blob: f9ec628387502134ca24875375bbe8f78649b17a [file] [log] [blame]
/*
* Copyright (c) 2018-2021, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <inttypes.h>
#include <stdbool.h>
#include "bitops.h"
#include "critical_section.h"
#include "fih.h"
#include "psa/client.h"
#include "psa/service.h"
#include "thread.h"
#include "internal_errors.h"
#include "tfm_spm_hal.h"
#include "tfm_api.h"
#include "tfm_secure_api.h"
#include "tfm_memory_utils.h"
#include "tfm_hal_defs.h"
#include "tfm_hal_interrupt.h"
#include "tfm_hal_isolation.h"
#include "spm_ipc.h"
#include "tfm_peripherals_def.h"
#include "tfm_core_utils.h"
#include "tfm_nspm.h"
#include "tfm_rpc.h"
#include "tfm_core_trustzone.h"
#include "lists.h"
#include "tfm_pools.h"
#include "region.h"
#include "psa_manifest/pid.h"
#include "ffm/backend.h"
#include "load/partition_defs.h"
#include "load/service_defs.h"
#include "load/asset_defs.h"
#include "load/spm_load_api.h"
#include "tfm_nspm.h"
/* Partition and service runtime data list head/runtime data table */
static struct service_head_t services_listhead;
struct service_t *stateless_services_ref_tbl[STATIC_HANDLE_NUM_LIMIT];
/* Pools */
TFM_POOL_DECLARE(conn_handle_pool, sizeof(struct tfm_conn_handle_t),
TFM_CONN_HANDLE_MAX_NUM);
/*********************** Connection handle conversion APIs *******************/
#define CONVERSION_FACTOR_BITOFFSET 3
#define CONVERSION_FACTOR_VALUE (1 << CONVERSION_FACTOR_BITOFFSET)
/* Set 32 as the maximum */
#define CONVERSION_FACTOR_VALUE_MAX 0x20
#if CONVERSION_FACTOR_VALUE > CONVERSION_FACTOR_VALUE_MAX
#error "CONVERSION FACTOR OUT OF RANGE"
#endif
static uint32_t loop_index;
/*
* A handle instance psa_handle_t allocated inside SPM is actually a memory
* address among the handle pool. Return this handle to the client directly
* exposes information of secure memory address. In this case, converting the
* handle into another value does not represent the memory address to avoid
* exposing secure memory directly to clients.
*
* This function converts the handle instance into another value by scaling the
* handle in pool offset, the converted value is named as a user handle.
*
* The formula:
* user_handle = (handle_instance - POOL_START) * CONVERSION_FACTOR_VALUE +
* CLIENT_HANDLE_VALUE_MIN + loop_index
* where:
* CONVERSION_FACTOR_VALUE = 1 << CONVERSION_FACTOR_BITOFFSET, and should not
* exceed CONVERSION_FACTOR_VALUE_MAX.
*
* handle_instance in RANGE[POOL_START, POOL_END]
* user_handle in RANGE[CLIENT_HANDLE_VALUE_MIN, 0x3FFFFFFF]
* loop_index in RANGE[0, CONVERSION_FACTOR_VALUE - 1]
*
* note:
* loop_index is used to promise same handle instance is converted into
* different user handles in short time.
*/
psa_handle_t tfm_spm_to_user_handle(struct tfm_conn_handle_t *handle_instance)
{
psa_handle_t user_handle;
loop_index = (loop_index + 1) % CONVERSION_FACTOR_VALUE;
user_handle = (psa_handle_t)((((uintptr_t)handle_instance -
(uintptr_t)conn_handle_pool) << CONVERSION_FACTOR_BITOFFSET) +
CLIENT_HANDLE_VALUE_MIN + loop_index);
return user_handle;
}
/*
* This function converts a user handle into a corresponded handle instance.
* The converted value is validated before returning, an invalid handle instance
* is returned as NULL.
*
* The formula:
* handle_instance = ((user_handle - CLIENT_HANDLE_VALUE_MIN) /
* CONVERSION_FACTOR_VALUE) + POOL_START
* where:
* CONVERSION_FACTOR_VALUE = 1 << CONVERSION_FACTOR_BITOFFSET, and should not
* exceed CONVERSION_FACTOR_VALUE_MAX.
