Sandrine Bailleux | 3cd87d7 | 2018-10-09 11:12:55 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2018, Arm Limited. All rights reserved. |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include <arch.h> |
| 8 | #include <arch_helpers.h> |
| 9 | #include <arm_gic.h> |
| 10 | #include <assert.h> |
| 11 | #include <debug.h> |
| 12 | #include <gic_common.h> |
| 13 | #include <gic_v3.h> |
| 14 | #include <mmio.h> |
| 15 | #include <platform.h> |
| 16 | |
| 17 | /* Global variables to store the GIC base addresses */ |
| 18 | static uintptr_t gicr_base_addr; |
| 19 | static uintptr_t gicd_base_addr; |
| 20 | |
| 21 | #ifndef AARCH32 |
| 22 | #define MPIDR_AFFLVL3_MASK ((unsigned long long)MPIDR_AFFLVL_MASK << MPIDR_AFF3_SHIFT) |
| 23 | #define gic_typer_affinity_from_mpidr(mpidr) \ |
| 24 | (((mpidr) & (~MPIDR_AFFLVL3_MASK)) | (((mpidr) & MPIDR_AFFLVL3_MASK) >> 8)) |
| 25 | #else |
| 26 | #define gic_typer_affinity_from_mpidr(mpidr) \ |
| 27 | ((mpidr) & ((MPIDR_AFFLVL_MASK << MPIDR_AFF2_SHIFT) | MPID_MASK)) |
| 28 | #endif |
| 29 | |
| 30 | /* |
| 31 | * Data structure to store the GIC per CPU context before entering |
| 32 | * system suspend. Only the GIC context of first 32 interrupts (SGIs and PPIs) |
| 33 | * will be saved. The GIC SPI context needs to be restored by the respective |
| 34 | * drivers. |
| 35 | */ |
| 36 | struct gicv3_pcpu_ctx { |
| 37 | /* Flag to indicate whether the CPU is suspended */ |
| 38 | unsigned int is_suspended; |
| 39 | unsigned int icc_igrpen1; |
| 40 | unsigned int gicr_isenabler; |
| 41 | unsigned int gicr_ipriorityr[NUM_PCPU_INTR >> IPRIORITYR_SHIFT]; |
| 42 | unsigned int gicr_icfgr; |
| 43 | }; |
| 44 | |
| 45 | /* Array to store the per-cpu GICv3 context when being suspended.*/ |
| 46 | static struct gicv3_pcpu_ctx pcpu_ctx[PLATFORM_CORE_COUNT]; |
| 47 | |
| 48 | /* Array to store the per-cpu redistributor frame addresses */ |
| 49 | static uintptr_t rdist_pcpu_base[PLATFORM_CORE_COUNT]; |
| 50 | |
| 51 | /* |
| 52 | * Array to store the mpidr corresponding to each initialized per-CPU |
| 53 | * redistributor interface. |
| 54 | */ |
| 55 | static unsigned long long mpidr_list[PLATFORM_CORE_COUNT] = {UINT64_MAX}; |
| 56 | |
| 57 | /****************************************************************************** |
| 58 | * GIC Distributor interface accessors for writing entire registers |
| 59 | *****************************************************************************/ |
| 60 | static void gicd_write_irouter(unsigned int base, |
| 61 | unsigned int interrupt_id, |
| 62 | unsigned long long route) |
| 63 | { |
| 64 | assert(interrupt_id >= MIN_SPI_ID); |
| 65 | mmio_write_64(base + GICD_IROUTER + (interrupt_id << 3), route); |
| 66 | } |
| 67 | |
| 68 | /****************************************************************************** |
| 69 | * GIC Re-distributor interface accessors for writing entire registers |
| 70 | *****************************************************************************/ |
| 71 | static void gicr_write_isenabler0(unsigned int base, unsigned int val) |
| 72 | { |
| 73 | mmio_write_32(base + GICR_ISENABLER0, val); |
| 74 | } |
| 75 | |
| 76 | static void gicr_write_icenabler0(unsigned int base, unsigned int val) |
| 77 | { |
| 78 | mmio_write_32(base + GICR_ICENABLER0, val); |
| 79 | } |
| 80 | |
| 81 | static void gicr_write_icpendr0(unsigned int base, unsigned int val) |
| 82 | { |
| 83 | mmio_write_32(base + GICR_ICPENDR0, val); |
| 84 | } |
| 85 | |
| 86 | static void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val) |
| 87 | { |
| 88 | unsigned n = id >> IPRIORITYR_SHIFT; |
