i].can_send_direct_requests ? '1' : '0',
partitions[i].supports_indirect_requests ? '1' : '0'
);
}
IMSG("Testing ffa_rx_release()\n");
result = ffa_rx_release();
if (result == FFA_OK) {
IMSG("ffa_rx_release(): success\n");
return true;
} else if (result == FFA_NOT_SUPPORTED) {
IMSG("ffa_rx_release(): not supported\n");
return false;
}
EMSG("ffa_rx_release(): unknown error %"PRId32"\n", result);
return false;
}
static bool test_ffa_partition_info_get(void)
{
sp_result result = SP_RESULT_OK;
struct sp_partition_info partitions[10] = {0};
uint32_t count = 10;
struct sp_uuid uuid = {.uuid = {0x23, 0xeb, 0x01, 0x00, 0xe3, 0x2a,
0x44, 0x97, 0x90, 0x52, 0x2f, 0x11,
0xe5, 0x84, 0xaf, 0xa6}};
IMSG("Testing ffa_partition_info_get(nil)\n");
result = sp_discovery_partition_info_get_all(partitions, &count);
if (!ffa_partition_info_get_process(result, count, partitions))
return false;
result = sp_discovery_partition_info_get(&uuid,
partitions,
&count);
if (!ffa_partition_info_get_process(result, count, partitions))
return false;
if (count < 2) {
EMSG("ffa_partition_info_get(): Returned not enough SPs count=%"PRIu32"\n", count);
return false;
}
return true;
}
static bool test_ffa_rxtx_unmap()
{
sp_result result = SP_RESULT_OK;
result = sp_rxtx_buffer_unmap();
if (result == SP_RESULT_OK) {
IMSG("sp_rxtx_buffer_unmap(): success\n");
return true;
}
EMSG("sp_rxtx_buffer_unmap(): unknown error %"PRId32"\n", result);
return false;
}
static void return_error(uint32_t error, struct ffa_direct_msg *msg)
{
ffa_msg_send_direct_resp_64(msg->destination_id, msg->source_id, 0xff,
error, 0, 0, 0, msg);
}
static void return_ok(struct ffa_direct_msg *msg)
{
ffa_msg_send_direct_resp_64(msg->destination_id,
msg->source_id, SP_TEST_OK, 0, 0, 0, 0, msg);
}
static bool test_read_access(void)
{
return (shared_buffer[0] != 5);
}
static void test_write_access(void)
{
shared_buffer[0] = 0xff;
}
static void test_increase(struct ffa_direct_msg *msg)
{
msg->args.args64[1]++;
msg->args.args64[2]++;
msg->args.args64[3]++;
msg->args.args64[4]++;
ffa_msg_send_direct_resp_64(msg->destination_id,msg->source_id,
SP_TEST_OK, msg->args.args64[1],
msg->args.args64[2],msg->args.args64[3],
msg->args.args64[4], msg);
}
static void test_communication(struct ffa_direct_msg *msg)
{
struct ffa_direct_msg sp_msg = {0};
uint16_t caller = msg->source_id;
uint16_t src = msg->destination_id;
uint16_t dst = (uint16_t)msg->args.args64[1];
ffa_result res = FFA_OK;
struct ffa_params raw_params = { 0 };
sp_msg.args.args64[1] = 0x55;
sp_msg.args.args64[2] = 0xAA;
sp_msg.args.args64[3] = 0xBB;
sp_msg.args.args64[4] = 0xCC;
res = ffa_msg_send_direct_req_64(src, dst,
EP_TEST_SP_INCREASE,0x55, 0xAA, 0xBB,
0xCC, &sp_msg);
if (res != FFA_OK) {
EMSG("error % in %s:%d"PRId32, res, __FILE__, __LINE__);
goto err;
}
if (sp_msg.args.args64[1] != 0x56 || sp_msg.args.args64[2] != 0xAB ||
sp_msg.args.args64[3] != 0xBC || sp_msg.args.args64[4] != 0xCD) {
DMSG("Failed SP communication %lx %lx %lx %lx",
