blob: 6443b524257e9121eeaac89acb89e92ecb28d54f [file] [log] [blame]
/*
* Copyright (c) 2018-2019, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
/* All the APIs defined in this file are used for IPC model. */
#include <inttypes.h>
#include <limits.h>
#include <stdbool.h>
#include <stdlib.h>
#include "psa/client.h"
#include "psa/service.h"
#include "tfm_utils.h"
#include "tfm_spm_hal.h"
#include "spm_api.h"
#include "spm_db.h"
#include "tfm_internal_defines.h"
#include "tfm_wait.h"
#include "tfm_message_queue.h"
#include "tfm_list.h"
#include "tfm_pools.h"
#include "tfm_thread.h"
#include "region_defs.h"
#include "tfm_nspm.h"
#include "tfm_memory_utils.h"
/* Extern SPM variable */
extern struct spm_partition_db_t g_spm_partition_db;
/* Extern secure lock variable */
extern int32_t tfm_secure_lock;
/* Pools */
TFM_POOL_DECLARE(conn_handle_pool, sizeof(struct tfm_conn_handle_t),
TFM_CONN_HANDLE_MAX_NUM);
TFM_POOL_DECLARE(spm_service_pool, sizeof(struct tfm_spm_service_t),
TFM_SPM_MAX_ROT_SERV_NUM);
TFM_POOL_DECLARE(msg_db_pool, sizeof(struct tfm_msg_body_t),
TFM_MSG_QUEUE_MAX_MSG_NUM);
static struct tfm_spm_service_db_t g_spm_service_db[] = {
#include "secure_fw/services/tfm_service_list.inc"
};
/********************** SPM functions for handler mode ***********************/
/* Service handle management functions */
psa_handle_t tfm_spm_create_conn_handle(struct tfm_spm_service_t *service)
{
struct tfm_conn_handle_t *node;
TFM_ASSERT(service);
/* Get buffer for handle list structure from handle pool */
node = (struct tfm_conn_handle_t *)tfm_pool_alloc(conn_handle_pool);
if (!node) {
return PSA_NULL_HANDLE;
}
/* Global unique handle, use handle buffer address directly */
node->handle = (psa_handle_t)node;
/* Add handle node to list for next psa functions */
tfm_list_add_tail(&service->handle_list, &node->list);
return node->handle;
}
static struct tfm_conn_handle_t *
tfm_spm_find_conn_handle_node(struct tfm_spm_service_t *service,
psa_handle_t conn_handle)
{
struct tfm_conn_handle_t *handle_node;
struct tfm_list_node_t *node, *head;
TFM_ASSERT(service);
head = &service->handle_list;
TFM_LIST_FOR_EACH(node, head) {
handle_node = TFM_GET_CONTAINER_PTR(node, struct tfm_conn_handle_t,
list);
if (handle_node->handle == conn_handle) {
return handle_node;
}
}
return NULL;
}
int32_t tfm_spm_free_conn_handle(struct tfm_spm_service_t *service,
psa_handle_t conn_handle)
{
struct tfm_conn_handle_t *node;
TFM_ASSERT(service);
/* There are many handles for each RoT Service */
node = tfm_spm_find_conn_handle_node(service, conn_handle);
if (!node) {
tfm_panic();
}
/* Remove node from handle list */
tfm_list_del_node(&node->list);
/* Back handle buffer to pool */
tfm_pool_free(node);
return IPC_SUCCESS;
}
int32_t tfm_spm_set_rhandle(struct tfm_spm_service_t *service,
psa_handle_t conn_handle,
void *rhandle)
{
struct tfm_conn_handle_t *node;
TFM_ASSERT(service);
/* Set reverse handle value only be allowed for a connected handle */
TFM_ASSERT(conn_handle != PSA_NULL_HANDLE);
/* There are many handles for each RoT Service */
node = tfm_spm_find_conn_handle_node(service, conn_handle);
if (!node) {
tfm_panic();
}
node->rhandle = rhandle;
return IPC_SUCCESS;
}
void *tfm_spm_get_rhandle(struct tfm_spm_service_t *service,
psa_handle_t conn_handle)
{
struct tfm_conn_handle_t *node;
TFM_ASSERT(service);
/* Get reverse handle value only be allowed for a connected handle */
TFM_ASSERT(conn_handle != PSA_NULL_HANDLE);
/* There are many handles for each RoT Service */
