blob: 0f473ec7041e56c47cd36087c04bb66da3a0bdc4 [file] [log] [blame]
##################
First Things First
##################
************
Prerequisite
************
Trusted Firmware M provides a reference implementation of the Platform Security
Architecture (PSA) specifications, aligning with PSA Certified guidelines.
It is assumed that the reader is familiar with the specifications that can be
found
`here <https://developer.arm.com/architectures/security-architectures/platform-security-architecture>`__.
The current TF-M implementation on Armv8-M leverages TrustZone for Armv8-M so a
good understanding of the v8-M architecture is also necessary. A good place to
get started with Armv8-M is
`developer.arm.com <https://developer.arm.com/architectures/cpu-architecture/m-profile>`__.
**************************
Build and run instructions
**************************
Trusted Firmware M source code is available on
`git.trustedfirmware.org <https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/>`__.
To build & run TF-M:
- Follow the this guide to set up and check your environment.
- Follow the
:doc:`Build instructions </building/tfm_build_instruction>`
to compile and build the TF-M source.
- Follow the :doc:`Run TF-M examples on Arm platforms </building/run_tfm_examples_on_arm_platforms>`
for information on running the example.
To port TF-M to a another system or OS, follow the
:doc:`OS Integration Guide </integration_guide/index>`
:doc:`Contributing Process </contributing/contributing_process>` contains guidance on how to
contribute to this project.
#########################
Set up build environments
#########################
TF-M officially supports a limited set of build environments and setups. In
this context, official support means that the environments listed below
are actively used by team members and active developers, hence users should
be able to recreate the same configurations by following the instructions
described below. In case of problems, the TF-M team provides support
only for these environments, but building in other environments can still be
possible.
The following environments are supported:
.. tabs::
.. group-tab:: Linux
1. version supported:
Ubuntu 18.04 x64+
2. install dependencies:
.. code-block:: bash
sudo apt-get install -y git curl wget build-essential libssl-dev python3 \
python3-pip cmake make
3. verify cmake version:
.. code-block:: bash
cmake --version
.. note::
Please download CMake version 3.21 or later from https://cmake.org/download/.
4. add CMake path into environment:
.. code-block:: bash
export PATH=<CMake path>/bin:$PATH
.. group-tab:: Windows
1. version supported:
Windows 10 x64
2. install dependencies:
- Git client latest version (https://git-scm.com/download/win)
- CMake version 3.21 or later (`native Windows version <https://cmake.org/download/>`__)
- GNU make (http://gnuwin32.sourceforge.net/packages/make.htm)
- Python3 `(native Windows version) <https://www.python.org/downloads/>`__ and
the pip package manager (from Python 3.4 it's included)
3. add CMake path into environment:
.. code-block:: bash
set PATH=<CMake_Path>\bin;%PATH%
###########################
Install python dependencies
###########################
Clone the TF-M source code, and then install the TF-M's additional Python
dependencies.
.. tabs::
.. group-tab:: Linux
1. get the TF-M source code:
.. code-block:: bash
git clone https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git
2. TF-M's ``tools/requirements.txt`` file declares additional Python
dependencies. Install them with ``pip3``:
.. code-block:: bash
pip3 install --upgrade pip
cd trusted-firmware-m
pip3 install -r tools/requirements.txt
.. group-tab:: Windows
1. get the TF-M source code:
.. code-block:: bash
git clone https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git
2. TF-M's ``tools/requirements.txt`` file declares additional Python
dependencies. Install them with ``pip3``:
.. code-block:: bash
cd trusted-firmware-m
pip3 install -r tools\requirements.txt
###################
Install a toolchain
###################
To compile TF-M code, at least one of the supported compiler toolchains have to
be available in the build environment. The currently supported compiler
versions are:
- Arm Compiler minimum version v6.21
.. tabs::
.. group-tab:: Linux
- Download the standalone packages from `here <https://developer.arm.com/products/software-development-tools/compilers/arm-compiler/downloads/version-6>`__.
- Add Arm Compiler into environment:
.. code-block:: bash
export PATH=<ARM_CLANG_PATH>/bin:$PATH
export ARM_PRODUCT_PATH=<ARM_CLANG_PATH>/sw/mappings
- Configure proper tool variant and license.
.. group-tab:: Windows
- Download the standalone packages from `here <https://developer.arm.com/products/software-development-tools/compilers/arm-compiler/downloads/version-6>`__.
- Add Arm Compiler into environment:
.. code-block:: bash
set PATH=<ARM_CLANG_PATH>\bin;%PATH%
set ARM_PRODUCT_PATH=<ARM_CLANG_PATH>\sw\mappings
- Configure proper tool variant and license.
- GNU Arm compiler version minimum 10.3.2021.10
.. tabs::
.. group-tab:: Linux
- Download the GNU Arm compiler from `here <https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads>`__.
- Add GNU Arm into environment:
.. code-block:: bash
export PATH=<GNU_ARM_PATH>/bin:$PATH
.. group-tab:: Windows
- Download the GNU Arm compiler from `here <https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads>`__.