sp_msg.args.args64[1], sp_msg.args.args64[2],
sp_msg.args.args64[3], sp_msg.args.args64[4]);
goto err;
}
/* Non-null flags (W2) register */
ffa_svc(FFA_MSG_SEND_DIRECT_REQ_64, (uint32_t)(src << 16 | dst), 1, 0, 0, 0, 0, 0,
&raw_params);
if (raw_params.a0 != FFA_ERROR || (uint32_t)raw_params.a2 != FFA_INVALID_PARAMETERS) {
EMSG("Unexpected error code: %d != %ld", FFA_INVALID_PARAMETERS, raw_params.a2);
goto err;
}
/* Testing non-matching source ID */
res = ffa_msg_send_direct_req_64(src + 1, dst, 0, 0, 0, 0, 0, &sp_msg);
if (res != FFA_INVALID_PARAMETERS) {
EMSG("Unexpected error code: %d != %d", FFA_INVALID_PARAMETERS, res);
goto err;
}
/* Sending message to own ID */
res = ffa_msg_send_direct_req_64(src, src, 0, 0, 0, 0, 0, &sp_msg);
if (res != FFA_INVALID_PARAMETERS) {
EMSG("Unexpected error code: %d != %d", FFA_INVALID_PARAMETERS, res);
goto err;
}
/* Sending message to normal world */
res = ffa_msg_send_direct_req_64(src, 0, 0, 0, 0, 0, 0, &sp_msg);
if (res != FFA_NOT_SUPPORTED) {
EMSG("Unexpected error code: %d != %d", FFA_NOT_SUPPORTED, res);
goto err;
}
/* Sending message for starting direct message response test */
if (!caller) {
res = ffa_msg_send_direct_req_64(src, dst, EP_TEST_SP_COMMUNICATION_RESPONSE, 0, 0,
0, 0, &sp_msg);
if (res != FFA_OK) {
EMSG("Unexpected error code: %d != %d", FFA_OK, res);
goto err;
}
if (sp_msg.args.args64[0] != SP_TEST_OK) {
EMSG("Unexpected test result: %d != %ld", SP_TEST_OK, sp_msg.args.args64[0]);
goto err;
}
}
return_ok(msg);
return;
err:
return_error(ERR_SP_COMMUNICATION, msg);
}
static void test_communication_response(struct ffa_direct_msg *msg)
{
struct ffa_direct_msg sp_msg = {0};
uint16_t caller = msg->source_id;
uint16_t src = msg->destination_id;
ffa_result res = FFA_OK;
struct ffa_params raw_params = { 0 };
/* Non-null flags (W2) register */
ffa_svc(FFA_MSG_SEND_DIRECT_RESP_64, (uint32_t)(src << 16 | 0x1000), 1, 0, 0, 0, 0, 1,
&raw_params);
if (raw_params.a0 != FFA_ERROR || (uint32_t)raw_params.a2 != FFA_INVALID_PARAMETERS) {
EMSG("Unexpected error code: %d != %ld", FFA_INVALID_PARAMETERS, raw_params.a2);
goto err;
}
/* Testing non-matching source ID */
res = ffa_msg_send_direct_resp_64(src + 1, caller, 0, 0, 0, 0, 2, &sp_msg);
if (res != FFA_INVALID_PARAMETERS) {
EMSG("Unexpected error code: %d != %d", FFA_INVALID_PARAMETERS, res);
goto err;
}
/* Sending message to own ID */
res = ffa_msg_send_direct_resp_64(src, src, 0, 0, 0, 0, 3, &sp_msg);
if (res != FFA_INVALID_PARAMETERS) {
EMSG("Unexpected error code: %d != %d", FFA_INVALID_PARAMETERS, res);
goto err;
}
/* Sending message request to caller SP which is busy */
if (caller) {
/* Sending message to normal world */
res = ffa_msg_send_direct_resp_64(src, 0, 0, 0, 0, 0, 4, &sp_msg);
if (res != FFA_INVALID_PARAMETERS) {
EMSG("Unexpected error code: %d != %d", FFA_INVALID_PARAMETERS, res);
goto err;
}
/* Sending message to invalid SP */
res = ffa_msg_send_direct_resp_64(src, 0x1000, 0, 0, 0, 0, 5, &sp_msg);
