| /* |
| * SPDX-License-Identifier: BSD-3-Clause |
| * SPDX-FileCopyrightText: Copyright TF-RMM Contributors. |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <buffer.h> |
| #include <debug.h> |
| #include <simd.h> |
| #include <sizes.h> |
| #include <smc-handler.h> |
| #include <smc-rmi.h> |
| #include <smc.h> |
| #include <status.h> |
| #include <utils_def.h> |
| |
| /* Maximum number of supported arguments */ |
| #define MAX_NUM_ARGS 5 |
| |
| /* Maximum number of output values */ |
| #define MAX_NUM_OUTPUT_VALS 4 |
| |
| #define RMI_STATUS_STRING(_id)[RMI_##_id] = #_id |
| |
| const char *rmi_status_string[] = { |
| RMI_STATUS_STRING(SUCCESS), |
| RMI_STATUS_STRING(ERROR_INPUT), |
| RMI_STATUS_STRING(ERROR_REALM), |
| RMI_STATUS_STRING(ERROR_REC), |
| RMI_STATUS_STRING(ERROR_RTT) |
| }; |
| COMPILER_ASSERT(ARRAY_LEN(rmi_status_string) == RMI_ERROR_COUNT); |
| |
| /* |
| * At this level (in handle_ns_smc) we distinguish the RMI calls only on: |
| * - The number of input arguments [0..5], and whether |
| * - The function returns up to three output values in addition |
| * to the return status code. |
| * Hence, the naming syntax is: |
| * - `*_[0..5]` when no output values are returned, and |
| * - `*_[0..3]_o` when the function returns some output values. |
| */ |
| typedef unsigned long (*handler_0)(void); |
| typedef unsigned long (*handler_1)(unsigned long arg0); |
| typedef unsigned long (*handler_2)(unsigned long arg0, unsigned long arg1); |
| typedef unsigned long (*handler_3)(unsigned long arg0, unsigned long arg1, |
| unsigned long arg2); |
| typedef unsigned long (*handler_4)(unsigned long arg0, unsigned long arg1, |
| unsigned long arg2, unsigned long arg3); |
| typedef unsigned long (*handler_5)(unsigned long arg0, unsigned long arg1, |
| unsigned long arg2, unsigned long arg3, |
| unsigned long arg4); |
| typedef void (*handler_1_o)(unsigned long arg0, struct smc_result *res); |
| typedef void (*handler_2_o)(unsigned long arg0, unsigned long arg1, |
| struct smc_result *res); |
| typedef void (*handler_3_o)(unsigned long arg0, unsigned long arg1, |
| unsigned long arg2, struct smc_result *res); |
| typedef void (*handler_4_o)(unsigned long arg0, unsigned long arg1, |
| unsigned long arg2, unsigned long arg3, |
| struct smc_result *res); |
| |
| /* |
| * SMC RMI handler type encoding: |
| * [0:7] - number of arguments |
| * [8:15] - number of output values |
| */ |
| #define RMI_TYPE(_in, _out) (_in | (_out << 8)) |
| #define rmi_type(_in, _out) rmi_type_##_in##_out = RMI_TYPE(_in, _out) |
| |
| enum rmi_type { |
| rmi_type(0, 0), /* 0 arguments, 0 output values */ |
| rmi_type(1, 0), /* 1 argument, 0 output values */ |
| rmi_type(2, 0), /* 2 arguments, 0 output values */ |
| rmi_type(3, 0), /* 3 arguments, 0 output values */ |
| rmi_type(4, 0), /* 4 arguments, 0 output values */ |
| rmi_type(5, 0), /* 5 arguments, 0 output values */ |
| rmi_type(1, 1), /* 1 argument, 1 output value */ |
| rmi_type(2, 2), /* 2 arguments, 2 output values */ |
| rmi_type(3, 1), /* 3 arguments, 1 output value */ |
| rmi_type(3, 2), /* 3 arguments, 2 output values */ |
| rmi_type(3, 4), /* 3 arguments, 4 output values */ |
| rmi_type(4, 1) /* 4 arguments, 1 output value */ |
| }; |
| |
| struct smc_handler { |
| const char *fn_name; |
| enum rmi_type type; |
| union { |
| handler_0 f_00; |