node = tfm_spm_find_conn_handle_node(service, conn_handle);
if (!node) {
tfm_panic();
}
return node->rhandle;
}
/* Partition management functions */
struct tfm_spm_service_t *
tfm_spm_get_service_by_signal(struct spm_partition_desc_t *partition,
psa_signal_t signal)
{
struct tfm_list_node_t *node, *head;
struct tfm_spm_service_t *service;
TFM_ASSERT(partition);
if (tfm_list_is_empty(&partition->runtime_data.service_list)) {
tfm_panic();
}
head = &partition->runtime_data.service_list;
TFM_LIST_FOR_EACH(node, head) {
service = TFM_GET_CONTAINER_PTR(node, struct tfm_spm_service_t, list);
if (service->service_db->signal == signal) {
return service;
}
}
return NULL;
}
struct tfm_spm_service_t *tfm_spm_get_service_by_sid(uint32_t sid)
{
uint32_t i;
struct tfm_list_node_t *node, *head;
struct tfm_spm_service_t *service;
struct spm_partition_desc_t *partition;
for (i = 0; i < g_spm_partition_db.partition_count; i++) {
partition = &g_spm_partition_db.partitions[i];
/* Skip partition without IPC flag */
if ((tfm_spm_partition_get_flags(i) & SPM_PART_FLAG_IPC) == 0) {
continue;
}
if (tfm_list_is_empty(&partition->runtime_data.service_list)) {
continue;
}
head = &partition->runtime_data.service_list;
TFM_LIST_FOR_EACH(node, head) {
service = TFM_GET_CONTAINER_PTR(node, struct tfm_spm_service_t,
list);
if (service->service_db->sid == sid) {
return service;
}
}
}
return NULL;
}
struct tfm_spm_service_t *
tfm_spm_get_service_by_handle(psa_handle_t conn_handle)
{
uint32_t i;
struct tfm_conn_handle_t *handle;
struct tfm_list_node_t *service_node, *service_head;
struct tfm_list_node_t *handle_node, *handle_head;
struct tfm_spm_service_t *service;
struct spm_partition_desc_t *partition;
for (i = 0; i < g_spm_partition_db.partition_count; i++) {
partition = &g_spm_partition_db.partitions[i];
/* Skip partition without IPC flag */
if ((tfm_spm_partition_get_flags(i) & SPM_PART_FLAG_IPC) == 0) {
continue;
}
if (tfm_list_is_empty(&partition->runtime_data.service_list)) {
continue;
}
service_head = &partition->runtime_data.service_list;
TFM_LIST_FOR_EACH(service_node, service_head) {
service = TFM_GET_CONTAINER_PTR(service_node,
struct tfm_spm_service_t, list);
handle_head = &service->handle_list;
TFM_LIST_FOR_EACH(handle_node, handle_head) {
handle = TFM_GET_CONTAINER_PTR(handle_node,
struct tfm_conn_handle_t, list);
if (handle->handle == conn_handle) {
return service;
}
}
}
}
return NULL;
}
struct spm_partition_desc_t *tfm_spm_get_partition_by_id(int32_t partition_id)
{
uint32_t idx = get_partition_idx(partition_id);
if (idx != SPM_INVALID_PARTITION_IDX) {
return &(g_spm_partition_db.partitions[idx]);
}
return NULL;
}
struct spm_partition_desc_t *tfm_spm_get_running_partition(void)
{
uint32_t spid;
spid = tfm_spm_partition_get_running_partition_id();
return tfm_spm_get_partition_by_id(spid);
}
int32_t tfm_spm_check_client_version(struct tfm_spm_service_t *service,
uint32_t minor_version)
{
TFM_ASSERT(service);
switch (service->service_db->minor_policy) {
case TFM_VERSION_POLICY_RELAXED:
if (minor_version > service->service_db->minor_version) {
return IPC_ERROR_VERSION;
}
break;
case TFM_VERSION_POLICY_STRICT:
if (minor_version != service->service_db->minor_version) {
return IPC_ERROR_VERSION;
}
break;
default:
return IPC_ERROR_VERSION;
}
return IPC_SUCCESS;
}
/* Message functions */
struct tfm_msg_body_t *tfm_spm_get_msg_from_handle(psa_handle_t msg_handle)
{
/*
* There may be one error handle passed by the caller in two conditions:
* 1. Not a valid message handle.