if (res != FFA_INVALID_PARAMETERS) {
EMSG("Unexpected error code: %d != %d", FFA_INVALID_PARAMETERS, res);
goto err;
}
/* Sending message request to caller SP which is busy */
res = ffa_msg_send_direct_req_64(src, caller, 0, 0, 0, 0, 6, &sp_msg);
if (res != FFA_BUSY) {
EMSG("Unexpected error code: %d != %d", FFA_BUSY, res);
goto err;
}
}
ffa_msg_send_direct_resp_64(src, caller, SP_TEST_OK, 0, 0, 0, 0, msg);
return;
err:
ffa_msg_send_direct_resp_64(src, caller, ERR_SP_COMMUNICATION, 0, 0, 0, 0, msg);
}
static void test_internal_sp(struct ffa_direct_msg *msg)
{
enum errors err = ERR_OK;
uint16_t id = 0;
if (test_ffa_version()) {
if (!test_ffa_id_get(&id))
err = ERR_ID_GET;
if (!err && !test_ffa_features())
err = ERR_VERSION;
if (!err && !test_ffa_rxtx_unmap(id))
err = ERR_RXTX_UNMAP;
if (!err && !test_ffa_rxtx_map())
err = ERR_RXTX_MAP;
if (!err && !test_ffa_partition_info_get())
err = ERR_PARTITION;
} else {
err = ERR_VERSION;
}
if (err != ERR_OK) {
DMSG("Failed at SP test %x", err);
return_error((uint32_t)err, msg);
}
return_ok(msg);
}
static void set_rxtx_buf(struct ffa_mem_transaction_buffer *t_buf,
struct ffa_mem_transaction_buffer *r_buf)
{
if (t_buf) {
t_buf->buffer = (void*)tx_buffer;
t_buf->length = 4096;
t_buf->used = false;
}
if (r_buf) {
r_buf->buffer = (void*)rx_buffer;
r_buf->length = 4096;
r_buf->used = false;
}
}
static void test_mem_retrieve(struct ffa_direct_msg *msg)
{
ffa_result res = FFA_OK;
struct sp_memory_descriptor descriptor = {0};
struct sp_memory_region regions[1] = {0};
struct sp_memory_access_descriptor acc_desc = {0};
uint64_t handle = 0;
uint32_t out_region_count = 1;
uint16_t own_id = 0;
ffa_id_get(&own_id);
handle = (uint64_t)msg->args.args64[1] |
(((uint64_t)msg->args.args64[2]) << 32);
descriptor.tag = 0;
descriptor.sender_id = msg->args.args64[3] & 0xffff;
acc_desc.receiver_id = own_id;
acc_desc.data_access = sp_data_access_read_write;
res = sp_memory_retrieve(&descriptor, &acc_desc, regions, 0,
&out_region_count, handle);
if (res) {
DMSG("Failed retrieving shared memory");
return_error((uint32_t)ERR_MEM_RETRIEVE, msg);
return;
}
if (descriptor.flags.transaction_type != sp_memory_transaction_type_share) {
EMSG("Invalid transaction type");
return_error((uint32_t)ERR_MEM_RETRIEVE, msg);
return;
}
shared_buffer = regions[0].address;
shared_buffer_size = regions[0].page_count * 4096;
return_ok(msg);
}
static void test_mem_relinquish(struct ffa_direct_msg *msg)
{
ffa_result res = FFA_OK;
uint64_t handle = 0;
uint16_t endpoint_id = 0;
struct sp_memory_transaction_flags flags = {
.zero_memory = false,
.operation_time_slicing = false,
};
if (msg->args.args64[3] == 1)
flags.zero_memory = true;
ffa_id_get(&endpoint_id);
handle = (uint64_t)msg->args.args64[1] |
(((uint64_t)msg->args.args64[2]) << 32);
res = sp_memory_relinquish(handle, &endpoint_id, 1, &flags);
if (res) {
DMSG("Failed to relinquish share");
return_error((uint32_t)ERR_MEM_RELINQUISH, msg);
}
