blob: 7fcaa48944127f3c224f475b2bbf413922f8f763 [file] [log] [blame]
Soby Mathewb4c6df42022-11-09 11:13:29 +00001/*
2 * SPDX-License-Identifier: BSD-3-Clause
3 * SPDX-FileCopyrightText: Copyright TF-RMM Contributors.
4 */
5
6#include <arch.h>
7#include <arch_helpers.h>
8#include <assert.h>
9#include <attestation_token.h>
10#include <buffer.h>
Javier Almansa Sobrino68a593a2022-07-25 09:35:32 +010011#include <buffer_private.h>
Soby Mathewb4c6df42022-11-09 11:13:29 +000012#include <cpuid.h>
13#include <debug.h>
14#include <errno.h>
15#include <gic.h>
16#include <granule.h>
17#include <memory_alloc.h>
18#include <sizes.h>
19#include <slot_buf_arch.h>
20#include <stdbool.h>
21#include <stdint.h>
22#include <table.h>
23#include <xlat_contexts.h>
24#include <xlat_tables.h>
25
26/*
Soby Mathewb4c6df42022-11-09 11:13:29 +000027 * All the slot buffers for a given CPU must be mapped by a single translation
28 * table, which means the max VA size should be <= 4KB * 512
29 */
30COMPILER_ASSERT((RMM_SLOT_BUF_VA_SIZE) <= (GRANULE_SIZE * XLAT_TABLE_ENTRIES));
31
32/*
33 * For all translation stages if FEAT_TTST is implemented, while
34 * the PE is executing in AArch64 state and is using 4KB
35 * translation granules, the min address space size is 64KB
36 */
37COMPILER_ASSERT((RMM_SLOT_BUF_VA_SIZE) >= (1 << 16U));
38
39#define RMM_SLOT_BUF_MMAP MAP_REGION_TRANSIENT( \
40 SLOT_VIRT, \
41 RMM_SLOT_BUF_VA_SIZE, \
42 PAGE_SIZE)
43
44#define SLOT_BUF_MMAP_REGIONS UL(1)
45
46/*
47 * Attributes for a buffer slot page descriptor.
48 * Note that the AF bit on the descriptor is handled by the translation
49 * library (it assumes that access faults are not handled) so it does not
50 * need to be specified here.
51 */
52#define SLOT_DESC_ATTR \
53 (MT_RW_DATA | MT_SHAREABILITY_ISH | MT_NG)
54
55/*
56 * The base tables for all the contexts are manually allocated as a continous
57 * block of memory.
58 */
59static uint64_t transient_base_table[XLAT_TABLE_ENTRIES * MAX_CPUS]
60 __aligned(BASE_XLAT_TABLES_ALIGNMENT)
61 __section("slot_buffer_xlat_tbls");
62
63/* Allocate per-cpu xlat_ctx_tbls */
64static struct xlat_ctx_tbls slot_buf_tbls[MAX_CPUS];
65
66/*
67 * Allocate mmap regions and define common xlat_ctx_cfg shared will
68 * all slot_buf_xlat_ctx
69 */
70XLAT_REGISTER_VA_SPACE(slot_buf, VA_HIGH_REGION,
71 SLOT_BUF_MMAP_REGIONS,
72 RMM_SLOT_BUF_VA_SIZE);
73
74/* context definition */
75static struct xlat_ctx slot_buf_xlat_ctx[MAX_CPUS];
76
77/*
78 * Allocate a cache to store the last level table entry where the slot buffers
79 * are mapped to avoid needing to perform a table walk every time a buffer
80 * slot operation is needed.
81 */
82static struct xlat_table_entry te_cache[MAX_CPUS];
83
Javier Almansa Sobrino68a593a2022-07-25 09:35:32 +010084uintptr_t slot_to_va(enum buffer_slot slot)
Soby Mathewb4c6df42022-11-09 11:13:29 +000085{
86 assert(slot < NR_CPU_SLOTS);
87
88 return (uintptr_t)(SLOT_VIRT + (GRANULE_SIZE * slot));
89}
90
91static inline struct xlat_ctx *get_slot_buf_xlat_ctx(void)
92{
93 return &slot_buf_xlat_ctx[my_cpuid()];
94}
95
Javier Almansa Sobrino68a593a2022-07-25 09:35:32 +010096struct xlat_table_entry *get_cache_entry(void)
Soby Mathewb4c6df42022-11-09 11:13:29 +000097{
98 return &te_cache[my_cpuid()];
99}
100
101__unused static uint64_t slot_to_descriptor(enum buffer_slot slot)
102{
103 uint64_t *entry = xlat_get_pte_from_table(get_cache_entry(),
104 slot_to_va(slot));
105
106 return xlat_read_descriptor(entry);
107}
108
109/*
110 * Setup xlat table for slot buffer mechanism for each PE.