| handler_1 f_10; |
| handler_2 f_20; |
| handler_3 f_30; |
| handler_4 f_40; |
| handler_5 f_50; |
| handler_1_o f_11; |
| handler_2_o f_22; |
| handler_3_o f_31; |
| handler_3_o f_32; |
| handler_3_o f_34; |
| handler_4_o f_41; |
| void *fn_dummy; |
| }; |
| bool log_exec; /* print handler execution */ |
| bool log_error; /* print in case of error status */ |
| }; |
| |
| /* |
| * Get handler ID from FID |
| * Precondition: FID is an RMI call |
| */ |
| #define RMI_HANDLER_ID(_id) SMC64_FID_OFFSET_FROM_RANGE_MIN(RMI, _id) |
| |
| #define HANDLER(_id, _in, _out, _fn, _exec, _error)[RMI_HANDLER_ID(SMC_RMM_##_id)] = { \ |
| .fn_name = #_id, \ |
| .type = RMI_TYPE(_in, _out), \ |
| .f_##_in##_out = _fn, \ |
| .log_exec = _exec, \ |
| .log_error = _error \ |
| } |
| |
| /* |
| * The 3rd value enables the execution log. |
| * The 4th value enables the error log. |
| */ |
| static const struct smc_handler smc_handlers[] = { |
| HANDLER(VERSION, 0, 0, smc_version, true, true), |
| HANDLER(FEATURES, 1, 1, smc_read_feature_register, true, true), |
| HANDLER(GRANULE_DELEGATE, 1, 0, smc_granule_delegate, false, true), |
| HANDLER(GRANULE_UNDELEGATE, 1, 0, smc_granule_undelegate, false, true), |
| HANDLER(REALM_CREATE, 2, 0, smc_realm_create, true, true), |
| HANDLER(REALM_DESTROY, 1, 0, smc_realm_destroy, true, true), |
| HANDLER(REALM_ACTIVATE, 1, 0, smc_realm_activate, true, true), |
| HANDLER(REC_CREATE, 3, 0, smc_rec_create, true, true), |
| HANDLER(REC_DESTROY, 1, 0, smc_rec_destroy, true, true), |
| HANDLER(REC_ENTER, 2, 0, smc_rec_enter, false, true), |
| HANDLER(DATA_CREATE, 5, 0, smc_data_create, false, false), |
| HANDLER(DATA_CREATE_UNKNOWN, 3, 0, smc_data_create_unknown, false, false), |
| HANDLER(DATA_DESTROY, 2, 2, smc_data_destroy, false, true), |
| HANDLER(RTT_CREATE, 4, 0, smc_rtt_create, false, true), |
| HANDLER(RTT_DESTROY, 3, 2, smc_rtt_destroy, false, true), |
| HANDLER(RTT_FOLD, 3, 1, smc_rtt_fold, false, true), |
| HANDLER(RTT_MAP_UNPROTECTED, 4, 0, smc_rtt_map_unprotected, false, false), |
| HANDLER(RTT_UNMAP_UNPROTECTED, 3, 1, smc_rtt_unmap_unprotected, false, false), |
| HANDLER(RTT_READ_ENTRY, 3, 4, smc_rtt_read_entry, false, true), |
| HANDLER(PSCI_COMPLETE, 2, 0, smc_psci_complete, true, true), |
| HANDLER(REC_AUX_COUNT, 1, 1, smc_rec_aux_count, true, true), |
| HANDLER(RTT_INIT_RIPAS, 3, 1, smc_rtt_init_ripas, false, true), |
| HANDLER(RTT_SET_RIPAS, 4, 1, smc_rtt_set_ripas, false, true) |
| }; |
| |
| COMPILER_ASSERT(ARRAY_LEN(smc_handlers) == SMC64_NUM_FIDS_IN_RANGE(RMI)); |
| |
| static bool rmi_call_log_enabled = true; |
| |
| static inline bool rmi_handler_needs_fpu(unsigned long id) |
| { |
| #ifdef RMM_FPU_USE_AT_REL2 |
| if (id == SMC_RMM_REALM_CREATE || id == SMC_RMM_DATA_CREATE || |
| id == SMC_RMM_REC_CREATE || id == SMC_RMM_RTT_INIT_RIPAS) { |
| return true; |
| } |
| #endif |
| return false; |
| } |
| |
| static void rmi_log_on_exit(unsigned long handler_id, |
| unsigned long args[], |
| struct smc_result *res) |
| { |
| const struct smc_handler *handler = &smc_handlers[handler_id]; |
| unsigned long function_id = SMC64_RMI_FID(handler_id); |
| return_code_t rc; |
| unsigned int num; |
| |
| if (!handler->log_exec && !handler->log_error) { |
| return; |
| } |
| |
| if (function_id == SMC_RMM_VERSION) { |
| /* |
| * RMM_VERSION is special because it returns the |