return_ok(msg);
}
static void test_mem_sharing(uint16_t service_ep_id, struct ffa_direct_msg *msg)
{
ffa_result res = FFA_OK;
struct sp_memory_descriptor desc = { 0 };
struct sp_memory_region region = { 0 };
uint64_t handle = 0;
struct ffa_mem_transaction_buffer t_buf = {0};
uint16_t own_id = 0;
uint16_t src_id = msg->source_id;
struct sp_memory_access_descriptor acc_desc = { };
my_buf[0] = 0xa;
set_rxtx_buf(&t_buf, NULL);
ffa_id_get(&own_id);
region.address = (void*) my_buf;
region.page_count = 1;
desc.sender_id = own_id;
desc.memory_type = sp_memory_type_normal_memory;
desc.mem_region_attr.normal_memory.cacheability =
sp_cacheability_write_back;
desc.mem_region_attr.normal_memory.shareability =
sp_shareability_inner_shareable;
acc_desc.data_access = sp_data_access_read_write;
acc_desc.instruction_access = sp_instruction_access_not_executable;
acc_desc.receiver_id = service_ep_id;
res = sp_memory_share(&desc, &acc_desc, 1, &region, 1, &handle);
if (res != FFA_OK) {
EMSG("Failed to share memory: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
res = ffa_msg_send_direct_req_64(own_id, service_ep_id,
EP_RETRIEVE, handle & 0xffffffff,
handle >> 32, own_id, 0, msg);
if (res != FFA_OK) {
EMSG("Failed to send retrieve command: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
res = ffa_msg_send_direct_req_64(own_id, service_ep_id,
EP_TRY_W_ACCESS, 0,
0, 0, 0, msg);
if (res != FFA_OK) {
EMSG("Failed to send TRY_W_ACCESS command: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
res = ffa_msg_send_direct_req_64(own_id, service_ep_id,
EP_RELINQUISH, handle & 0xffffffff,
handle >> 32, 0, 0, msg);
if (res != FFA_OK) {
EMSG("Failed to send relinquish command: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
res = ffa_mem_reclaim(handle, 0);
if (res != FFA_OK) {
EMSG("Failed to reclaim memory: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
msg->destination_id = own_id;
msg->source_id = src_id;
return_ok(msg);
}
static void test_mem_multi_sharing(struct ffa_direct_msg *msg)
{
ffa_result res = FFA_OK;
struct sp_memory_descriptor desc = { 0 };
struct sp_memory_region region = { 0 };
uint64_t handle = 0;
struct ffa_mem_transaction_buffer t_buf = {0};
uint16_t own_id = 0;
uint16_t src_id = msg->source_id;
struct sp_memory_access_descriptor acc_desc[2] = { };
uint32_t err = 0;
uint16_t endpoint2 = msg->args.args64[1];
uint16_t endpoint3 = msg->args.args64[2];
my_buf[0] = 0xa;
set_rxtx_buf(&t_buf, NULL);
ffa_id_get(&own_id);
region.address = (void*) my_buf;
region.page_count = 1;
desc.sender_id = own_id;
desc.memory_type = sp_memory_type_normal_memory;
desc.mem_region_attr.normal_memory.cacheability =
sp_cacheability_write_back;
desc.mem_region_attr.normal_memory.shareability =
sp_shareability_inner_shareable;
acc_desc[0].data_access = sp_data_access_read_write;
acc_desc[0].instruction_access = sp_instruction_access_not_executable;
acc_desc[0].receiver_id = endpoint2;
acc_desc[1].data_access = sp_data_access_read_write;
