blob: 44823aa0e845d91703404ef75df0ab21938908c5 [file] [log] [blame]
/*
* SPDX-License-Identifier: BSD-3-Clause
* SPDX-FileCopyrightText: Copyright TF-RMM Contributors.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <attestation_token.h>
#include <buffer.h>
#include <cpuid.h>
#include <debug.h>
#include <errno.h>
#include <gic.h>
#include <granule.h>
#include <memory_alloc.h>
#include <sizes.h>
#include <slot_buf_arch.h>
#include <stdbool.h>
#include <stdint.h>
#include <table.h>
#include <xlat_contexts.h>
#include <xlat_tables.h>
/*
* The VA space size for the high region, which maps the slot buffers,
* needs to be a power of two, so round NR_CPU_SLOTS up to the closest
* power of two.
*/
#define ROUNDED_NR_CPU_SLOTS (1ULL << (64ULL - \
__builtin_clzll((NR_CPU_SLOTS) - 1)))
#define RMM_SLOT_BUF_VA_SIZE ((ROUNDED_NR_CPU_SLOTS) * (GRANULE_SIZE))
#define SLOT_VIRT ((ULL(0xffffffffffffffff) - \
RMM_SLOT_BUF_VA_SIZE + ULL(1)))
/*
* All the slot buffers for a given CPU must be mapped by a single translation
* table, which means the max VA size should be <= 4KB * 512
*/
COMPILER_ASSERT((RMM_SLOT_BUF_VA_SIZE) <= (GRANULE_SIZE * XLAT_TABLE_ENTRIES));
/*
* For all translation stages if FEAT_TTST is implemented, while
* the PE is executing in AArch64 state and is using 4KB
* translation granules, the min address space size is 64KB
*/
COMPILER_ASSERT((RMM_SLOT_BUF_VA_SIZE) >= (1 << 16U));
#define RMM_SLOT_BUF_MMAP MAP_REGION_TRANSIENT( \
SLOT_VIRT, \
RMM_SLOT_BUF_VA_SIZE, \
PAGE_SIZE)
#define SLOT_BUF_MMAP_REGIONS UL(1)
/*
* Attributes for a buffer slot page descriptor.
* Note that the AF bit on the descriptor is handled by the translation
* library (it assumes that access faults are not handled) so it does not
* need to be specified here.
*/
#define SLOT_DESC_ATTR \
(MT_RW_DATA | MT_SHAREABILITY_ISH | MT_NG)
/*
* The base tables for all the contexts are manually allocated as a continous
* block of memory.
*/
static uint64_t transient_base_table[XLAT_TABLE_ENTRIES * MAX_CPUS]
__aligned(BASE_XLAT_TABLES_ALIGNMENT)
__section("slot_buffer_xlat_tbls");
/* Allocate per-cpu xlat_ctx_tbls */
static struct xlat_ctx_tbls slot_buf_tbls[MAX_CPUS];
/*
* Allocate mmap regions and define common xlat_ctx_cfg shared will
* all slot_buf_xlat_ctx
*/
XLAT_REGISTER_VA_SPACE(slot_buf, VA_HIGH_REGION,
SLOT_BUF_MMAP_REGIONS,
RMM_SLOT_BUF_VA_SIZE);
/* context definition */
static struct xlat_ctx slot_buf_xlat_ctx[MAX_CPUS];
/*
* Allocate a cache to store the last level table entry where the slot buffers
* are mapped to avoid needing to perform a table walk every time a buffer
* slot operation is needed.
*/
static struct xlat_table_entry te_cache[MAX_CPUS];
static uintptr_t slot_to_va(enum buffer_slot slot)
{
assert(slot < NR_CPU_SLOTS);
return (uintptr_t)(SLOT_VIRT + (GRANULE_SIZE * slot));
}
static inline struct xlat_ctx *get_slot_buf_xlat_ctx(void)
{
return &slot_buf_xlat_ctx[my_cpuid()];
}
static inline struct xlat_table_entry *get_cache_entry(void)
{
return &te_cache[my_cpuid()];
}
__unused static uint64_t slot_to_descriptor(enum buffer_slot slot)
{
uint64_t *entry = xlat_get_pte_from_table(get_cache_entry(),
slot_to_va(slot));
return xlat_read_descriptor(entry);
}
/*
* Setup xlat table for slot buffer mechanism for each PE.