* 2. Handle between different Partitions. Partition A passes one handle
* belong to other Partitions and tries to access other's data.
* So, need do necessary checking to prevent those conditions.
*/
struct tfm_msg_body_t *msg;
uint32_t partition_id;
msg = (struct tfm_msg_body_t *)msg_handle;
if (!msg) {
return NULL;
}
/*
* FixMe: For condition 1: using a magic number to define it's a message.
* It needs to be an enhancement to check the handle belong to service.
*/
if (msg->magic != TFM_MSG_MAGIC) {
return NULL;
}
/* For condition 2: check if the partition ID is same */
partition_id = tfm_spm_partition_get_running_partition_id();
if (partition_id != msg->service->partition->static_data.partition_id) {
return NULL;
}
return msg;
}
struct tfm_msg_body_t *tfm_spm_create_msg(struct tfm_spm_service_t *service,
psa_handle_t handle,
int32_t type, int32_t ns_caller,
psa_invec *invec, size_t in_len,
psa_outvec *outvec, size_t out_len,
psa_outvec *caller_outvec)
{
struct tfm_msg_body_t *msg = NULL;
uint32_t i;
TFM_ASSERT(service);
TFM_ASSERT(!(invec == NULL && in_len != 0));
TFM_ASSERT(!(outvec == NULL && out_len != 0));
TFM_ASSERT(in_len <= PSA_MAX_IOVEC);
TFM_ASSERT(out_len <= PSA_MAX_IOVEC);
TFM_ASSERT(in_len + out_len <= PSA_MAX_IOVEC);
/* Get message buffer from message pool */
msg = (struct tfm_msg_body_t *)tfm_pool_alloc(msg_db_pool);
if (!msg) {
return NULL;
}
/* Clear message buffer before using it */
tfm_memset(msg, 0, sizeof(struct tfm_msg_body_t));
tfm_event_init(&msg->ack_evnt);
msg->magic = TFM_MSG_MAGIC;
msg->service = service;
msg->handle = handle;
msg->caller_outvec = caller_outvec;
/* Get current partition id */
if (ns_caller) {
msg->msg.client_id = tfm_nspm_get_current_client_id();
} else {
msg->msg.client_id = tfm_spm_partition_get_running_partition_id();
}
/* Copy contents */
msg->msg.type = type;
for (i = 0; i < in_len; i++) {
msg->msg.in_size[i] = invec[i].len;
msg->invec[i].base = invec[i].base;
}
for (i = 0; i < out_len; i++) {
msg->msg.out_size[i] = outvec[i].len;
msg->outvec[i].base = outvec[i].base;
/* Out len is used to record the writed number, set 0 here again */
msg->outvec[i].len = 0;
}
/* Use message address as handle */
msg->msg.handle = (psa_handle_t)msg;
/* For connected handle, set rhandle to every message */
if (handle != PSA_NULL_HANDLE) {
msg->msg.rhandle = tfm_spm_get_rhandle(service, handle);
}
return msg;
}
void tfm_spm_free_msg(struct tfm_msg_body_t *msg)
{
tfm_pool_free(msg);
}
int32_t tfm_spm_send_event(struct tfm_spm_service_t *service,
struct tfm_msg_body_t *msg)
{
struct spm_partition_runtime_data_t *p_runtime_data =
&service->partition->runtime_data;
TFM_ASSERT(service);
TFM_ASSERT(msg);
/* Enqueue message to service message queue */
if (tfm_msg_enqueue(&service->msg_queue, msg) != IPC_SUCCESS) {
return IPC_ERROR_GENERIC;
}
