blob: c024ff0ee8a30fdeac173455a39245ad2f636175 [file] [log] [blame]
Marc Moreno Berengue20dab392017-11-29 13:18:58 +00001/**************************************************************************//**
2 * @file cmsis_armclang.h
3 * @brief CMSIS compiler ARMCLANG (ARM compiler V6) header file
4 * @version V5.0.3
5 * @date 27. March 2017
6 ******************************************************************************/
7/*
8 * Copyright (c) 2009-2017 ARM Limited. All rights reserved.
9 *
10 * SPDX-License-Identifier: Apache-2.0
11 *
12 * Licensed under the Apache License, Version 2.0 (the License); you may
13 * not use this file except in compliance with the License.
14 * You may obtain a copy of the License at
15 *
16 * www.apache.org/licenses/LICENSE-2.0
17 *
18 * Unless required by applicable law or agreed to in writing, software
19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 * See the License for the specific language governing permissions and
22 * limitations under the License.
23 */
24
25//lint -esym(9058, IRQn) disable MISRA 2012 Rule 2.4 for IRQn
26
27#ifndef __CMSIS_ARMCLANG_H
28#define __CMSIS_ARMCLANG_H
29
30#ifndef __ARM_COMPAT_H
31#include <arm_compat.h> /* Compatibility header for ARM Compiler 5 intrinsics */
32#endif
33
34/* CMSIS compiler specific defines */
35#ifndef __ASM
36 #define __ASM __asm
37#endif
38#ifndef __INLINE
39 #define __INLINE __inline
40#endif
41#ifndef __STATIC_INLINE
42 #define __STATIC_INLINE static __inline
43#endif
44#ifndef __NO_RETURN
45 #define __NO_RETURN __attribute__((noreturn))
46#endif
47#ifndef __USED
48 #define __USED __attribute__((used))
49#endif
50#ifndef __WEAK
51 #define __WEAK __attribute__((weak))
52#endif
53#ifndef __PACKED
54 #define __PACKED __attribute__((packed, aligned(1)))
55#endif
56#ifndef __PACKED_STRUCT
57 #define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
58#endif
59#ifndef __UNALIGNED_UINT32 /* deprecated */
60 #pragma clang diagnostic push
61 #pragma clang diagnostic ignored "-Wpacked"
62//lint -esym(9058, T_UINT32) disable MISRA 2012 Rule 2.4 for T_UINT32
63 struct __attribute__((packed)) T_UINT32 { uint32_t v; };
64 #pragma clang diagnostic pop
65 #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
66#endif
67#ifndef __UNALIGNED_UINT16_WRITE
68 #pragma clang diagnostic push
69 #pragma clang diagnostic ignored "-Wpacked"
70//lint -esym(9058, T_UINT16_WRITE) disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE
71 __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
72 #pragma clang diagnostic pop
73 #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
74#endif
75#ifndef __UNALIGNED_UINT16_READ
76 #pragma clang diagnostic push
77 #pragma clang diagnostic ignored "-Wpacked"
78//lint -esym(9058, T_UINT16_READ) disable MISRA 2012 Rule 2.4 for T_UINT16_READ
79 __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
80 #pragma clang diagnostic pop
81 #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
82#endif
83#ifndef __UNALIGNED_UINT32_WRITE
84 #pragma clang diagnostic push
85 #pragma clang diagnostic ignored "-Wpacked"
86//lint -esym(9058, T_UINT32_WRITE) disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE
87 __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
88 #pragma clang diagnostic pop
89 #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
90#endif
91#ifndef __UNALIGNED_UINT32_READ
92 #pragma clang diagnostic push
93 #pragma clang diagnostic ignored "-Wpacked"
94//lint -esym(9058, T_UINT32_READ) disable MISRA 2012 Rule 2.4 for T_UINT32_READ
95 __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
96 #pragma clang diagnostic pop
97 #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
98#endif
99#ifndef __ALIGNED
100 #define __ALIGNED(x) __attribute__((aligned(x)))
101#endif
102
103
104/* ########################### Core Function Access ########################### */
105/** \ingroup CMSIS_Core_FunctionInterface
106 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
107 @{
108 */
109
110/**
111 \brief Enable IRQ Interrupts
112 \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
113 Can only be executed in Privileged modes.
114 */
115/* intrinsic void __enable_irq(); see arm_compat.h */
116
117
118/**
119 \brief Disable IRQ Interrupts
120 \details Disables IRQ interrupts by setting the I-bit in the CPSR.
121 Can only be executed in Privileged modes.
122 */
123/* intrinsic void __disable_irq(); see arm_compat.h */
124
125
126/**
127 \brief Get Control Register
128 \details Returns the content of the Control Register.
129 \return Control Register value
130 */
131__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_CONTROL(void)
132{
133 uint32_t result;
134
135 __ASM volatile ("MRS %0, control" : "=r" (result) );
136 return(result);
137}
138
139
140#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
141/**
142 \brief Get Control Register (non-secure)
143 \details Returns the content of the non-secure Control Register when in secure mode.