| * version number, not the error code. |
| */ |
| INFO("SMC_RMM_%-21s > %lx\n", handler->fn_name, res->x[0]); |
| return; |
| } |
| |
| rc = unpack_return_code(res->x[0]); |
| |
| if ((handler->log_exec) || |
| (handler->log_error && (rc.status != RMI_SUCCESS))) { |
| /* Print function name */ |
| INFO("SMC_RMM_%-21s", handler->fn_name); |
| |
| /* Print arguments */ |
| num = handler->type & 0xFF; |
| assert(num <= MAX_NUM_ARGS); |
| |
| for (unsigned int i = 0U; i < num; i++) { |
| INFO(" %lx", args[i]); |
| } |
| |
| /* Print status */ |
| if (rc.status >= RMI_ERROR_COUNT) { |
| INFO(" > %lx", res->x[0]); |
| } else { |
| INFO(" > RMI_%s", rmi_status_string[rc.status]); |
| } |
| |
| /* Check for index */ |
| if (((function_id == SMC_RMM_REC_ENTER) && |
| (rc.status == RMI_ERROR_REALM)) || |
| (rc.status == RMI_ERROR_RTT)) { |
| INFO(" %x", rc.index); |
| } |
| |
| if ((rc.status == RMI_SUCCESS) || |
| ((rc.status == RMI_ERROR_RTT) && |
| ((function_id == SMC_RMM_RTT_DESTROY) || |
| (function_id == SMC_RMM_DATA_DESTROY)))) { |
| /* Print output values */ |
| num = (handler->type >> 8) & 0xFF; |
| assert(num <= MAX_NUM_OUTPUT_VALS); |
| |
| for (unsigned int i = 1U; i <= num; i++) { |
| INFO(" %lx", res->x[i]); |
| } |
| } |
| INFO("\n"); |
| } |
| } |
| |
| void handle_ns_smc(unsigned long function_id, |
| unsigned long arg0, |
| unsigned long arg1, |
| unsigned long arg2, |
| unsigned long arg3, |
| unsigned long arg4, |
| unsigned long arg5, |
| struct smc_result *res) |
| { |
| unsigned long handler_id; |
| const struct smc_handler *handler = NULL; |
| bool restore_ns_simd_state = false; |
| |
| /* Ignore SVE hint bit, until RMM supports SVE hint bit */ |
| function_id &= ~MASK(SMC_SVE_HINT); |
| |
| if (IS_SMC64_RMI_FID(function_id)) { |
| handler_id = RMI_HANDLER_ID(function_id); |
| if (handler_id < ARRAY_LEN(smc_handlers)) { |
| handler = &smc_handlers[handler_id]; |
| } |
| } |
| |
| /* |
| * Check if handler exists and 'fn_dummy' is not NULL |
| * for not implemented 'function_id' calls in SMC RMI range. |
| */ |
| if ((handler == NULL) || (handler->fn_dummy == NULL)) { |
| VERBOSE("[%s] unknown function_id: %lx\n", |
| __func__, function_id); |
| res->x[0] = SMC_UNKNOWN; |
| return; |
| } |
| |
| assert_cpu_slots_empty(); |
| |
| /* Current CPU's SIMD state must not be saved when entering RMM */ |
| assert(simd_is_state_saved() == false); |
| |
| /* If the handler needs FPU, actively save NS simd context. */ |
| if (rmi_handler_needs_fpu(function_id) == true) { |
| simd_save_ns_state(); |
| restore_ns_simd_state = true; |
| } |
| |
| switch (handler->type) { |
| case rmi_type_00: |
| res->x[0] = handler->f_00(); |
| break; |
| case rmi_type_10: |
| res->x[0] = handler->f_10(arg0); |
| break; |
| case rmi_type_20: |
| res->x[0] = handler->f_20(arg0, arg1); |
| break; |
| case rmi_type_30: |
| res->x[0] = handler->f_30(arg0, arg1, arg2); |
| break; |
| case rmi_type_40: |
| res->x[0] = handler->f_40(arg0, arg1, arg2, arg3); |
| break; |
| case rmi_type_50: |
| res->x[0] = handler->f_50(arg0, arg1, arg2, arg3, arg4); |
| break; |
| case rmi_type_11: |
| handler->f_11(arg0, res); |
| break; |
| case rmi_type_22: |
| handler->f_22(arg0, arg1, res); |
| break; |
| case rmi_type_31: |
| handler->f_31(arg0, arg1, arg2, res); |
| break; |
| case rmi_type_32: |