- Add GNU Arm into environment:
.. code-block:: bash
set PATH=<GNU_ARM_PATH>\bin;%PATH%
- IAR Arm compiler v9.30.1
.. tabs::
.. group-tab:: Linux
- Download IAR build tools from `here <https://www.iar.com/embedded-development-tools/iar-build-tools>`__.
- Add IAR Arm compiler into environment:
.. code-block:: bash
export PATH=<IAR_COMPILER_PATH>/bin:$PATH
.. group-tab:: Windows
- Download IAR build tools from `here <https://www.iar.com/embedded-development-tools/iar-build-tools>`__.
- Add IAR Arm compiler into environment:
.. code-block:: bash
set PATH=<IAR_COMPILER_PATH>\bin;%PATH%
- LLVM Embedded Toolchain for Arm v18.1.3+
.. tabs::
.. group-tab:: Linux
- Download the LLVM Embedded Toolchain for Arm from `here <https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm>`__.
- Add LLVM Embedded into environment:
.. code-block:: bash
export PATH=<LLVM_PATH>/bin:$PATH
.. group-tab:: Windows
- Download the LLVM Embedded Toolchain for Arm from `here <https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm>`__.
- Add LLVM Embedded into environment:
.. code-block:: bash
set PATH=<LLVM_PATH>\bin;%PATH%
.. note::
Not all platforms support this toolchain. Please refer to a platform documentation or check with the platform owner.
#############################
Build AN521 regression sample
#############################
Here, we take building TF-M for AN521 platform with regression tests using GCC
as an example:
.. tabs::
.. group-tab:: Linux
Get the TF-M tests source code:
.. code-block:: bash
git clone https://git.trustedfirmware.org/TF-M/tf-m-tests.git
Build SPE and NSPE.
.. code-block:: bash
cd </tf-m-tests/tests_reg>
cmake -S spe -B build_spe -DTFM_PLATFORM=arm/mps2/an521 -DCONFIG_TFM_SOURCE_PATH=<TF-M source dir absolute path> \
-DCMAKE_BUILD_TYPE=Debug -DTFM_TOOLCHAIN_FILE=<TF-M source dir absolute path>/toolchain_GNUARM.cmake \
-DTEST_S=ON -DTEST_NS=ON \
cmake --build build_spe -- install
cmake -S . -B build_test -DCONFIG_SPE_PATH=<tf-m-tests absolute path>/tests_reg/build_spe/api_ns \
-DCMAKE_BUILD_TYPE=Debug -DTFM_TOOLCHAIN_FILE=<tf-m-tests absolute path>/tests_reg/build_spe/api_ns/cmake/toolchain_ns_GNUARM.cmake
cmake --build build_test
.. group-tab:: Windows
.. important::
Use "/" instead of "\\" when assigning Windows paths to CMAKE
variables, for example, use "c:/build" instead of "c:\\\\build".
Get the TF-M tests source code:
.. code-block:: bash
git clone https://git.trustedfirmware.org/TF-M/tf-m-tests.git
Build SPE and NSPE.
.. code-block:: bash
cd </tf-m-tests/tests_reg>
cmake -G"Unix Makefiles" -S spe -B build_spe -DTFM_PLATFORM=arm/mps2/an521 -DCONFIG_TFM_SOURCE_PATH=<TF-M source dir absolute path> \
-DCMAKE_BUILD_TYPE=Debug -DTFM_TOOLCHAIN_FILE=<TF-M source dir absolute path>/toolchain_GNUARM.cmake \
-DTEST_S=ON -DTEST_NS=ON \
cmake --build build_spe -- install
cmake -G"Unix Makefiles" -S . -B build_test -DCONFIG_SPE_PATH=<tf-m-tests absolute path>/tests_reg/build_spe/api_ns \
-DCMAKE_BUILD_TYPE=Debug -DTFM_TOOLCHAIN_FILE=<tf-m-tests absolute path>/tests_reg/build_spe/api_ns/cmake/toolchain_ns_GNUARM.cmake
cmake --build build_test
.. note::
The latest Windows support long paths, but if you are less lucky
then you can reduce paths by moving the build directory closer to
the root by changing the ``-B`` option of the commands, for example,
to ``C:\build_spe`` and ``C:\build_test`` folders.
###########################
Run AN521 regression sample
###########################
Run the sample code on SSE-200 Fast-Model, using FVP_MPS2_AEMv8M provided by
Arm Development Studio.
.. note::
Arm Development Studio is not essential to develop TF-M, you can skip this
section if don't want to try on Arm develop boards.
.. tabs::
.. group-tab:: Linux
1. install Arm Development Studio to get the fast-model.
Download Arm Development Studio from `here <https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio#Downloads>`__.
2. Add ``bl2.axf`` and ``tfm_s_ns_signed.bin`` to symbol files in Debug
Configuration menu.