144 \return non-secure Control Register value
145 */
146__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_CONTROL_NS(void)
147{
148 uint32_t result;
149
150 __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
151 return(result);
152}
153#endif
154
155
156/**
157 \brief Set Control Register
158 \details Writes the given value to the Control Register.
159 \param [in] control Control Register value to set
160 */
161__attribute__((always_inline)) __STATIC_INLINE void __set_CONTROL(uint32_t control)
162{
163 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
164}
165
166
167#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
168/**
169 \brief Set Control Register (non-secure)
170 \details Writes the given value to the non-secure Control Register when in secure state.
171 \param [in] control Control Register value to set
172 */
173__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_CONTROL_NS(uint32_t control)
174{
175 __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
176}
177#endif
178
179
180/**
181 \brief Get IPSR Register
182 \details Returns the content of the IPSR Register.
183 \return IPSR Register value
184 */
185__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_IPSR(void)
186{
187 uint32_t result;
188
189 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
190 return(result);
191}
192
193
194/**
195 \brief Get APSR Register
196 \details Returns the content of the APSR Register.
197 \return APSR Register value
198 */
199__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_APSR(void)
200{
201 uint32_t result;
202
203 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
204 return(result);
205}
206
207
208/**
209 \brief Get xPSR Register
210 \details Returns the content of the xPSR Register.
211 \return xPSR Register value
212 */
213__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_xPSR(void)
214{
215 uint32_t result;
216
217 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
218 return(result);
219}
220
221
222/**
223 \brief Get Process Stack Pointer
224 \details Returns the current value of the Process Stack Pointer (PSP).
225 \return PSP Register value
226 */
227__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSP(void)
228{
229 register uint32_t result;
230
231 __ASM volatile ("MRS %0, psp" : "=r" (result) );
232 return(result);
233}
234
235
236#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
237/**
238 \brief Get Process Stack Pointer (non-secure)
239 \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
240 \return PSP Register value
241 */
242__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PSP_NS(void)
243{
244 register uint32_t result;
245
246 __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
247 return(result);
248}
249#endif
250
251
252/**
253 \brief Set Process Stack Pointer
254 \details Assigns the given value to the Process Stack Pointer (PSP).
255 \param [in] topOfProcStack Process Stack Pointer value to set
256 */
257__attribute__((always_inline)) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
258{
259 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
260}
261
262
263#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
264/**
265 \brief Set Process Stack Pointer (non-secure)
266 \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
267 \param [in] topOfProcStack Process Stack Pointer value to set
268 */
269__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
270{
271 __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
272}
273#endif
274
275
276/**
277 \brief Get Main Stack Pointer
278 \details Returns the current value of the Main Stack Pointer (MSP).
279 \return MSP Register value
280 */
281__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSP(void)
282{
283 register uint32_t result;
284
285 __ASM volatile ("MRS %0, msp" : "=r" (result) );
286 return(result);
287}
288
289
290#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
291/**
292 \brief Get Main Stack Pointer (non-secure)
293 \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
294 \return MSP Register value
295 */
296__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_MSP_NS(void)
297{
298 register uint32_t result;
299
300 __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
301 return(result);
302}
303#endif
304
305
306/**
307 \brief Set Main Stack Pointer
308 \details Assigns the given value to the Main Stack Pointer (MSP).
309 \param [in] topOfMainStack Main Stack Pointer value to set
310 */
311__attribute__((always_inline)) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
312{
313 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
314}
315
316
317#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
318/**
319 \brief Set Main Stack Pointer (non-secure)
320 \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
321 \param [in] topOfMainStack Main Stack Pointer value to set
322 */
323__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
324{
325 __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
326}
327#endif
328
329
330#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
331/**
332 \brief Get Stack Pointer (non-secure)
333 \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
334 \return SP Register value
335 */
336__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_SP_NS(void)
337{
338 register uint32_t result;
339
340 __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
341 return(result);
342}
343
344
345/**
346 \brief Set Stack Pointer (non-secure)
347 \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
348 \param [in] topOfStack Stack Pointer value to set
349 */
350__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_SP_NS(uint32_t topOfStack)
351{
352 __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
353}
354#endif
355
356
357/**
358 \brief Get Priority Mask
359 \details Returns the current state of the priority mask bit from the Priority Mask Register.
360 \return Priority Mask value
361 */
362__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PRIMASK(void)
363{
364 uint32_t result;
365
366 __ASM volatile ("MRS %0, primask" : "=r" (result) );
367 return(result);
368}
369
370
371#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
372/**
373 \brief Get Priority Mask (non-secure)
374 \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
375 \return Priority Mask value
376 */
377__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PRIMASK_NS(void)
378{
379 uint32_t result;
380
381 __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
382 return(result);
383}
384#endif
385
386
387/**
388 \brief Set Priority Mask
389 \details Assigns the given value to the Priority Mask Register.