| 89 | mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val); |
| 90 | } |
| 91 | |
| 92 | static void gicr_write_icfgr1(uintptr_t base, unsigned int val) |
| 93 | { |
| 94 | mmio_write_32(base + GICR_ICFGR1, val); |
| 95 | } |
| 96 | |
| 97 | /****************************************************************************** |
| 98 | * GIC Re-distributor interface accessors for reading entire registers |
| 99 | *****************************************************************************/ |
| 100 | static unsigned long long gicr_read_typer(uintptr_t base) |
| 101 | { |
| 102 | return mmio_read_64(base + GICR_TYPER); |
| 103 | } |
| 104 | |
| 105 | static unsigned int gicr_read_icfgr1(uintptr_t base) |
| 106 | { |
| 107 | return mmio_read_32(base + GICR_ICFGR1); |
| 108 | } |
| 109 | |
| 110 | static unsigned int gicr_read_isenabler0(unsigned int base) |
| 111 | { |
| 112 | return mmio_read_32(base + GICR_ISENABLER0); |
| 113 | } |
| 114 | |
| 115 | static unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id) |
| 116 | { |
| 117 | unsigned n = id >> IPRIORITYR_SHIFT; |
| 118 | return mmio_read_32(base + GICR_IPRIORITYR + (n << 2)); |
| 119 | } |
| 120 | |
| 121 | static unsigned int gicr_read_ispendr0(unsigned int base) |
| 122 | { |
| 123 | return mmio_read_32(base + GICR_ISPENDR0); |
| 124 | } |
| 125 | |
| 126 | /****************************************************************************** |
| 127 | * GIC Re-distributor interface accessors for individual interrupt |
| 128 | * manipulation |
| 129 | *****************************************************************************/ |
| 130 | static unsigned int gicr_get_isenabler0(unsigned int base, |
| 131 | unsigned int interrupt_id) |
| 132 | { |
| 133 | unsigned bit_num = interrupt_id & ((1 << ISENABLER_SHIFT) - 1); |
| 134 | return gicr_read_isenabler0(base) & (1 << bit_num); |
| 135 | } |
| 136 | |
| 137 | static void gicr_set_isenabler0(unsigned int base, unsigned int interrupt_id) |
| 138 | { |
| 139 | unsigned bit_num = interrupt_id & ((1 << ISENABLER_SHIFT) - 1); |
| 140 | gicr_write_isenabler0(base, (1 << bit_num)); |
| 141 | } |
| 142 | |
| 143 | static void gicr_set_icenabler0(unsigned int base, unsigned int interrupt_id) |
| 144 | { |
| 145 | unsigned bit_num = interrupt_id & ((1 << ISENABLER_SHIFT) - 1); |
| 146 | gicr_write_icenabler0(base, (1 << bit_num)); |
| 147 | } |
| 148 | |
| 149 | static void gicr_set_icpendr0(unsigned int base, unsigned int interrupt_id) |
| 150 | { |
| 151 | unsigned bit_num = interrupt_id & ((1 << ICPENDR_SHIFT) - 1); |
| 152 | gicr_write_icpendr0(base, (1 << bit_num)); |
| 153 | } |
| 154 | |
| 155 | /****************************************************************************** |
| 156 | * GICv3 public driver API |
| 157 | *****************************************************************************/ |
| 158 | void gicv3_enable_cpuif(void) |
| 159 | { |
| 160 | /* Assert that system register access is enabled */ |
| 161 | assert(IS_IN_EL2() ? (read_icc_sre_el2() & ICC_SRE_SRE_BIT) : |
| 162 | (read_icc_sre_el1() & ICC_SRE_SRE_BIT)); |
| 163 | |
| 164 | /* Enable Group1 non secure interrupts */ |
| 165 | write_icc_igrpen1_el1(read_icc_igrpen1_el1() | IGRPEN1_EL1_ENABLE_BIT); |
| 166 | isb(); |
| 167 | } |
| 168 | |
| 169 | void gicv3_setup_cpuif(void) |
| 170 | { |
| 171 | /* Set the priority mask register to allow all interrupts to trickle in */ |
| 172 | write_icc_pmr_el1(GIC_PRI_MASK); |
| 173 | isb(); |
| 174 | gicv3_enable_cpuif(); |
| 175 | } |
| 176 | |
| 177 | void gicv3_disable_cpuif(void) |
| 178 | { |
| 179 | /* Disable Group1 non secure interrupts */ |