111 * Must be called for every PE in the system
112 */
113void slot_buf_setup_xlat(void)
114{
115 unsigned int cpuid = my_cpuid();
116 int ret = xlat_ctx_create_dynamic(get_slot_buf_xlat_ctx(),
117 &slot_buf_xlat_ctx_cfg,
118 &slot_buf_tbls[cpuid],
119 &transient_base_table[
120 XLAT_TABLE_ENTRIES * cpuid],
121 GET_NUM_BASE_LEVEL_ENTRIES(
122 RMM_SLOT_BUF_VA_SIZE),
123 NULL,
124 0U);
125
126 if (ret == -EINVAL) {
127 /*
128 * If the context was already created, carry on with the
129 * initialization. If it cannot be created, panic.
130 */
131 ERROR("%s (%u): Failed to create the empty context for the slot buffers\n",
132 __func__, __LINE__);
133 panic();
134 }
135
136 if (xlat_ctx_cfg_initialized(get_slot_buf_xlat_ctx()) == false) {
137 /* Add necessary mmap regions during cold boot */
138 struct xlat_mmap_region slot_buf_regions[] = {
139 RMM_SLOT_BUF_MMAP,
140 {0}
141 };
142
143 if (xlat_mmap_add_ctx(get_slot_buf_xlat_ctx(),
144 slot_buf_regions, true) != 0) {
145 ERROR("%s (%u): Failed to map slot buffer memory on high region\n",
146 __func__, __LINE__);
147 panic();
148 }
149
150 }
151
152 if (xlat_ctx_tbls_initialized(get_slot_buf_xlat_ctx()) == false) {
153 /*
154 * Initialize the translation tables for the current context.
155 * This is done on the first boot of each CPU.
156 */
157 int err;
158
159 err = xlat_init_tables_ctx(get_slot_buf_xlat_ctx());
160 if (err != 0) {
161 ERROR("%s (%u): xlat initialization failed with code %i\n",
162 __func__, __LINE__, err);
163 panic();
164 }
165 }
166
167 /*
168 * Confugure MMU registers. This function assumes that all the
169 * contexts of a particular VA region (HIGH or LOW VA) use the same
170 * limits for VA and PA spaces.
171 */
172 if (xlat_arch_setup_mmu_cfg(get_slot_buf_xlat_ctx())) {
173 ERROR("%s (%u): MMU registers failed to initialize\n",
174 __func__, __LINE__);
175 panic();
176 }
177}
178
179/*
180 * Finishes initializing the slot buffer mechanism.
181 * This function must be called after the MMU is enabled.
182 */
183void slot_buf_init(void)
184{
185 if (is_mmu_enabled() == false) {
186 ERROR("%s: MMU must be enabled\n", __func__);
187 panic();
188 }
189
190 /*
191 * Initialize (if not done yet) the internal cache with the last level
192 * translation table that holds the MMU descriptors for the slot
193 * buffers, so we can access them faster when we need to map/unmap.
194 */
195 if ((get_cache_entry())->table == NULL) {
196 if (xlat_get_table_from_va(get_cache_entry(),
197 get_slot_buf_xlat_ctx(),
198 slot_to_va(SLOT_NS)) != 0) {
199 ERROR("%s (%u): Failed to initialize table entry cache for CPU %u\n",
200 __func__, __LINE__, my_cpuid());
201 panic();
202
203 }
204 }
205}
206
207/*
208 * Buffer slots are intended to be transient, and should not be live at
209 * entry/exit of the RMM.
210 */
211void assert_cpu_slots_empty(void)
212{
213 unsigned int i;
214
215 for (i = 0; i < NR_CPU_SLOTS; i++) {
216 assert(slot_to_descriptor(i) == INVALID_DESC);
217 }
218}
219
220static inline bool is_ns_slot(enum buffer_slot slot)
221{
222 return slot == SLOT_NS;
223}
224
225static inline bool is_realm_slot(enum buffer_slot slot)
226{
227 return (slot != SLOT_NS) && (slot < NR_CPU_SLOTS);
228}
229
230static void *ns_granule_map(enum buffer_slot slot, struct granule *granule)
231{
232 unsigned long addr = granule_addr(granule);
233
234 assert(is_ns_slot(slot));
Javier Almansa Sobrinod528efd2023-01-05 16:23:54 +0000235 return buffer_arch_map(slot, addr);
Soby Mathewb4c6df42022-11-09 11:13:29 +0000236}
237
238static void ns_buffer_unmap(enum buffer_slot slot)
239{
240 assert(is_ns_slot(slot));
241
242 buffer_arch_unmap((void *)slot_to_va(slot));
243}
244
245/*
246 * Maps a granule @g into the provided @slot, returning
247 * the virtual address.
248 *
249 * The caller must either hold @g::lock or hold a reference.