/* Messages put. Update signals */
p_runtime_data->signals |= service->service_db->signal;
tfm_event_wake(&p_runtime_data->signal_evnt, (p_runtime_data->signals &
p_runtime_data->signal_mask));
tfm_event_wait(&msg->ack_evnt);
return IPC_SUCCESS;
}
/* SPM extend functions */
uint32_t tfm_spm_partition_get_running_partition_id(void)
{
struct tfm_thrd_ctx *pth = tfm_thrd_curr_thread();
struct spm_partition_desc_t *partition;
partition = TFM_GET_CONTAINER_PTR(pth, struct spm_partition_desc_t,
sp_thrd);
return partition->static_data.partition_id;
}
static struct tfm_thrd_ctx *
tfm_spm_partition_get_thread_info(uint32_t partition_idx)
{
return &g_spm_partition_db.partitions[partition_idx].sp_thrd;
}
static tfm_thrd_func_t
tfm_spm_partition_get_init_func(uint32_t partition_idx)
{
return (tfm_thrd_func_t)(g_spm_partition_db.partitions[partition_idx].
static_data.partition_init);
}
static uint32_t tfm_spm_partition_get_priority(uint32_t partition_idx)
{
return g_spm_partition_db.partitions[partition_idx].static_data.
partition_priority;
}
int32_t tfm_memory_check(void *buffer, size_t len, int32_t ns_caller,
enum tfm_memory_access_e access,
uint32_t privileged)
{
enum tfm_status_e err;
/* If len is zero, this indicates an empty buffer and base is ignored */
if (len == 0) {
return IPC_SUCCESS;
}
if (!buffer) {
return IPC_ERROR_BAD_PARAMETERS;
}
if ((uintptr_t)buffer > (UINTPTR_MAX - len)) {
return IPC_ERROR_MEMORY_CHECK;
}
if (access == TFM_MEMORY_ACCESS_RW) {
err = tfm_core_has_write_access_to_region(buffer, len, ns_caller,
privileged);
} else {
err = tfm_core_has_read_access_to_region(buffer, len, ns_caller,
privileged);
}
if (err == TFM_SUCCESS) {
return IPC_SUCCESS;
}
return IPC_ERROR_MEMORY_CHECK;
}
uint32_t tfm_spm_partition_get_privileged_mode(uint32_t partition_idx)
{
if (tfm_spm_partition_get_flags(partition_idx) & SPM_PART_FLAG_PSA_ROT) {
return TFM_PARTITION_PRIVILEGED_MODE;
} else {
return TFM_PARTITION_UNPRIVILEGED_MODE;
}
}
/********************** SPM functions for thread mode ************************/
void tfm_spm_init(void)
{
uint32_t i, num;
struct spm_partition_desc_t *partition;
struct tfm_spm_service_t *service;
struct tfm_thrd_ctx *pth, this_thrd;
tfm_pool_init(conn_handle_pool,
POOL_BUFFER_SIZE(conn_handle_pool),
sizeof(struct tfm_conn_handle_t),
TFM_CONN_HANDLE_MAX_NUM);
tfm_pool_init(spm_service_pool, POOL_BUFFER_SIZE(spm_service_pool),
sizeof(struct tfm_spm_service_t),
TFM_SPM_MAX_ROT_SERV_NUM);
tfm_pool_init(msg_db_pool, POOL_BUFFER_SIZE(msg_db_pool),
sizeof(struct tfm_msg_body_t),
TFM_MSG_QUEUE_MAX_MSG_NUM);
/* Init partition first for it will be used when init service */
for (i = 0; i < g_spm_partition_db.partition_count; i++) {
partition = &g_spm_partition_db.partitions[i];
tfm_spm_hal_configure_default_isolation(partition->platform_data);
partition->static_data.index = i;