| handler->f_32(arg0, arg1, arg2, res); |
| break; |
| case rmi_type_34: |
| handler->f_34(arg0, arg1, arg2, res); |
| break; |
| case rmi_type_41: |
| handler->f_41(arg0, arg1, arg2, arg3, res); |
| break; |
| default: |
| assert(false); |
| } |
| |
| if (rmi_call_log_enabled) { |
| unsigned long args[] = {arg0, arg1, arg2, arg3, arg4}; |
| |
| rmi_log_on_exit(handler_id, args, res); |
| } |
| |
| /* If the handler uses FPU, restore the saved NS simd context. */ |
| if (restore_ns_simd_state) { |
| simd_restore_ns_state(); |
| } |
| |
| /* Current CPU's SIMD state must not be saved when exiting RMM */ |
| assert(simd_is_state_saved() == false); |
| |
| assert_cpu_slots_empty(); |
| } |
| |
| static void report_unexpected(void) |
| { |
| unsigned long spsr = read_spsr_el2(); |
| unsigned long esr = read_esr_el2(); |
| unsigned long elr = read_elr_el2(); |
| unsigned long far = read_far_el2(); |
| |
| INFO("----\n"); |
| INFO("Unexpected exception:\n"); |
| INFO("SPSR_EL2: 0x%016lx\n", spsr); |
| INFO("ESR_EL2: 0x%016lx\n", esr); |
| INFO("ELR_EL2: 0x%016lx\n", elr); |
| INFO("FAR_EL2: 0x%016lx\n", far); |
| INFO("----\n"); |
| } |
| |
| unsigned long handle_realm_trap(unsigned long *regs) |
| { |
| report_unexpected(); |
| |
| while (true) { |
| wfe(); |
| } |
| } |
| |
| /* |
| * Identifies an abort that the RMM may recover from. |
| */ |
| struct rmm_trap_element { |
| /* |
| * The PC at the time of abort. |
| */ |
| unsigned long aborted_pc; |
| /* |
| * New value of the PC. |
| */ |
| unsigned long new_pc; |
| }; |
| |
| #define RMM_TRAP_HANDLER(_aborted_pc, _new_pc) \ |
| { .aborted_pc = (unsigned long)(&_aborted_pc), \ |
| .new_pc = (unsigned long)(&_new_pc) } |
| |
| /* |
| * The registered locations of load/store instructions that access NS memory. |
| */ |
| extern void *ns_read; |
| extern void *ns_write; |
| |
| /* |
| * The new value of the PC when the GPF occurs on a registered location. |
| */ |
| extern void *ns_access_ret_0; |
| |
| struct rmm_trap_element rmm_trap_list[] = { |
| RMM_TRAP_HANDLER(ns_read, ns_access_ret_0), |
| RMM_TRAP_HANDLER(ns_write, ns_access_ret_0), |
| }; |
| #define RMM_TRAP_LIST_SIZE (sizeof(rmm_trap_list)/sizeof(struct rmm_trap_element)) |
| |
| static void fatal_abort(void) |
| { |
| report_unexpected(); |
| |
| while (true) { |
| wfe(); |
| } |
| } |
| |
| static bool is_el2_data_abort_gpf(unsigned long esr) |
| { |
| if (((esr & MASK(ESR_EL2_EC)) == ESR_EL2_EC_DATA_ABORT_SEL) && |
| ((esr & MASK(ESR_EL2_ABORT_FSC)) == ESR_EL2_ABORT_FSC_GPF)) { |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Handles the RMM's aborts. |
| * It compares the PC at the time of the abort with the registered addresses. |
| * If it finds a match, it returns the new value of the PC that the RMM should |
| * continue from. Other register values are preserved. |
| * If no match is found, it aborts the RMM. |
| */ |
| unsigned long handle_rmm_trap(void) |
| { |
| unsigned long esr = read_esr_el2(); |
| unsigned long elr = read_elr_el2(); |
| |
| /* |
| * Only the GPF data aborts are recoverable. |
| */ |
| if (!is_el2_data_abort_gpf(esr)) { |
| fatal_abort(); |
| } |
| |
| for (unsigned int i = 0U; i < RMM_TRAP_LIST_SIZE; i++) { |
| if (rmm_trap_list[i].aborted_pc == elr) { |
| return rmm_trap_list[i].new_pc; |
| } |
| } |
| |
| fatal_abort(); |
| return 0UL; |
| } |