acc_desc[1].instruction_access = sp_instruction_access_not_executable;
acc_desc[1].receiver_id = endpoint3;
res = sp_memory_share(&desc, acc_desc, 2, &region, 1, &handle);
if (res != FFA_OK) {
EMSG("Failed to share memory: %"PRId32, res);
err = (uint32_t)ERR_SP_SHARE;
goto err;
}
/* test SP2*/
res = ffa_msg_send_direct_req_64(own_id, endpoint2,
EP_RETRIEVE, handle & 0xffffffff,
handle >> 32, own_id, 0, msg);
if (res != FFA_OK) {
EMSG("Failed to send retrieve command: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
res = ffa_msg_send_direct_req_64(own_id, endpoint2,
EP_TRY_W_ACCESS, 0,
0, 0, 0, msg);
if (res != FFA_OK) {
EMSG("Failed to send TRY_W_ACCESS command: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
if (my_buf[0] != 0xff) {
EMSG("SP2 didn't change the value of the buffer");
err = (uint32_t)ERR_SP_SHARE;
goto err;
}
res = ffa_msg_send_direct_req_64(own_id, endpoint2,
EP_RELINQUISH, handle & 0xffffffff,
handle >> 32, 0, 0, msg);
if (res != FFA_OK) {
EMSG("Failed to send relinquish command: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
my_buf[0] = 0xa;
/* test SP3*/
res = ffa_msg_send_direct_req_64(own_id, endpoint3,
EP_RETRIEVE, handle & 0xffffffff,
handle >> 32, own_id, 0, msg);
if (res != FFA_OK) {
EMSG("Failed to send retrieve command: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
res = ffa_msg_send_direct_req_64(own_id, endpoint3,
EP_TRY_W_ACCESS, 0,
0, 0, 0, msg);
if (res != FFA_OK) {
EMSG("Failed to send TRY_W_ACCESS command: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
if (my_buf[0] != 0xff) {
EMSG("SP3 didn't change the value of the buffer");
err = (uint32_t)ERR_SP_SHARE;
goto err;
}
if (ffa_mem_reclaim(handle, 0) == FFA_OK) {
EMSG("SP3 didn't relinquish memory yet!");
err = (uint32_t)ERR_SP_SHARE;
goto err;
}
res = ffa_msg_send_direct_req_64(own_id, endpoint3,
EP_RELINQUISH, handle & 0xffffffff,
handle >> 32, 0, 0, msg);
if (res != FFA_OK) {
EMSG("Failed to send relinquish command: %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
if (ffa_mem_reclaim(handle, 0) != FFA_OK) {
EMSG("Failed to reclaim memory: %"PRId32, res);
err = (uint32_t)ERR_SP_SHARE;
goto err;
}
msg->destination_id = own_id;
msg->source_id = src_id;
return_ok(msg);
return;
err:
msg->destination_id = own_id;
msg->source_id = src_id;
return_error(err, msg);
}
#define TEST_FFA_MEM_SHARE(len, handle, expected) \
do { \
ffa_result res = FFA_OK; \
res = ffa_mem_share_rxtx(len, len, handle); \
if (res != expected) { \
EMSG("Invalid FFA_MEM_SHARE result: expected = %d, actual = %d", \
expected, res); \
return -1; \
} \
} while (0)
static int test_mem_sharing_invalid(uint16_t service_ep_id)
{
uint64_t handle = 0;
uint16_t own_id = 0;
size_t len = 0;
struct ffa_mem_transaction_desc *transaction = NULL;
struct ffa_mem_access_desc *acc_desc = NULL;
struct ffa_composite_mem_region_desc *comp_desc = NULL;
struct ffa_constituent_mem_region_desc *region = NULL;
memset((void *)tx_buffer, 0x00, sizeof(tx_buffer));