390 \param [in] priMask Priority Mask
391 */
392__attribute__((always_inline)) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
393{
394 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
395}
396
397
398#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
399/**
400 \brief Set Priority Mask (non-secure)
401 \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
402 \param [in] priMask Priority Mask
403 */
404__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
405{
406 __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
407}
408#endif
409
410
411#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
412 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
413 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
414/**
415 \brief Enable FIQ
416 \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
417 Can only be executed in Privileged modes.
418 */
419#define __enable_fault_irq __enable_fiq /* see arm_compat.h */
420
421
422/**
423 \brief Disable FIQ
424 \details Disables FIQ interrupts by setting the F-bit in the CPSR.
425 Can only be executed in Privileged modes.
426 */
427#define __disable_fault_irq __disable_fiq /* see arm_compat.h */
428
429
430/**
431 \brief Get Base Priority
432 \details Returns the current value of the Base Priority register.
433 \return Base Priority register value
434 */
435__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_BASEPRI(void)
436{
437 uint32_t result;
438
439 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
440 return(result);
441}
442
443
444#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
445/**
446 \brief Get Base Priority (non-secure)
447 \details Returns the current value of the non-secure Base Priority register when in secure state.
448 \return Base Priority register value
449 */
450__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_BASEPRI_NS(void)
451{
452 uint32_t result;
453
454 __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
455 return(result);
456}
457#endif
458
459
460/**
461 \brief Set Base Priority
462 \details Assigns the given value to the Base Priority register.
463 \param [in] basePri Base Priority value to set
464 */
465__attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
466{
467 __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
468}
469
470
471#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
472/**
473 \brief Set Base Priority (non-secure)
474 \details Assigns the given value to the non-secure Base Priority register when in secure state.
475 \param [in] basePri Base Priority value to set
476 */
477__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
478{
479 __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
480}
481#endif
482
483
484/**
485 \brief Set Base Priority with condition
486 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
487 or the new value increases the BASEPRI priority level.
488 \param [in] basePri Base Priority value to set
489 */
490__attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri)
491{
492 __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
493}
494
495
496/**
497 \brief Get Fault Mask
498 \details Returns the current value of the Fault Mask register.
499 \return Fault Mask register value
500 */
501__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
502{
503 uint32_t result;
504
505 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
506 return(result);
507}
508
509
510#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
511/**
512 \brief Get Fault Mask (non-secure)
513 \details Returns the current value of the non-secure Fault Mask register when in secure state.
514 \return Fault Mask register value
515 */
516__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_FAULTMASK_NS(void)
517{
518 uint32_t result;
519
520 __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
521 return(result);
522}
523#endif
524
525
526/**
527 \brief Set Fault Mask
528 \details Assigns the given value to the Fault Mask register.
529 \param [in] faultMask Fault Mask value to set
530 */
531__attribute__((always_inline)) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
532{
533 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
534}
535
536
537#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
538/**
539 \brief Set Fault Mask (non-secure)
540 \details Assigns the given value to the non-secure Fault Mask register when in secure state.
541 \param [in] faultMask Fault Mask value to set
542 */
543__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
544{
545 __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
546}
547#endif
548
549#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
550 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
551 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
552
553
554#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
555 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
556
557/**
558 \brief Get Process Stack Pointer Limit
559 \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
560 \return PSPLIM Register value
561 */
562__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSPLIM(void)
563{
564 register uint32_t result;
565
566 __ASM volatile ("MRS %0, psplim" : "=r" (result) );
567 return(result);
568}
569
570
571#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
572 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
573/**
574 \brief Get Process Stack Pointer Limit (non-secure)
575 \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
576 \return PSPLIM Register value
577 */
578__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PSPLIM_NS(void)
579{
580 register uint32_t result;
581
582 __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
583 return(result);
584}
585#endif
586
587
588/**
589 \brief Set Process Stack Pointer Limit
590 \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
591 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
592 */
593__attribute__((always_inline)) __STATIC_INLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
594{
595 __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
596}
597
598
599#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
600 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
601/**
602 \brief Set Process Stack Pointer (non-secure)
603 \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
604 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
605 */
606__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
607{
608 __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
609}
610#endif
611
612
613/**
614 \brief Get Main Stack Pointer Limit
615 \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
616 \return MSPLIM Register value
617 */
618__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSPLIM(void)
619{
620 register uint32_t result;
621
622 __ASM volatile ("MRS %0, msplim" : "=r" (result) );
623
624 return(result);
625}
626
627
628#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
629 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
630/**
631 \brief Get Main Stack Pointer Limit (non-secure)
632 \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
633 \return MSPLIM Register value
634 */
635__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_MSPLIM_NS(void)
636{
637 register uint32_t result;
638
639 __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
640 return(result);
641}
642#endif
643
644
645/**
646 \brief Set Main Stack Pointer Limit
647 \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
648 \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
649 */
650__attribute__((always_inline)) __STATIC_INLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
651{
652 __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
653}
654
655
656#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
657 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
658/**
659 \brief Set Main Stack Pointer Limit (non-secure)
660 \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
661 \param [in] MainStackPtrLimit Main Stack Pointer value to set
662 */
663__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
664{
665 __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
666}
667#endif
668
669#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
670 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
671
672
673#if ((defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
674 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
675
676/**
677 \brief Get FPSCR
678 \details Returns the current value of the Floating Point Status/Control register.