*
* handle_instance in RANGE[POOL_START, POOL_END]
* user_handle in RANGE[CLIENT_HANDLE_VALUE_MIN, 0x3FFFFFFF]
* loop_index in RANGE[0, CONVERSION_FACTOR_VALUE - 1]
*/
struct tfm_conn_handle_t *tfm_spm_to_handle_instance(psa_handle_t user_handle)
{
struct tfm_conn_handle_t *handle_instance;
if (user_handle == PSA_NULL_HANDLE) {
return NULL;
}
handle_instance = (struct tfm_conn_handle_t *)((((uintptr_t)user_handle -
CLIENT_HANDLE_VALUE_MIN) >> CONVERSION_FACTOR_BITOFFSET) +
(uintptr_t)conn_handle_pool);
return handle_instance;
}
/* Service handle management functions */
struct tfm_conn_handle_t *tfm_spm_create_conn_handle(struct service_t *service,
int32_t client_id)
{
struct tfm_conn_handle_t *p_handle;
TFM_CORE_ASSERT(service);
/* Get buffer for handle list structure from handle pool */
p_handle = (struct tfm_conn_handle_t *)tfm_pool_alloc(conn_handle_pool);
if (!p_handle) {
return NULL;
}
p_handle->service = service;
p_handle->status = TFM_HANDLE_STATUS_IDLE;
p_handle->client_id = client_id;
/* Add handle node to list for next psa functions */
BI_LIST_INSERT_BEFORE(&service->handle_list, &p_handle->list);
return p_handle;
}
int32_t tfm_spm_validate_conn_handle(
const struct tfm_conn_handle_t *conn_handle,
int32_t client_id)
{
/* Check the handle address is validated */
if (is_valid_chunk_data_in_pool(conn_handle_pool,
(uint8_t *)conn_handle) != true) {
return SPM_ERROR_GENERIC;
}
/* Check the handle caller is correct */
if (conn_handle->client_id != client_id) {
return SPM_ERROR_GENERIC;
}
return SPM_SUCCESS;
}
int32_t tfm_spm_free_conn_handle(struct service_t *service,
struct tfm_conn_handle_t *conn_handle)
{
TFM_CORE_ASSERT(service);
TFM_CORE_ASSERT(conn_handle != NULL);
/* Clear magic as the handler is not used anymore */
conn_handle->internal_msg.magic = 0;
/* Remove node from handle list */
BI_LIST_REMOVE_NODE(&conn_handle->list);
/* Back handle buffer to pool */
tfm_pool_free(conn_handle_pool, conn_handle);
return SPM_SUCCESS;
}
int32_t tfm_spm_set_rhandle(struct service_t *service,
struct tfm_conn_handle_t *conn_handle,
void *rhandle)
{
TFM_CORE_ASSERT(service);
/* Set reverse handle value only be allowed for a connected handle */
TFM_CORE_ASSERT(conn_handle != NULL);
conn_handle->rhandle = rhandle;
return SPM_SUCCESS;
}
/**
* \brief Get reverse handle value from connection handle.
*
* \param[in] service Target service context pointer
* \param[in] conn_handle Connection handle created by
* tfm_spm_create_conn_handle()
*
* \retval void * Success
* \retval "Does not return" Panic for those:
* service pointer are NULL
* handle is \ref PSA_NULL_HANDLE
* handle node does not be found
*/
static void *tfm_spm_get_rhandle(struct service_t *service,
struct tfm_conn_handle_t *conn_handle)
{
TFM_CORE_ASSERT(service);
/* Get reverse handle value only be allowed for a connected handle */
TFM_CORE_ASSERT(conn_handle != NULL);
return conn_handle->rhandle;
}
/* Partition management functions */
struct tfm_msg_body_t *tfm_spm_get_msg_by_signal(struct partition_t *partition,
psa_signal_t signal)
{
struct bi_list_node_t *node, *head;
struct tfm_msg_body_t *tmp_msg, *msg = NULL;
struct critical_section_t cs_assert = CRITICAL_SECTION_STATIC_INIT;
TFM_CORE_ASSERT(partition);
head = &partition->msg_list;
if (BI_LIST_IS_EMPTY(head)) {
return NULL;
}
/*
* There may be multiple messages for this RoT Service signal, do not clear
* partition mask until no remaining message. Search may be optimized.