transaction = (struct ffa_mem_transaction_desc *)tx_buffer;
ffa_id_get(&own_id);
transaction->sender_id = own_id;
transaction->mem_region_attr = 0x24;
transaction->flags = 0;
transaction->handle = 0;
transaction->tag = 0;
len = sizeof(*transaction);
/* Zero offset, size and count */
TEST_FFA_MEM_SHARE(len, &handle, FFA_INVALID_PARAMETERS);
#if CFG_FFA_VERSION >= FFA_VERSION_1_1
/* Zero count */
transaction->mem_access_desc_size = sizeof(struct ffa_mem_access_desc);
transaction->mem_access_desc_offset = sizeof(*transaction);
#endif /* CFG_FFA_VERSION */
/* Too many mem access desc */
transaction->mem_access_desc_count = sizeof(tx_buffer);
TEST_FFA_MEM_SHARE(len, &handle, FFA_INVALID_PARAMETERS);
transaction->mem_access_desc_count = 1;
#if CFG_FFA_VERSION >= FFA_VERSION_1_1
/* Invalid offset */
transaction->mem_access_desc_offset = sizeof(tx_buffer);
TEST_FFA_MEM_SHARE(len, &handle, FFA_INVALID_PARAMETERS);
transaction->mem_access_desc_offset = sizeof(*transaction);
#endif /* CFG_FFA_VERSION */
acc_desc = (struct ffa_mem_access_desc *)(tx_buffer + len);
len += sizeof(*acc_desc);
acc_desc->mem_access_perm_desc.endpoint_id = service_ep_id;
acc_desc->mem_access_perm_desc.mem_access_permissions = 0x06; /* RWnX */
/* Too large memory region descriptor offset */
acc_desc->composite_mem_region_desc_offset = sizeof(tx_buffer);
TEST_FFA_MEM_SHARE(len, &handle, FFA_INVALID_PARAMETERS);
acc_desc->composite_mem_region_desc_offset = len;
comp_desc = (struct ffa_composite_mem_region_desc *)(tx_buffer + len);
len += sizeof(*comp_desc);
/* Zero pages and address ranges */
TEST_FFA_MEM_SHARE(len, &handle, FFA_INVALID_PARAMETERS);
region = (struct ffa_constituent_mem_region_desc *)(tx_buffer + len);
len += sizeof(*region);
/* One region with zero pages */
region->address = (uint64_t)shared_buffer;
comp_desc->address_range_count = 1;
TEST_FFA_MEM_SHARE(len, &handle, FFA_INVALID_PARAMETERS);
/* One region with not matching sum pages */
region->address = (uint64_t)shared_buffer;
comp_desc->address_range_count = 1;
comp_desc->total_page_count = 2;
region->page_count = 1;
TEST_FFA_MEM_SHARE(len, &handle, FFA_INVALID_PARAMETERS);
/* Too many regions */
comp_desc->total_page_count = sizeof(tx_buffer);
comp_desc->address_range_count = sizeof(tx_buffer);
TEST_FFA_MEM_SHARE(len, &handle, FFA_INVALID_PARAMETERS);
return 0;
}
static void test_mem_sharing_inccorrect_access(uint16_t service_ep_id,
struct ffa_direct_msg *msg)
{
ffa_result res = FFA_OK;
struct sp_memory_descriptor desc = { 0 };
struct sp_memory_region region = { 0 };
uint64_t handle = 0;
struct ffa_mem_transaction_buffer t_buf = {0};
uint16_t own_id = 0;
uint16_t src_id = msg->source_id;
struct sp_memory_access_descriptor acc_desc = { };
set_rxtx_buf(&t_buf, NULL);
ffa_id_get(&own_id);
region.address = (void*) my_buf;
region.page_count = 1;
desc.sender_id = own_id;
desc.memory_type = sp_memory_type_normal_memory;
desc.mem_region_attr.normal_memory.cacheability =