679 \return Floating Point Status/Control register value
680 */
681/* #define __get_FPSCR __builtin_arm_get_fpscr */
682__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FPSCR(void)
683{
684#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
685 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
686 uint32_t result;
687
688 __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
689 return(result);
690#else
691 return(0U);
692#endif
693}
694
695
696/**
697 \brief Set FPSCR
698 \details Assigns the given value to the Floating Point Status/Control register.
699 \param [in] fpscr Floating Point Status/Control value to set
700 */
701/* #define __set_FPSCR __builtin_arm_set_fpscr */
702__attribute__((always_inline)) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
703{
704#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
705 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
706 __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "memory");
707#else
708 (void)fpscr;
709#endif
710}
711
712#endif /* ((defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
713 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
714
715
716
717/*@} end of CMSIS_Core_RegAccFunctions */
718
719
720/* ########################## Core Instruction Access ######################### */
721/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
722 Access to dedicated instructions
723 @{
724*/
725
726/* Define macros for porting to both thumb1 and thumb2.
727 * For thumb1, use low register (r0-r7), specified by constraint "l"
728 * Otherwise, use general registers, specified by constraint "r" */
729#if defined (__thumb__) && !defined (__thumb2__)
730#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
731#define __CMSIS_GCC_USE_REG(r) "l" (r)
732#else
733#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
734#define __CMSIS_GCC_USE_REG(r) "r" (r)
735#endif
736
737/**
738 \brief No Operation
739 \details No Operation does nothing. This instruction can be used for code alignment purposes.
740 */
741#define __NOP __builtin_arm_nop
742
743/**
744 \brief Wait For Interrupt
745 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
746 */
747#define __WFI __builtin_arm_wfi
748
749
750/**
751 \brief Wait For Event
752 \details Wait For Event is a hint instruction that permits the processor to enter
753 a low-power state until one of a number of events occurs.
754 */
755#define __WFE __builtin_arm_wfe
756
757
758/**
759 \brief Send Event
760 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
761 */
762#define __SEV __builtin_arm_sev
763
764
765/**
766 \brief Instruction Synchronization Barrier
767 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
768 so that all instructions following the ISB are fetched from cache or memory,
769 after the instruction has been completed.
770 */
771#define __ISB() __builtin_arm_isb(0xF);
772
773/**
774 \brief Data Synchronization Barrier
775 \details Acts as a special kind of Data Memory Barrier.
776 It completes when all explicit memory accesses before this instruction complete.
777 */
778#define __DSB() __builtin_arm_dsb(0xF);
779
780
781/**
782 \brief Data Memory Barrier
783 \details Ensures the apparent order of the explicit memory operations before
784 and after the instruction, without ensuring their completion.
785 */
786#define __DMB() __builtin_arm_dmb(0xF);
787
788
789/**
790 \brief Reverse byte order (32 bit)
791 \details Reverses the byte order in integer value.
792 \param [in] value Value to reverse
793 \return Reversed value
794 */
795#define __REV __builtin_bswap32
796
797
798/**
799 \brief Reverse byte order (16 bit)
800 \details Reverses the byte order in two unsigned short values.
801 \param [in] value Value to reverse
802 \return Reversed value
803 */
804#define __REV16 __builtin_bswap16 /* ToDo ARMCLANG: check if __builtin_bswap16 could be used */
805#if 0
806__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
807{
808 uint32_t result;
809
810 __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
811 return(result);
812}
813#endif
814
815
816/**
817 \brief Reverse byte order in signed short value
818 \details Reverses the byte order in a signed short value with sign extension to integer.
819 \param [in] value Value to reverse
820 \return Reversed value
821 */
822 /* ToDo ARMCLANG: check if __builtin_bswap16 could be used */
823__attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
824{
825 int32_t result;
826
827 __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
828 return(result);
829}
830
831
832/**
833 \brief Rotate Right in unsigned value (32 bit)
834 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
835 \param [in] op1 Value to rotate
836 \param [in] op2 Number of Bits to rotate
837 \return Rotated value
838 */
839__attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
840{
841 return (op1 >> op2) | (op1 << (32U - op2));
842}
843
844
845/**
846 \brief Breakpoint
847 \details Causes the processor to enter Debug state.
848 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
849 \param [in] value is ignored by the processor.