if ((tfm_spm_partition_get_flags(i) & SPM_PART_FLAG_IPC) == 0) {
continue;
}
tfm_event_init(&partition->runtime_data.signal_evnt);
tfm_list_init(&partition->runtime_data.service_list);
pth = tfm_spm_partition_get_thread_info(i);
if (!pth) {
tfm_panic();
}
tfm_thrd_init(pth,
tfm_spm_partition_get_init_func(i),
NULL,
(uint8_t *)tfm_spm_partition_get_stack_top(i),
(uint8_t *)tfm_spm_partition_get_stack_bottom(i));
pth->prior = tfm_spm_partition_get_priority(i);
/* Kick off */
if (tfm_thrd_start(pth) != THRD_SUCCESS) {
tfm_panic();
}
}
/* Init Service */
num = sizeof(g_spm_service_db) / sizeof(struct tfm_spm_service_db_t);
for (i = 0; i < num; i++) {
partition =
tfm_spm_get_partition_by_id(g_spm_service_db[i].partition_id);
if (!partition) {
tfm_panic();
}
service = (struct tfm_spm_service_t *)tfm_pool_alloc(spm_service_pool);
if (!service) {
tfm_panic();
}
service->service_db = &g_spm_service_db[i];
service->partition = partition;
tfm_list_init(&service->handle_list);
tfm_list_add_tail(&partition->runtime_data.service_list,
&service->list);
}
/*
* All threads initialized, start the scheduler.
*
* NOTE:
* Here is the booting privileged thread mode, and will never
* return to this place after scheduler is started. The start
* function has to save current runtime context to act as a
* 'current thread' to avoid repeating NULL 'current thread'
* checking while context switching. This saved context is worthy
* of being saved somewhere if there are potential usage purpose.
* Let's save this context in a local variable 'this_thrd' at
* current since there is no usage for it.
* Also set tfm_nspm_thread_entry as pfn for this thread to
* use in detecting NS/S thread scheduling changes.
*/
this_thrd.pfn = (tfm_thrd_func_t)tfm_nspm_thread_entry;
tfm_thrd_start_scheduler(&this_thrd);
}
void tfm_pendsv_do_schedule(struct tfm_state_context_ext *ctxb)
{
#if TFM_LVL == 2
struct spm_partition_desc_t *p_next_partition;
uint32_t is_privileged;
#endif
struct tfm_thrd_ctx *pth_next = tfm_thrd_next_thread();
struct tfm_thrd_ctx *pth_curr = tfm_thrd_curr_thread();
if (pth_next != NULL && pth_curr != pth_next) {
#if TFM_LVL == 2
p_next_partition = TFM_GET_CONTAINER_PTR(pth_next,
struct spm_partition_desc_t,
sp_thrd);
if (p_next_partition->static_data.partition_flags &
SPM_PART_FLAG_PSA_ROT) {
is_privileged = TFM_PARTITION_PRIVILEGED_MODE;
} else {
is_privileged = TFM_PARTITION_UNPRIVILEGED_MODE;
}
tfm_spm_partition_change_privilege(is_privileged);
#endif
/* Increase the secure lock, if we enter secure from non-secure */
if ((void *)pth_curr->pfn == (void *)tfm_nspm_thread_entry) {
++tfm_secure_lock;
}
/* Decrease the secure lock, if we return from secure to non-secure */
if ((void *)pth_next->pfn == (void *)tfm_nspm_thread_entry) {
--tfm_secure_lock;
}
tfm_thrd_context_switch(ctxb, pth_curr, pth_next);
}
}