sp_cacheability_write_back;
desc.mem_region_attr.normal_memory.shareability =
sp_shareability_inner_shareable;
acc_desc.data_access = sp_data_access_read_write;
acc_desc.instruction_access = sp_instruction_access_executable;
acc_desc.receiver_id = service_ep_id;
res = sp_memory_share(&desc, &acc_desc, 1, &region, 1, &handle);
if (res == FFA_OK) {
EMSG("ffa_memory_share(): error %"PRId32, res);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
if (test_mem_sharing_invalid(service_ep_id)) {
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
msg->destination_id = own_id;
msg->source_id = src_id;
return_ok(msg);
}
static void test_mem_sharing_exc(uint16_t service_ep_id,
struct ffa_direct_msg *msg)
{
ffa_result res = FFA_OK;
struct sp_memory_descriptor desc = { 0 };
struct sp_memory_region region = { 0 };
uint64_t handle = 0;
uint64_t handle2 = 0;
struct ffa_mem_transaction_buffer t_buf = {0};
uint16_t own_id = 0;
uint16_t src_id = msg->source_id;
struct sp_memory_access_descriptor acc_desc = { };
uint32_t err = 0;
set_rxtx_buf(&t_buf, NULL);
ffa_id_get(&own_id);
region.address = (void*) my_buf;
region.page_count = 1;
desc.sender_id = own_id;
desc.memory_type = sp_memory_type_normal_memory;
desc.mem_region_attr.normal_memory.cacheability =
sp_cacheability_write_back;
desc.mem_region_attr.normal_memory.shareability =
sp_shareability_inner_shareable;
acc_desc.data_access = sp_data_access_read_write;
acc_desc.instruction_access = sp_instruction_access_not_executable;
acc_desc.receiver_id = service_ep_id;
res = sp_memory_share(&desc, &acc_desc, 1, &region, 1, &handle);
if (res != FFA_OK) {
EMSG("test_mem_sharing_exc(): error %"PRId32, res);
err = (uint32_t)ERR_SP_SHARE_EXC;
goto err;
}
/*
* Try it again, it should fail as we don't have acclusive access
* anymore
*/
res = sp_memory_share(&desc, &acc_desc, 1, &region, 1, &handle2);
if (res == FFA_OK) {
EMSG("test_mem_sharing_exc(): error %"PRId32, res);
err = (uint32_t)ERR_SP_SHARE_EXC;
goto err;
}
res = ffa_mem_reclaim(handle, 0);
if (res != FFA_OK) {
EMSG("ffa_memory_share(): error % in %s:%d"PRId32, res,
__FILE__,
__LINE__);
return_error((uint32_t)ERR_SP_SHARE, msg);
return;
}
msg->destination_id = own_id;
msg->source_id = src_id;
return_ok(msg);
return;
err:
msg->destination_id = own_id;
msg->source_id = src_id;
return_error(err, msg);
}
void test_mem_get_set(union ffa_boot_info *boot_info)
{
void *addr = NULL;
ffa_result res = FFA_OK;
struct memory_region buffer_region = { 0 };
uint32_t mem_perm = 0;
const uint32_t original_perm = FFA_MEM_PERM_INSTRUCTION_ACCESS_PERM_NX |
FFA_MEM_PERM_DATA_ACCESS_PERM_RW;
const uint32_t ro_perm = FFA_MEM_PERM_INSTRUCTION_ACCESS_PERM_NX |
FFA_MEM_PERM_DATA_ACCESS_PERM_RO;
DMSG("Testing FFA_MEM_PERM_GET/SET");
config_ramstore_init();
if (!sp_config_load(boot_info)) {
EMSG("Failed to load SP config");
goto err;
}
/* Only run the test if we have the test-region enabled */
if (!config_store_query(CONFIG_CLASSIFIER_MEMORY_REGION, "test-region",