850 If required, a debugger can use it to store additional information about the breakpoint.
851 */
852#define __BKPT(value) __ASM volatile ("bkpt "#value)
853
854
855/**
856 \brief Reverse bit order of value
857 \details Reverses the bit order of the given value.
858 \param [in] value Value to reverse
859 \return Reversed value
860 */
861 /* ToDo ARMCLANG: check if __builtin_arm_rbit is supported */
862__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
863{
864 uint32_t result;
865
866#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
867 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
868 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
869 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
870#else
871 int32_t s = (4 /*sizeof(v)*/ * 8) - 1; /* extra shift needed at end */
872
873 result = value; /* r will be reversed bits of v; first get LSB of v */
874 for (value >>= 1U; value; value >>= 1U)
875 {
876 result <<= 1U;
877 result |= value & 1U;
878 s--;
879 }
880 result <<= s; /* shift when v's highest bits are zero */
881#endif
882 return(result);
883}
884
885
886/**
887 \brief Count leading zeros
888 \details Counts the number of leading zeros of a data value.
889 \param [in] value Value to count the leading zeros
890 \return number of leading zeros in value
891 */
892#define __CLZ __builtin_clz
893
894
895#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
896 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
897 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
898 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
899/**
900 \brief LDR Exclusive (8 bit)
901 \details Executes a exclusive LDR instruction for 8 bit value.
902 \param [in] ptr Pointer to data
903 \return value of type uint8_t at (*ptr)
904 */
905#define __LDREXB (uint8_t)__builtin_arm_ldrex
906
907
908/**
909 \brief LDR Exclusive (16 bit)
910 \details Executes a exclusive LDR instruction for 16 bit values.
911 \param [in] ptr Pointer to data
912 \return value of type uint16_t at (*ptr)
913 */
914#define __LDREXH (uint16_t)__builtin_arm_ldrex
915
916
917/**
918 \brief LDR Exclusive (32 bit)
919 \details Executes a exclusive LDR instruction for 32 bit values.
920 \param [in] ptr Pointer to data
921 \return value of type uint32_t at (*ptr)
922 */
923#define __LDREXW (uint32_t)__builtin_arm_ldrex
924
925
926/**
927 \brief STR Exclusive (8 bit)
928 \details Executes a exclusive STR instruction for 8 bit values.
929 \param [in] value Value to store
930 \param [in] ptr Pointer to location
931 \return 0 Function succeeded
932 \return 1 Function failed
933 */
934#define __STREXB (uint32_t)__builtin_arm_strex
935
936
937/**
938 \brief STR Exclusive (16 bit)
939 \details Executes a exclusive STR instruction for 16 bit values.
940 \param [in] value Value to store
941 \param [in] ptr Pointer to location
942 \return 0 Function succeeded
943 \return 1 Function failed
944 */
945#define __STREXH (uint32_t)__builtin_arm_strex
946
947
948/**
949 \brief STR Exclusive (32 bit)
950 \details Executes a exclusive STR instruction for 32 bit values.
951 \param [in] value Value to store
952 \param [in] ptr Pointer to location
953 \return 0 Function succeeded
954 \return 1 Function failed
955 */
956#define __STREXW (uint32_t)__builtin_arm_strex
957
958
959/**
960 \brief Remove the exclusive lock
961 \details Removes the exclusive lock which is created by LDREX.
962 */
963#define __CLREX __builtin_arm_clrex
964
965#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
966 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
967 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
968 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
969
970
971#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
972 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
973 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
974/**
975 \brief Signed Saturate
976 \details Saturates a signed value.
977 \param [in] value Value to be saturated
978 \param [in] sat Bit position to saturate to (1..32)
979 \return Saturated value
980 */
981#define __SSAT __builtin_arm_ssat
982
983
984/**
985 \brief Unsigned Saturate
986 \details Saturates an unsigned value.
987 \param [in] value Value to be saturated
988 \param [in] sat Bit position to saturate to (0..31)
989 \return Saturated value
990 */
991#define __USAT __builtin_arm_usat
992
993
994/**
995 \brief Rotate Right with Extend (32 bit)
996 \details Moves each bit of a bitstring right by one bit.
997 The carry input is shifted in at the left end of the bitstring.
998 \param [in] value Value to rotate
999 \return Rotated value
1000 */
1001__attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
1002{
1003 uint32_t result;
1004
1005 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1006 return(result);
1007}
1008
1009
1010/**
1011 \brief LDRT Unprivileged (8 bit)
1012 \details Executes a Unprivileged LDRT instruction for 8 bit value.
1013 \param [in] ptr Pointer to data
1014 \return value of type uint8_t at (*ptr)
1015 */
1016__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1017{
1018 uint32_t result;
1019
1020 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1021 return ((uint8_t) result); /* Add explicit type cast here */
1022}
1023
1024
1025/**
1026 \brief LDRT Unprivileged (16 bit)
1027 \details Executes a Unprivileged LDRT instruction for 16 bit values.