250 */
251void *granule_map(struct granule *g, enum buffer_slot slot)
252{
253 unsigned long addr = granule_addr(g);
254
255 assert(is_realm_slot(slot));
256
Javier Almansa Sobrinod528efd2023-01-05 16:23:54 +0000257 return buffer_arch_map(slot, addr);
Soby Mathewb4c6df42022-11-09 11:13:29 +0000258}
259
260void buffer_unmap(void *buf)
261{
262 buffer_arch_unmap(buf);
263}
264
265bool memcpy_ns_read(void *dest, const void *ns_src, unsigned long size);
266bool memcpy_ns_write(void *ns_dest, const void *src, unsigned long size);
267
268/*
269 * Map a Non secure granule @g into the slot @slot and read data from
270 * this granule to @dest. Unmap the granule once the read is done.
271 *
272 * It returns 'true' on success or `false` if not all data are copied.
273 * Only the least significant bits of @offset are considered, which allows the
274 * full PA of a non-granule aligned buffer to be used for the @offset parameter.
275 */
276bool ns_buffer_read(enum buffer_slot slot,
277 struct granule *ns_gr,
278 unsigned int offset,
279 unsigned int size,
280 void *dest)
281{
282 uintptr_t src;
283 bool retval;
284
285 assert(is_ns_slot(slot));
286 assert(ns_gr != NULL);
287
288 /*
289 * To simplify the trapping mechanism around NS access,
290 * memcpy_ns_read uses a single 8-byte LDR instruction and
291 * all parameters must be aligned accordingly.
292 */
293 assert(ALIGNED(size, 8));
294 assert(ALIGNED(offset, 8));
295 assert(ALIGNED(dest, 8));
296
297 offset &= ~GRANULE_MASK;
298 assert(offset + size <= GRANULE_SIZE);
299
300 src = (uintptr_t)ns_granule_map(slot, ns_gr) + offset;
301 retval = memcpy_ns_read(dest, (void *)src, size);
302 ns_buffer_unmap(slot);
303
304 return retval;
305}
306
307/*
308 * Map a Non secure granule @g into the slot @slot and write data from
309 * this granule to @dest. Unmap the granule once the write is done.
310 *
311 * It returns 'true' on success or `false` if not all data are copied.
312 * Only the least significant bits of @offset are considered, which allows the
313 * full PA of a non-granule aligned buffer to be used for the @offset parameter.
314 */
315bool ns_buffer_write(enum buffer_slot slot,
316 struct granule *ns_gr,
317 unsigned int offset,
318 unsigned int size,
319 void *src)
320{
321 uintptr_t dest;
322 bool retval;
323
324 assert(is_ns_slot(slot));
325 assert(ns_gr != NULL);
326
327 /*
328 * To simplify the trapping mechanism around NS access,
329 * memcpy_ns_write uses a single 8-byte STR instruction and
330 * all parameters must be aligned accordingly.
331 */
332 assert(ALIGNED(size, 8));
333 assert(ALIGNED(offset, 8));
334 assert(ALIGNED(src, 8));
335
336 offset &= ~GRANULE_MASK;
337 assert(offset + size <= GRANULE_SIZE);
338
339 dest = (uintptr_t)ns_granule_map(slot, ns_gr) + offset;
340 retval = memcpy_ns_write((void *)dest, src, size);
341 ns_buffer_unmap(slot);
342
343 return retval;
344}
345
346/******************************************************************************
347 * Internal helpers
348 ******************************************************************************/
349
Javier Almansa Sobrinod528efd2023-01-05 16:23:54 +0000350void *buffer_map_internal(enum buffer_slot slot, unsigned long addr)
Soby Mathewb4c6df42022-11-09 11:13:29 +0000351{
352 uint64_t attr = SLOT_DESC_ATTR;
353 uintptr_t va = slot_to_va(slot);
354 struct xlat_table_entry *entry = get_cache_entry();
355
356 assert(GRANULE_ALIGNED(addr));
357
Javier Almansa Sobrinod528efd2023-01-05 16:23:54 +0000358 attr |= (slot == SLOT_NS ? MT_NS : MT_REALM);
Soby Mathewb4c6df42022-11-09 11:13:29 +0000359
360 if (xlat_map_memory_page_with_attrs(entry, va,
361 (uintptr_t)addr, attr) != 0) {
362 /* Error mapping the buffer */
363 return NULL;
364 }
365
366 return (void *)va;
367}
368
369void buffer_unmap_internal(void *buf)
370{
371 /*
372 * Prevent the compiler from moving prior loads/stores to buf after the
373 * update to the translation table. Otherwise, those could fault.
374 */
375 COMPILER_BARRIER();
376
377 xlat_unmap_memory_page(get_cache_entry(), (uintptr_t)buf);
378}