*/
BI_LIST_FOR_EACH(node, head) {
tmp_msg = TO_CONTAINER(node, struct tfm_msg_body_t, msg_node);
if (tmp_msg->service->p_ldinf->signal == signal && msg) {
return msg;
} else if (tmp_msg->service->p_ldinf->signal == signal) {
msg = tmp_msg;
BI_LIST_REMOVE_NODE(node);
}
}
CRITICAL_SECTION_ENTER(cs_assert);
partition->signals_asserted &= ~signal;
CRITICAL_SECTION_LEAVE(cs_assert);
return msg;
}
uint32_t tfm_spm_partition_get_privileged_mode(uint32_t partition_flags)
{
#if TFM_LVL == 1
return TFM_PARTITION_PRIVILEGED_MODE;
#else /* TFM_LVL == 1 */
if (partition_flags & PARTITION_MODEL_PSA_ROT) {
return TFM_PARTITION_PRIVILEGED_MODE;
} else {
return TFM_PARTITION_UNPRIVILEGED_MODE;
}
#endif /* TFM_LVL == 1 */
}
struct service_t *tfm_spm_get_service_by_sid(uint32_t sid)
{
struct service_t *p_prev, *p_curr;
UNI_LIST_FOR_EACH_PREV(p_prev, p_curr, &services_listhead) {
if (p_curr->p_ldinf->sid == sid) {
UNI_LIST_MOVE_AFTER(&services_listhead, p_prev, p_curr);
return p_curr;
}
}
return NULL;
}
/**
* \brief Get the partition context by partition ID.
*
* \param[in] partition_id Partition identity
*
* \retval NULL Failed
* \retval "Not NULL" Target partition context pointer,
* \ref partition_t structures
*/
struct partition_t *tfm_spm_get_partition_by_id(int32_t partition_id)
{
struct partition_t *p_part;
UNI_LIST_FOR_EACH(p_part, PARTITION_LIST_ADDR) {
if (p_part->p_ldinf->pid == partition_id) {
return p_part;
}
}
return NULL;
}
struct partition_t *tfm_spm_get_running_partition(void)
{
return GET_THRD_OWNER(CURRENT_THREAD);
}
int32_t tfm_spm_check_client_version(struct service_t *service,
uint32_t version)
{
TFM_CORE_ASSERT(service);
switch (SERVICE_GET_VERSION_POLICY(service->p_ldinf->flags)) {
case SERVICE_VERSION_POLICY_RELAXED:
if (version > service->p_ldinf->version) {
return SPM_ERROR_VERSION;
}
break;
case SERVICE_VERSION_POLICY_STRICT:
if (version != service->p_ldinf->version) {
return SPM_ERROR_VERSION;
}
break;
default:
return SPM_ERROR_VERSION;
}
return SPM_SUCCESS;
}
int32_t tfm_spm_check_authorization(uint32_t sid,
struct service_t *service,
bool ns_caller)
{
struct partition_t *partition = NULL;
uint32_t *dep;
int32_t i;
TFM_CORE_ASSERT(service);
if (ns_caller) {
if (!SERVICE_IS_NS_ACCESSIBLE(service->p_ldinf->flags)) {
return SPM_ERROR_GENERIC;
}
} else {
partition = tfm_spm_get_running_partition();
if (!partition) {
tfm_core_panic();
}
dep = (uint32_t *)LOAD_INFO_DEPS(partition->p_ldinf);
for (i = 0; i < partition->p_ldinf->ndeps; i++) {
if (dep[i] == sid) {
break;
}
}
if (i == partition->p_ldinf->ndeps) {
return SPM_ERROR_GENERIC;
}
}
return SPM_SUCCESS;
}
/* Message functions */
struct tfm_msg_body_t *tfm_spm_get_msg_from_handle(psa_handle_t msg_handle)
{
/*
* The message handler passed by the caller is considered invalid in the
* following cases:
* 1. Not a valid message handle. (The address of a message is not the
* address of a possible handle from the pool
* 2. Handle not belongs to the caller partition (The handle is either
* unused, or owned by anither partition)
* Check the conditions above
*/
struct tfm_msg_body_t *p_msg;
int32_t partition_id;
struct tfm_conn_handle_t *p_conn_handle =
tfm_spm_to_handle_instance(msg_handle);
if (is_valid_chunk_data_in_pool(
conn_handle_pool, (uint8_t *)p_conn_handle) != 1) {
return NULL;
}
p_msg = &p_conn_handle->internal_msg;
/*
* Check that the magic number is correct. This proves that the message
* structure contains an active message.