1028 \param [in] ptr Pointer to data
1029 \return value of type uint16_t at (*ptr)
1030 */
1031__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1032{
1033 uint32_t result;
1034
1035 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1036 return ((uint16_t) result); /* Add explicit type cast here */
1037}
1038
1039
1040/**
1041 \brief LDRT Unprivileged (32 bit)
1042 \details Executes a Unprivileged LDRT instruction for 32 bit values.
1043 \param [in] ptr Pointer to data
1044 \return value of type uint32_t at (*ptr)
1045 */
1046__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *ptr)
1047{
1048 uint32_t result;
1049
1050 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1051 return(result);
1052}
1053
1054
1055/**
1056 \brief STRT Unprivileged (8 bit)
1057 \details Executes a Unprivileged STRT instruction for 8 bit values.
1058 \param [in] value Value to store
1059 \param [in] ptr Pointer to location
1060 */
1061__attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1062{
1063 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1064}
1065
1066
1067/**
1068 \brief STRT Unprivileged (16 bit)
1069 \details Executes a Unprivileged STRT instruction for 16 bit values.
1070 \param [in] value Value to store
1071 \param [in] ptr Pointer to location
1072 */
1073__attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1074{
1075 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1076}
1077
1078
1079/**
1080 \brief STRT Unprivileged (32 bit)
1081 \details Executes a Unprivileged STRT instruction for 32 bit values.
1082 \param [in] value Value to store
1083 \param [in] ptr Pointer to location
1084 */
1085__attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1086{
1087 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1088}
1089
1090#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1091 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1092 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1093
1094
1095#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1096 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
1097/**
1098 \brief Load-Acquire (8 bit)
1099 \details Executes a LDAB instruction for 8 bit value.
1100 \param [in] ptr Pointer to data
1101 \return value of type uint8_t at (*ptr)
1102 */
1103__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDAB(volatile uint8_t *ptr)
1104{
1105 uint32_t result;
1106
1107 __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1108 return ((uint8_t) result);
1109}
1110
1111
1112/**
1113 \brief Load-Acquire (16 bit)
1114 \details Executes a LDAH instruction for 16 bit values.
1115 \param [in] ptr Pointer to data
1116 \return value of type uint16_t at (*ptr)
1117 */
1118__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDAH(volatile uint16_t *ptr)
1119{
1120 uint32_t result;
1121
1122 __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1123 return ((uint16_t) result);
1124}
1125
1126
1127/**
1128 \brief Load-Acquire (32 bit)
1129 \details Executes a LDA instruction for 32 bit values.
1130 \param [in] ptr Pointer to data
1131 \return value of type uint32_t at (*ptr)
1132 */
1133__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDA(volatile uint32_t *ptr)
1134{
1135 uint32_t result;
1136
1137 __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1138 return(result);
1139}
1140
1141
1142/**
1143 \brief Store-Release (8 bit)
1144 \details Executes a STLB instruction for 8 bit values.
1145 \param [in] value Value to store
1146 \param [in] ptr Pointer to location
1147 */
1148__attribute__((always_inline)) __STATIC_INLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1149{
1150 __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1151}
1152
1153
1154/**
1155 \brief Store-Release (16 bit)
1156 \details Executes a STLH instruction for 16 bit values.
1157 \param [in] value Value to store
1158 \param [in] ptr Pointer to location
1159 */
1160__attribute__((always_inline)) __STATIC_INLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1161{
1162 __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1163}
1164
1165
1166/**
1167 \brief Store-Release (32 bit)
1168 \details Executes a STL instruction for 32 bit values.
1169 \param [in] value Value to store
1170 \param [in] ptr Pointer to location
1171 */
1172__attribute__((always_inline)) __STATIC_INLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1173{
1174 __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1175}
1176
1177
1178/**
1179 \brief Load-Acquire Exclusive (8 bit)
1180 \details Executes a LDAB exclusive instruction for 8 bit value.
1181 \param [in] ptr Pointer to data
1182 \return value of type uint8_t at (*ptr)
1183 */
1184#define __LDAEXB (uint8_t)__builtin_arm_ldaex
1185
1186
1187/**
1188 \brief Load-Acquire Exclusive (16 bit)
1189 \details Executes a LDAH exclusive instruction for 16 bit values.
1190 \param [in] ptr Pointer to data
1191 \return value of type uint16_t at (*ptr)
1192 */
1193#define __LDAEXH (uint16_t)__builtin_arm_ldaex
1194
1195
1196/**
1197 \brief Load-Acquire Exclusive (32 bit)
1198 \details Executes a LDA exclusive instruction for 32 bit values.
1199 \param [in] ptr Pointer to data
1200 \return value of type uint32_t at (*ptr)
1201 */
1202#define __LDAEX (uint32_t)__builtin_arm_ldaex
1203
1204
1205/**
1206 \brief Store-Release Exclusive (8 bit)
1207 \details Executes a STLB exclusive instruction for 8 bit values.