0, &buffer_region, sizeof(buffer_region)))
return;
addr = (void *)buffer_region.base_addr;
/* Check original permissions */
res = ffa_mem_perm_get(addr, &mem_perm);
if (res)
goto err;
if (mem_perm != original_perm) {
EMSG("Incorrect permision got 0x%x expected 0x%x", mem_perm, original_perm);
res = FFA_INVALID_PARAMETERS;
goto err;
}
/* Remove write permission */
res = ffa_mem_perm_set(addr, 1, ro_perm);
if (res)
goto err;
/* Check if write permission is removed */
res = ffa_mem_perm_get(addr, &mem_perm);
if (res)
goto err;
if (mem_perm != ro_perm) {
EMSG("Incorrect permision got 0x%x expected 0x%x", mem_perm, original_perm);
res = FFA_INVALID_PARAMETERS;
goto err;
}
/* Set write permission back */
res = ffa_mem_perm_set(addr, 1, original_perm);
if (res)
goto err;
/* Check original permissions */
res = ffa_mem_perm_get(addr, &mem_perm);
if (res)
goto err;
if (mem_perm != original_perm) {
EMSG("Incorrect permision got 0x%x expected 0x%x", mem_perm, original_perm);
res = FFA_INVALID_PARAMETERS;
goto err;
}
return;
err:
EMSG("GET/SET_MEM failed (0x%x)", res);
}
void __noreturn sp_main(union ffa_boot_info *boot_info) {
struct ffa_direct_msg msg = {0};
uint16_t own_id = 0;
/* Boot phase */
if (sp_discovery_own_id_get(&own_id) != SP_RESULT_OK) {
EMSG("Couldn't get own_id!!");
}
test_ffa_rxtx_map();
test_mem_get_set(boot_info);
/* End of boot phase */
test_ffa_partition_info_get();
ffa_msg_wait(&msg);
while (1) {
enum sp_tests test_case = (enum sp_tests)msg.args.args64[0];
DMSG("SP:%x Starting test %s", own_id, sp_test_str[test_case]);
switch (test_case) {
case EP_TEST_SP:
test_internal_sp(&msg);
break;
case EP_TEST_SP_COMMUNICATION:
test_communication(&msg);
break;
case EP_TEST_SP_COMMUNICATION_RESPONSE:
test_communication_response(&msg);
break;
case EP_TEST_SP_INCREASE:
test_increase(&msg);
break;
case EP_TRY_R_ACCESS:
test_read_access();
return_ok(&msg);
break;
case EP_TRY_W_ACCESS:
test_write_access();
return_ok(&msg);
break;
case EP_RETRIEVE:
test_mem_retrieve(&msg);
break;
case EP_RELINQUISH:
test_mem_relinquish(&msg);
break;
case EP_SP_MEM_SHARING:
test_mem_sharing((uint16_t)msg.args.args64[1], &msg);
break;
case EP_SP_MEM_SHARING_MULTI:
test_mem_multi_sharing(&msg);
break;
case EP_SP_MEM_SHARING_EXC:
test_mem_sharing_exc((uint16_t)msg.args.args64[1],
&msg);
break;
case EP_SP_MEM_INCORRECT_ACCESS:
test_mem_sharing_inccorrect_access(
(uint16_t)msg.args.args64[1], &msg);
break;
case EP_SP_NOP:
return_ok(&msg);
break;
default:
return_error((uint32_t)ERR_TEST_NOT_FOUND, &msg);
break;
}
}
}
void sp_interrupt_handler(uint32_t interrupt_id)
{
(void)interrupt_id;
DMSG("Got interrupt %x", interrupt_id);
}
ffa_result ffa_vm_created_handler(uint16_t vm_id, uint64_t handle)
{
(void)handle;
DMSG("VM with ID %d created", vm_id);
return FFA_OK;
}
ffa_result ffa_vm_destroyed_handler(uint16_t vm_id, uint64_t handle)
{
(void)handle;
DMSG("VM with ID %d destroyed", vm_id);
return FFA_OK;
}