*/
if (p_msg->magic != TFM_MSG_MAGIC) {
return NULL;
}
/* Check that the running partition owns the message */
partition_id = tfm_spm_partition_get_running_partition_id();
if (partition_id != p_msg->service->partition->p_ldinf->pid) {
return NULL;
}
return p_msg;
}
struct tfm_msg_body_t *
tfm_spm_get_msg_buffer_from_conn_handle(struct tfm_conn_handle_t *conn_handle)
{
TFM_CORE_ASSERT(conn_handle != NULL);
return &(conn_handle->internal_msg);
}
void tfm_spm_fill_msg(struct tfm_msg_body_t *msg,
struct service_t *service,
psa_handle_t handle,
int32_t type, int32_t client_id,
psa_invec *invec, size_t in_len,
psa_outvec *outvec, size_t out_len,
psa_outvec *caller_outvec)
{
uint32_t i;
struct tfm_conn_handle_t *conn_handle;
TFM_CORE_ASSERT(msg);
TFM_CORE_ASSERT(service);
TFM_CORE_ASSERT(!(invec == NULL && in_len != 0));
TFM_CORE_ASSERT(!(outvec == NULL && out_len != 0));
TFM_CORE_ASSERT(in_len <= PSA_MAX_IOVEC);
TFM_CORE_ASSERT(out_len <= PSA_MAX_IOVEC);
TFM_CORE_ASSERT(in_len + out_len <= PSA_MAX_IOVEC);
/* Clear message buffer before using it */
spm_memset(msg, 0, sizeof(struct tfm_msg_body_t));
THRD_SYNC_INIT(&msg->ack_evnt);
msg->magic = TFM_MSG_MAGIC;
msg->service = service;
msg->caller_outvec = caller_outvec;
msg->msg.client_id = client_id;
/* Copy contents */
msg->msg.type = type;
for (i = 0; i < in_len; i++) {
msg->msg.in_size[i] = invec[i].len;
msg->invec[i].base = invec[i].base;
}
for (i = 0; i < out_len; i++) {
msg->msg.out_size[i] = outvec[i].len;
msg->outvec[i].base = outvec[i].base;
/* Out len is used to record the writed number, set 0 here again */
msg->outvec[i].len = 0;
}
/* Use the user connect handle as the message handle */
msg->msg.handle = handle;
conn_handle = tfm_spm_to_handle_instance(handle);
/* For connected handle, set rhandle to every message */
if (conn_handle) {
msg->msg.rhandle = tfm_spm_get_rhandle(service, conn_handle);
}
/* Set the private data of NSPE client caller in multi-core topology */
if (TFM_CLIENT_ID_IS_NS(client_id)) {
tfm_rpc_set_caller_data(msg, client_id);
}
}
int32_t tfm_spm_partition_get_running_partition_id(void)
{
struct partition_t *partition;
partition = tfm_spm_get_running_partition();
if (partition && partition->p_ldinf) {
return partition->p_ldinf->pid;
} else {
return INVALID_PARTITION_ID;
}
}
int32_t tfm_memory_check(const void *buffer, size_t len, bool ns_caller,
enum tfm_memory_access_e access,
uint32_t privileged)
{
enum tfm_hal_status_t err;
uint32_t attr = 0;
/* If len is zero, this indicates an empty buffer and base is ignored */
if (len == 0) {
return SPM_SUCCESS;
}
if (!buffer) {
return SPM_ERROR_BAD_PARAMETERS;
}
if ((uintptr_t)buffer > (UINTPTR_MAX - len)) {
return SPM_ERROR_MEMORY_CHECK;
}
if (access == TFM_MEMORY_ACCESS_RW) {
attr |= (TFM_HAL_ACCESS_READABLE | TFM_HAL_ACCESS_WRITABLE);
} else {
attr |= TFM_HAL_ACCESS_READABLE;
}
if (privileged == TFM_PARTITION_UNPRIVILEGED_MODE) {
attr |= TFM_HAL_ACCESS_UNPRIVILEGED;
} else {
attr &= ~TFM_HAL_ACCESS_UNPRIVILEGED;
}
if (ns_caller) {
attr |= TFM_HAL_ACCESS_NS;
}
err = tfm_hal_memory_has_access((uintptr_t)buffer, len, attr);
if (err == TFM_HAL_SUCCESS) {
return SPM_SUCCESS;
}
return SPM_ERROR_MEMORY_CHECK;
}
bool tfm_spm_is_ns_caller(void)
{
#if defined(TFM_MULTI_CORE_TOPOLOGY) || defined(FORWARD_PROT_MSG)
/* Multi-core NS PSA API request is processed by pendSV. */
return (__get_active_exc_num() == EXC_NUM_PENDSV);
#else
struct partition_t *partition = tfm_spm_get_running_partition();
if (!partition) {
tfm_core_panic();
}
return (partition->p_ldinf->pid == TFM_SP_NON_SECURE_ID);
#endif
}
uint32_t tfm_spm_get_caller_privilege_mode(void)
{
struct partition_t *partition;
#if defined(TFM_MULTI_CORE_TOPOLOGY) || defined(FORWARD_PROT_MSG)
/*
* In multi-core topology, if PSA request is from mailbox, the client
* is unprivileged.