1208 \param [in] value Value to store
1209 \param [in] ptr Pointer to location
1210 \return 0 Function succeeded
1211 \return 1 Function failed
1212 */
1213#define __STLEXB (uint32_t)__builtin_arm_stlex
1214
1215
1216/**
1217 \brief Store-Release Exclusive (16 bit)
1218 \details Executes a STLH exclusive instruction for 16 bit values.
1219 \param [in] value Value to store
1220 \param [in] ptr Pointer to location
1221 \return 0 Function succeeded
1222 \return 1 Function failed
1223 */
1224#define __STLEXH (uint32_t)__builtin_arm_stlex
1225
1226
1227/**
1228 \brief Store-Release Exclusive (32 bit)
1229 \details Executes a STL exclusive instruction for 32 bit values.
1230 \param [in] value Value to store
1231 \param [in] ptr Pointer to location
1232 \return 0 Function succeeded
1233 \return 1 Function failed
1234 */
1235#define __STLEX (uint32_t)__builtin_arm_stlex
1236
1237#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1238 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
1239
1240/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1241
1242
1243/* ################### Compiler specific Intrinsics ########################### */
1244/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1245 Access to dedicated SIMD instructions
1246 @{
1247*/
1248
1249#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1250
1251__attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1252{
1253 uint32_t result;
1254
1255 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1256 return(result);
1257}
1258
1259__attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1260{
1261 uint32_t result;
1262
1263 __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1264 return(result);
1265}
1266
1267__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1268{
1269 uint32_t result;
1270
1271 __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1272 return(result);
1273}
1274
1275__attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1276{
1277 uint32_t result;
1278
1279 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1280 return(result);
1281}
1282
1283__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1284{
1285 uint32_t result;
1286
1287 __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1288 return(result);
1289}
1290
1291__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1292{
1293 uint32_t result;
1294
1295 __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1296 return(result);
1297}
1298
1299
1300__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1301{
1302 uint32_t result;
1303
1304 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1305 return(result);
1306}
1307
1308__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1309{
1310 uint32_t result;
1311
1312 __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1313 return(result);
1314}
1315
1316__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1317{
1318 uint32_t result;
1319
1320 __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1321 return(result);
1322}
1323
1324__attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1325{
1326 uint32_t result;
1327
1328 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1329 return(result);
1330}
1331
1332__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1333{
1334 uint32_t result;
1335
1336 __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1337 return(result);
1338}
1339
1340__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1341{
1342 uint32_t result;
1343
1344 __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1345 return(result);
1346}
1347
1348
1349__attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1350{
1351 uint32_t result;
1352
1353 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1354 return(result);
1355}
1356
1357__attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1358{
1359 uint32_t result;
1360
1361 __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1362 return(result);
1363}
1364
1365__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1366{
1367 uint32_t result;
1368
1369 __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1370 return(result);
1371}
1372
1373__attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1374{
1375 uint32_t result;
1376
1377 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1378 return(result);
1379}
1380
1381__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1382{
1383 uint32_t result;
1384
1385 __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1386 return(result);
1387}
1388
1389__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1390{
1391 uint32_t result;
1392
1393 __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1394 return(result);
1395}
1396
1397__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1398{
1399 uint32_t result;
1400
1401 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1402 return(result);
1403}
1404
1405__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1406{
1407 uint32_t result;
1408
1409 __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1410 return(result);
1411}
1412
1413__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1414{
1415 uint32_t result;
1416
1417 __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1418 return(result);
1419}
1420
1421__attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1422{
1423 uint32_t result;
1424
1425 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1426 return(result);
1427}
1428
1429__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1430{
1431 uint32_t result;
1432
1433 __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1434 return(result);
1435}
1436
1437__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1438{
1439 uint32_t result;
1440
1441 __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1442 return(result);
1443}
1444
1445__attribute__((always_inline)) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1446{
1447 uint32_t result;
1448
1449 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1450 return(result);
1451}
1452
1453__attribute__((always_inline)) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1454{
1455 uint32_t result;
1456
1457 __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1458 return(result);
1459}
1460
1461__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1462{
1463 uint32_t result;
1464
1465 __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1466 return(result);
1467}
1468
1469__attribute__((always_inline)) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1470{
1471 uint32_t result;
1472
1473 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1474 return(result);
1475}
1476
1477__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1478{
1479 uint32_t result;
1480
1481 __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1482 return(result);
1483}
1484
1485__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1486{
1487 uint32_t result;
1488
1489 __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1490 return(result);
1491}
1492
1493__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1494{
1495 uint32_t result;
1496
1497 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1498 return(result);
1499}
1500