.. code-block:: bash
<DS_PATH>/sw/models/bin/FVP_MPS2_AEMv8M \
--parameter fvp_mps2.platform_type=2 \
--parameter cpu0.baseline=0 \
--parameter cpu0.INITVTOR_S=0x10000000 \
--parameter cpu0.semihosting-enable=0 \
--parameter fvp_mps2.DISABLE_GATING=0 \
--parameter fvp_mps2.telnetterminal0.start_telnet=1 \
--parameter fvp_mps2.telnetterminal1.start_telnet=0 \
--parameter fvp_mps2.telnetterminal2.start_telnet=0 \
--parameter fvp_mps2.telnetterminal0.quiet=0 \
--parameter fvp_mps2.telnetterminal1.quiet=1 \
--parameter fvp_mps2.telnetterminal2.quiet=1 \
--application cpu0=<build_spe>/api_ns/bin/bl2.axf \
--data cpu0=<build_test>/tfm_s_ns_signed.bin@0x10080000
.. note::
The log is output to telnet by default.
It can be also redirected to stdout by adding the following parameter.
.. code-block:: bash
--parameter fvp_mps2.UART0.out_file=/dev/stdout
To automatically terminate the fast-model when it finishes running,
you can add the following parameters:
.. code-block:: bash
--parameter fvp_mps2.UART0.shutdown_on_eot=1
.. group-tab:: Windows
1. install Arm Development Studio to get the fast-model.
Download Arm Development Studio from `here <https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio#Downloads>`__.
2. Add ``bl2.axf`` and ``tfm_s_ns_signed.bin`` to symbol files in Debug
Configuration menu.
.. code-block:: bash
<DS_PATH>\sw\models\bin\FVP_MPS2_AEMv8M \
--parameter fvp_mps2.platform_type=2 \
--parameter cpu0.baseline=0 \
--parameter cpu0.INITVTOR_S=0x10000000 \
--parameter cpu0.semihosting-enable=0 \
--parameter fvp_mps2.DISABLE_GATING=0 \
--parameter fvp_mps2.telnetterminal0.start_telnet=1 \
--parameter fvp_mps2.telnetterminal1.start_telnet=0 \
--parameter fvp_mps2.telnetterminal2.start_telnet=0 \
--parameter fvp_mps2.telnetterminal0.quiet=0 \
--parameter fvp_mps2.telnetterminal1.quiet=1 \
--parameter fvp_mps2.telnetterminal2.quiet=1 \
--application cpu0=<build_spe>/api_ns/bin/bl2.axf \
--data cpu0=<build_test>/tfm_s_ns_signed.bin@0x10080000
.. note::
To automatically terminate the fast-model when it finishes running,
you can add the following parameters:
.. code-block:: bash
--parameter fvp_mps2.UART0.shutdown_on_eot=1
After completing the procedure you should see the following messages on the
DAPLink UART (baud 115200 8n1)::
...
#### Execute test suites for the Secure area ####
Running Test Suite PSA protected storage S interface tests (TFM_S_PS_TEST_1XXX)...
> Executing 'TFM_S_PS_TEST_1001'
Description: 'Set interface'
TEST: TFM_S_PS_TEST_1001 - PASSED!
> Executing 'TFM_S_PS_TEST_1002'
Description: 'Set interface with create flags'
TEST: TFM_S_PS_TEST_1002 - PASSED!
> Executing 'TFM_S_PS_TEST_1003'
Description: 'Set interface with NULL data pointer'
TEST: TFM_S_PS_TEST_1003 - PASSED!
> Executing 'TFM_S_PS_TEST_1005'
Description: 'Set interface with write once UID'
TEST: TFM_S_PS_TEST_1005 - PASSED!
....
##########################
Tool & Dependency overview
##########################
To build the TF-M firmware the following tools are needed:
- C compiler of supported toolchains
- CMake version 3.21 or later
- Git
- gmake, aka GNU Make
- Python v3.x
- a set of python modules listed in ``tools/requirements.txt``
****************
Dependency chain
****************
.. uml::
@startuml
skinparam state {
BackgroundColor #92AEE0
FontColor black
FontSize 16
AttributeFontColor black
AttributeFontSize 16
}
state fw as "Firmware" : TF-M binary
state c_comp as "C Compiler" : C99
state python as "Python" : v3.x
fw --> c_comp
fw --> CMake
CMake --> gmake
CMake --> Ninja
fw --> cryptography
fw --> pyasn1
fw --> yaml
fw --> jinja2
fw --> cbor2
fw --> click
fw --> imgtool
c_comp --> GCC
c_comp --> CLANG
c_comp --> IAR
cryptography --> python
pyasn1 --> python
yaml --> python
jinja2 --> python
cbor2 --> python
click --> python
imgtool --> python
kconfiglib --> python
@enduml
.. rubric:: Next steps
Here are some next steps for exploring TF-M:
- Detailed :doc:`Build instructions </building/tfm_build_instruction>`.
- :doc:`IAR Build instructions </building/tfm_build_instruction_iar>`.
- Try other :doc:`Samples and Demos </building/run_tfm_examples_on_arm_platforms>`.
- :doc:`Documentation generation </building/documentation_generation>`.
--------------
*SPDX-License-Identifier: BSD-3-Clause*
*SPDX-FileCopyrightText: Copyright The TrustedFirmware-M Contributors*