* Must be called for every PE in the system
*/
void slot_buf_setup_xlat(void)
{
unsigned int cpuid = my_cpuid();
int ret = xlat_ctx_create_dynamic(get_slot_buf_xlat_ctx(),
&slot_buf_xlat_ctx_cfg,
&slot_buf_tbls[cpuid],
&transient_base_table[
XLAT_TABLE_ENTRIES * cpuid],
GET_NUM_BASE_LEVEL_ENTRIES(
RMM_SLOT_BUF_VA_SIZE),
NULL,
0U);
if (ret == -EINVAL) {
/*
* If the context was already created, carry on with the
* initialization. If it cannot be created, panic.
*/
ERROR("%s (%u): Failed to create the empty context for the slot buffers\n",
__func__, __LINE__);
panic();
}
if (xlat_ctx_cfg_initialized(get_slot_buf_xlat_ctx()) == false) {
/* Add necessary mmap regions during cold boot */
struct xlat_mmap_region slot_buf_regions[] = {
RMM_SLOT_BUF_MMAP,
{0}
};
if (xlat_mmap_add_ctx(get_slot_buf_xlat_ctx(),
slot_buf_regions, true) != 0) {
ERROR("%s (%u): Failed to map slot buffer memory on high region\n",
__func__, __LINE__);
panic();
}
}
if (xlat_ctx_tbls_initialized(get_slot_buf_xlat_ctx()) == false) {
/*
* Initialize the translation tables for the current context.
* This is done on the first boot of each CPU.
*/
int err;
err = xlat_init_tables_ctx(get_slot_buf_xlat_ctx());
if (err != 0) {
ERROR("%s (%u): xlat initialization failed with code %i\n",
__func__, __LINE__, err);
panic();
}
}
/*
* Confugure MMU registers. This function assumes that all the
* contexts of a particular VA region (HIGH or LOW VA) use the same
* limits for VA and PA spaces.
*/
if (xlat_arch_setup_mmu_cfg(get_slot_buf_xlat_ctx())) {
ERROR("%s (%u): MMU registers failed to initialize\n",
__func__, __LINE__);
panic();
}
}
/*
* Finishes initializing the slot buffer mechanism.
* This function must be called after the MMU is enabled.
*/
void slot_buf_init(void)
{
if (is_mmu_enabled() == false) {
ERROR("%s: MMU must be enabled\n", __func__);
panic();
}
/*
* Initialize (if not done yet) the internal cache with the last level
* translation table that holds the MMU descriptors for the slot
* buffers, so we can access them faster when we need to map/unmap.
*/
if ((get_cache_entry())->table == NULL) {
if (xlat_get_table_from_va(get_cache_entry(),
get_slot_buf_xlat_ctx(),
slot_to_va(SLOT_NS)) != 0) {
ERROR("%s (%u): Failed to initialize table entry cache for CPU %u\n",
__func__, __LINE__, my_cpuid());
panic();
}
}
}
/*
* Buffer slots are intended to be transient, and should not be live at
* entry/exit of the RMM.
*/
void assert_cpu_slots_empty(void)
{
unsigned int i;
for (i = 0; i < NR_CPU_SLOTS; i++) {
assert(slot_to_descriptor(i) == INVALID_DESC);
}
}
static inline bool is_ns_slot(enum buffer_slot slot)
{
return slot == SLOT_NS;
}
static inline bool is_realm_slot(enum buffer_slot slot)
{
return (slot != SLOT_NS) && (slot < NR_CPU_SLOTS);
}
static void *ns_granule_map(enum buffer_slot slot, struct granule *granule)
{
unsigned long addr = granule_addr(granule);
assert(is_ns_slot(slot));
return buffer_arch_map(slot, addr, true);
}
static void ns_buffer_unmap(enum buffer_slot slot)
{
assert(is_ns_slot(slot));
buffer_arch_unmap((void *)slot_to_va(slot));
}
/*
* Maps a granule @g into the provided @slot, returning
* the virtual address.