1501__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1502{
1503 uint32_t result;
1504
1505 __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1506 return(result);
1507}
1508
1509__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1510{
1511 uint32_t result;
1512
1513 __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1514 return(result);
1515}
1516
1517__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1518{
1519 uint32_t result;
1520
1521 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1522 return(result);
1523}
1524
1525__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1526{
1527 uint32_t result;
1528
1529 __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1530 return(result);
1531}
1532
1533__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1534{
1535 uint32_t result;
1536
1537 __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1538 return(result);
1539}
1540
1541__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1542{
1543 uint32_t result;
1544
1545 __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1546 return(result);
1547}
1548
1549__attribute__((always_inline)) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1550{
1551 uint32_t result;
1552
1553 __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1554 return(result);
1555}
1556
1557#define __SSAT16(ARG1,ARG2) \
1558({ \
1559 int32_t __RES, __ARG1 = (ARG1); \
1560 __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1561 __RES; \
1562 })
1563
1564#define __USAT16(ARG1,ARG2) \
1565({ \
1566 uint32_t __RES, __ARG1 = (ARG1); \
1567 __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1568 __RES; \
1569 })
1570
1571__attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
1572{
1573 uint32_t result;
1574
1575 __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1576 return(result);
1577}
1578
1579__attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1580{
1581 uint32_t result;
1582
1583 __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1584 return(result);
1585}
1586
1587__attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
1588{
1589 uint32_t result;
1590
1591 __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1592 return(result);
1593}
1594
1595__attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1596{
1597 uint32_t result;
1598
1599 __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1600 return(result);
1601}
1602
1603__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
1604{
1605 uint32_t result;
1606
1607 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1608 return(result);
1609}
1610
1611__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1612{
1613 uint32_t result;
1614
1615 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1616 return(result);
1617}
1618
1619__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1620{
1621 uint32_t result;
1622
1623 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1624 return(result);
1625}
1626
1627__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1628{
1629 uint32_t result;
1630
1631 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1632 return(result);
1633}
1634
1635__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1636{
1637 union llreg_u{
1638 uint32_t w32[2];
1639 uint64_t w64;
1640 } llr;
1641 llr.w64 = acc;
1642
1643#ifndef __ARMEB__ /* Little endian */
1644 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1645#else /* Big endian */
1646 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1647#endif
1648
1649 return(llr.w64);
1650}
1651
1652__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1653{
1654 union llreg_u{
1655 uint32_t w32[2];
1656 uint64_t w64;
1657 } llr;
1658 llr.w64 = acc;
1659
1660#ifndef __ARMEB__ /* Little endian */
1661 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1662#else /* Big endian */
1663 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1664#endif
1665
1666 return(llr.w64);
1667}
1668
1669__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
1670{
1671 uint32_t result;
1672
1673 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1674 return(result);
1675}
1676
1677__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1678{
1679 uint32_t result;
1680
1681 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1682 return(result);
1683}
1684
1685__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1686{
1687 uint32_t result;
1688
1689 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1690 return(result);
1691}
1692
1693__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1694{
1695 uint32_t result;
1696
1697 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1698 return(result);
1699}
1700
1701__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1702{
1703 union llreg_u{
1704 uint32_t w32[2];
1705 uint64_t w64;
1706 } llr;
1707 llr.w64 = acc;
1708
1709#ifndef __ARMEB__ /* Little endian */
1710 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1711#else /* Big endian */
1712 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1713#endif
1714
1715 return(llr.w64);
1716}
1717
1718__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1719{
1720 union llreg_u{
1721 uint32_t w32[2];
1722 uint64_t w64;
1723 } llr;
1724 llr.w64 = acc;
1725
1726#ifndef __ARMEB__ /* Little endian */
1727 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1728#else /* Big endian */
1729 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1730#endif
1731
1732 return(llr.w64);
1733}
1734
1735__attribute__((always_inline)) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
1736{
1737 uint32_t result;
1738
1739 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1740 return(result);
1741}
1742
1743__attribute__((always_inline)) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2)
1744{
1745 int32_t result;
1746
1747 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1748 return(result);
1749}
1750
1751__attribute__((always_inline)) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2)
1752{
1753 int32_t result;
1754
1755 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1756 return(result);
1757}
1758
1759#if 0
1760#define __PKHBT(ARG1,ARG2,ARG3) \
1761({ \
1762 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1763 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1764 __RES; \
1765 })
1766
1767#define __PKHTB(ARG1,ARG2,ARG3) \
1768({ \
1769 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1770 if (ARG3 == 0) \
1771 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
1772 else \
1773 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1774 __RES; \
1775 })
1776#endif
1777
1778#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
1779 ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
1780
1781#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
1782 ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
1783
1784__attribute__((always_inline)) __STATIC_INLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1785{
1786 int32_t result;
1787
1788 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
1789 return(result);
1790}
1791
1792#endif /* (__ARM_FEATURE_DSP == 1) */
1793/*@} end of group CMSIS_SIMD_intrinsics */
1794
1795
1796#endif /* __CMSIS_ARMCLANG_H */