*/
if (__get_active_exc_num() == EXC_NUM_PENDSV) {
return TFM_PARTITION_UNPRIVILEGED_MODE;
}
#endif
partition = tfm_spm_get_running_partition();
if (!partition) {
tfm_core_panic();
}
return tfm_spm_partition_get_privileged_mode(partition->p_ldinf->flags);
}
int32_t tfm_spm_get_client_id(bool ns_caller)
{
int32_t client_id;
if (ns_caller) {
client_id = tfm_nspm_get_current_client_id();
} else {
client_id = tfm_spm_partition_get_running_partition_id();
}
if (ns_caller != (client_id < 0)) {
/* NS client ID must be negative and Secure ID must >= 0 */
tfm_core_panic();
}
return client_id;
}
uint32_t tfm_spm_init(void)
{
struct partition_t *partition;
const struct partition_load_info_t *p_pldi;
uint32_t service_setting = 0;
#ifdef TFM_FIH_PROFILE_ON
fih_int fih_rc = FIH_FAILURE;
#endif
tfm_pool_init(conn_handle_pool,
POOL_BUFFER_SIZE(conn_handle_pool),
sizeof(struct tfm_conn_handle_t),
TFM_CONN_HANDLE_MAX_NUM);
UNI_LISI_INIT_HEAD(PARTITION_LIST_ADDR);
UNI_LISI_INIT_HEAD(&services_listhead);
/* Init the nonsecure context. */
#ifndef TFM_MULTI_CORE_TOPOLOGY
tfm_nspm_ctx_init();
#endif
while (1) {
partition = load_a_partition_assuredly(PARTITION_LIST_ADDR);
if (partition == NO_MORE_PARTITION) {
break;
}
p_pldi = partition->p_ldinf;
if (p_pldi->nservices) {
service_setting = load_services_assuredly(
partition,
&services_listhead,
stateless_services_ref_tbl,
sizeof(stateless_services_ref_tbl));
}
if (p_pldi->nirqs) {
load_irqs_assuredly(partition);
}
/* Bind the partition with platform. */
#if TFM_FIH_PROFILE_ON
FIH_CALL(tfm_hal_bind_boundaries, fih_rc, partition->p_ldinf,
&partition->p_boundaries);
if (fih_not_eq(fih_rc, fih_int_encode(TFM_HAL_SUCCESS))) {
tfm_core_panic();
}
#else /* TFM_FIH_PROFILE_ON */
if (tfm_hal_bind_boundaries(partition->p_ldinf,
&partition->p_boundaries)
!= TFM_HAL_SUCCESS) {
tfm_core_panic();
}
#endif /* TFM_FIH_PROFILE_ON */
/* TODO: Replace this 'BACKEND_IPC' after SFN get involved. */
backend_instance.comp_init_assuredly(partition, service_setting);
}
return backend_instance.system_run();
}
/*
* Return both current and next context to assembly via AAPCS trick:
* - Returning a 64 bit integer by 32-bit R0 and R1.
*
* This is architecture-specific, hence the scheduler entry and this
* 'do_schedule' MAY be different on another architecture.
*/
union returning_contexts_t {
struct {
uint32_t curr;
uint32_t next;
} ctx;
uint64_t curr_next_ctxs;
};
uint64_t do_schedule(void)
{
union returning_contexts_t ret;
struct partition_t *p_part_curr, *p_part_next;
struct thread_t *pth_next = thrd_next();
p_part_curr = GET_THRD_OWNER(CURRENT_THREAD);
p_part_next = GET_THRD_OWNER(pth_next);
if (pth_next != NULL && p_part_curr != p_part_next) {
/* Check if there is enough room on stack to save more context */
if ((p_part_curr->ctx_ctrl.sp_limit +
sizeof(struct tfm_additional_context_t)) > __get_PSP()) {
tfm_core_panic();
}
/*
* If required, let the platform update boundary based on its
* implementation. Change privilege, MPU or other configurations.