*
* The caller must either hold @g::lock or hold a reference.
*/
void *granule_map(struct granule *g, enum buffer_slot slot)
{
unsigned long addr = granule_addr(g);
assert(is_realm_slot(slot));
return buffer_arch_map(slot, addr, false);
}
void buffer_unmap(void *buf)
{
buffer_arch_unmap(buf);
}
bool memcpy_ns_read(void *dest, const void *ns_src, unsigned long size);
bool memcpy_ns_write(void *ns_dest, const void *src, unsigned long size);
/*
* Map a Non secure granule @g into the slot @slot and read data from
* this granule to @dest. Unmap the granule once the read is done.
*
* It returns 'true' on success or `false` if not all data are copied.
* Only the least significant bits of @offset are considered, which allows the
* full PA of a non-granule aligned buffer to be used for the @offset parameter.
*/
bool ns_buffer_read(enum buffer_slot slot,
struct granule *ns_gr,
unsigned int offset,
unsigned int size,
void *dest)
{
uintptr_t src;
bool retval;
assert(is_ns_slot(slot));
assert(ns_gr != NULL);
/*
* To simplify the trapping mechanism around NS access,
* memcpy_ns_read uses a single 8-byte LDR instruction and
* all parameters must be aligned accordingly.
*/
assert(ALIGNED(size, 8));
assert(ALIGNED(offset, 8));
assert(ALIGNED(dest, 8));
offset &= ~GRANULE_MASK;
assert(offset + size <= GRANULE_SIZE);
src = (uintptr_t)ns_granule_map(slot, ns_gr) + offset;
retval = memcpy_ns_read(dest, (void *)src, size);
ns_buffer_unmap(slot);
return retval;
}
/*
* Map a Non secure granule @g into the slot @slot and write data from
* this granule to @dest. Unmap the granule once the write is done.
*
* It returns 'true' on success or `false` if not all data are copied.
* Only the least significant bits of @offset are considered, which allows the
* full PA of a non-granule aligned buffer to be used for the @offset parameter.
*/
bool ns_buffer_write(enum buffer_slot slot,
struct granule *ns_gr,
unsigned int offset,
unsigned int size,
void *src)
{
uintptr_t dest;
bool retval;
assert(is_ns_slot(slot));
assert(ns_gr != NULL);
/*
* To simplify the trapping mechanism around NS access,
* memcpy_ns_write uses a single 8-byte STR instruction and
* all parameters must be aligned accordingly.
*/
assert(ALIGNED(size, 8));
assert(ALIGNED(offset, 8));
assert(ALIGNED(src, 8));
offset &= ~GRANULE_MASK;
assert(offset + size <= GRANULE_SIZE);
dest = (uintptr_t)ns_granule_map(slot, ns_gr) + offset;
retval = memcpy_ns_write((void *)dest, src, size);
ns_buffer_unmap(slot);
return retval;
}
/******************************************************************************
* Internal helpers
******************************************************************************/
void *buffer_map_internal(enum buffer_slot slot, unsigned long addr, bool ns)
{
uint64_t attr = SLOT_DESC_ATTR;
uintptr_t va = slot_to_va(slot);
struct xlat_table_entry *entry = get_cache_entry();
assert(GRANULE_ALIGNED(addr));
attr |= (ns == true ? MT_NS : MT_REALM);
if (xlat_map_memory_page_with_attrs(entry, va,
(uintptr_t)addr, attr) != 0) {
/* Error mapping the buffer */
return NULL;
}
return (void *)va;
}
void buffer_unmap_internal(void *buf)
{
/*
* Prevent the compiler from moving prior loads/stores to buf after the
* update to the translation table. Otherwise, those could fault.
*/
COMPILER_BARRIER();
xlat_unmap_memory_page(get_cache_entry(), (uintptr_t)buf);
}