*/
if (p_part_curr->p_boundaries != p_part_next->p_boundaries) {
if (tfm_hal_update_boundaries(p_part_next->p_ldinf,
p_part_next->p_boundaries)
!= TFM_HAL_SUCCESS) {
tfm_core_panic();
}
}
}
/*
* Handle pending mailbox message from NS in multi-core topology.
* Empty operation on single Armv8-M platform.
*/
tfm_rpc_client_call_handler();
ret.ctx.curr = (uint32_t)CURRENT_THREAD->p_context_ctrl;
ret.ctx.next = (uint32_t)pth_next->p_context_ctrl;
CURRENT_THREAD = pth_next;
return ret.curr_next_ctxs;
}
void update_caller_outvec_len(struct tfm_msg_body_t *msg)
{
uint32_t i;
/*
* FixeMe: abstract these part into dedicated functions to avoid
* accessing thread context in psa layer
*/
/* If it is a NS request via RPC, the owner of this message is not set */
if (!is_tfm_rpc_msg(msg)) {
TFM_CORE_ASSERT(msg->ack_evnt.owner->state == THRD_STATE_BLOCK);
}
for (i = 0; i < PSA_MAX_IOVEC; i++) {
if (msg->msg.out_size[i] == 0) {
continue;
}
TFM_CORE_ASSERT(msg->caller_outvec[i].base == msg->outvec[i].base);
msg->caller_outvec[i].len = msg->outvec[i].len;
}
}
void spm_assert_signal(void *p_pt, psa_signal_t signal)
{
struct critical_section_t cs_assert = CRITICAL_SECTION_STATIC_INIT;
struct partition_t *partition = (struct partition_t *)p_pt;
if (!partition) {
tfm_core_panic();
}
CRITICAL_SECTION_ENTER(cs_assert);
partition->signals_asserted |= signal;
if (partition->signals_waiting & signal) {
thrd_wake_up(&partition->waitobj,
partition->signals_asserted & partition->signals_waiting);
partition->signals_waiting &= ~signal;
}
CRITICAL_SECTION_LEAVE(cs_assert);
}
__attribute__((naked))
static psa_flih_result_t tfm_flih_deprivileged_handling(void *p_pt,
uintptr_t fn_flih,
void *p_context_ctrl)
{
__ASM volatile("SVC %0 \n"
"BX LR \n"
: : "I" (TFM_SVC_PREPARE_DEPRIV_FLIH));
}
void spm_handle_interrupt(void *p_pt, struct irq_load_info_t *p_ildi)
{
psa_flih_result_t flih_result;
struct partition_t *p_part;
if (!p_pt || !p_ildi) {
tfm_core_panic();
}
p_part = (struct partition_t *)p_pt;
if (p_ildi->pid != p_part->p_ldinf->pid) {
tfm_core_panic();
}
if (p_ildi->flih_func == NULL) {
/* SLIH Model Handling */
tfm_hal_irq_disable(p_ildi->source);
flih_result = PSA_FLIH_SIGNAL;
} else {
/* FLIH Model Handling */
if (tfm_spm_partition_get_privileged_mode(p_part->p_ldinf->flags) ==
TFM_PARTITION_PRIVILEGED_MODE) {
flih_result = p_ildi->flih_func();
} else {
flih_result = tfm_flih_deprivileged_handling(
p_part,
(uintptr_t)p_ildi->flih_func,
CURRENT_THREAD->p_context_ctrl);
}
}
if (flih_result == PSA_FLIH_SIGNAL) {
spm_assert_signal(p_pt, p_ildi->signal);
}
}
struct irq_load_info_t *get_irq_info_for_signal(
const struct partition_load_info_t *p_ldinf,
psa_signal_t signal)
{
size_t i;
struct irq_load_info_t *irq_info;
if (!IS_ONLY_ONE_BIT_IN_UINT32(signal)) {
return NULL;
}
irq_info = (struct irq_load_info_t *)LOAD_INFO_IRQ(p_ldinf);
for (i = 0; i < p_ldinf->nirqs; i++) {
if (irq_info[i].signal == signal) {
return &irq_info[i];
}
}
return NULL;
}