| 180 | write_icc_igrpen1_el1(read_icc_igrpen1_el1() & |
| 181 | ~IGRPEN1_EL1_ENABLE_BIT); |
| 182 | isb(); |
| 183 | } |
| 184 | |
| 185 | void gicv3_save_cpuif_context(void) |
| 186 | { |
| 187 | unsigned int core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 188 | |
| 189 | /* Set the `is_suspended` flag as this core is being suspended. */ |
| 190 | pcpu_ctx[core_pos].is_suspended = 1; |
| 191 | pcpu_ctx[core_pos].icc_igrpen1 = read_icc_igrpen1_el1(); |
| 192 | } |
| 193 | |
| 194 | void gicv3_restore_cpuif_context(void) |
| 195 | { |
| 196 | unsigned int core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 197 | |
| 198 | /* Reset the `is_suspended` flag as this core has resumed from suspend. */ |
| 199 | pcpu_ctx[core_pos].is_suspended = 0; |
| 200 | write_icc_pmr_el1(GIC_PRI_MASK); |
| 201 | write_icc_igrpen1_el1(pcpu_ctx[core_pos].icc_igrpen1); |
| 202 | isb(); |
| 203 | } |
| 204 | |
| 205 | void gicv3_save_sgi_ppi_context(void) |
| 206 | { |
| 207 | unsigned int i, core_pos; |
| 208 | unsigned int my_core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 209 | |
| 210 | /* Save the context for all the suspended cores */ |
| 211 | for (core_pos = 0; core_pos < PLATFORM_CORE_COUNT; core_pos++) { |
| 212 | /* |
| 213 | * Continue if the core pos is not the current core |
| 214 | * and has not suspended |
| 215 | */ |
| 216 | if ((core_pos != my_core_pos) && |
| 217 | (!pcpu_ctx[core_pos].is_suspended)) |
| 218 | continue; |
| 219 | |
| 220 | assert(rdist_pcpu_base[core_pos]); |
| 221 | |
| 222 | pcpu_ctx[core_pos].gicr_isenabler = |
| 223 | gicr_read_isenabler0(rdist_pcpu_base[core_pos]); |
| 224 | |
| 225 | /* Read the ipriority registers, 4 at a time */ |
| 226 | for (i = 0; i < (NUM_PCPU_INTR >> IPRIORITYR_SHIFT); i++) |
| 227 | pcpu_ctx[core_pos].gicr_ipriorityr[i] = |
| 228 | gicr_read_ipriorityr(rdist_pcpu_base[core_pos], |
| 229 | i << IPRIORITYR_SHIFT); |
| 230 | |
| 231 | pcpu_ctx[core_pos].gicr_icfgr = |
| 232 | gicr_read_icfgr1(rdist_pcpu_base[core_pos]); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | void gicv3_restore_sgi_ppi_context(void) |
| 237 | { |
| 238 | unsigned int i, core_pos; |
| 239 | unsigned int my_core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 240 | |
| 241 | /* Restore the context for all the suspended cores */ |
| 242 | for (core_pos = 0; core_pos < PLATFORM_CORE_COUNT; core_pos++) { |
| 243 | /* |
| 244 | * Continue if the core pos is not the current core |
| 245 | * and has not suspended |
| 246 | */ |
| 247 | if ((core_pos != my_core_pos) && |
| 248 | (!pcpu_ctx[core_pos].is_suspended)) |
| 249 | continue; |
| 250 | |
| 251 | assert(rdist_pcpu_base[core_pos]); |
| 252 | |
| 253 | /* Read the ipriority registers, 4 at a time */ |
| 254 | for (i = 0; i < (NUM_PCPU_INTR >> IPRIORITYR_SHIFT); i++) |
| 255 | gicr_write_ipriorityr(rdist_pcpu_base[core_pos], |
| 256 | i << IPRIORITYR_SHIFT, |
| 257 | pcpu_ctx[core_pos].gicr_ipriorityr[i]); |
| 258 | |
| 259 | gicr_write_icfgr1(rdist_pcpu_base[core_pos], |
| 260 | pcpu_ctx[core_pos].gicr_icfgr); |
| 261 | gicr_write_isenabler0(rdist_pcpu_base[core_pos], |
| 262 | pcpu_ctx[core_pos].gicr_isenabler); |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | unsigned int gicv3_get_ipriorityr(unsigned int interrupt_id) |
| 267 | { |
| 268 | unsigned int core_pos; |
| 269 | assert(gicd_base_addr); |
| 270 | assert(IS_VALID_INTR_ID(interrupt_id)); |
| 271 | |
| 272 | if (interrupt_id < MIN_SPI_ID) { |
| 273 | core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 274 | assert(rdist_pcpu_base[core_pos]); |
| 275 | return mmio_read_8(rdist_pcpu_base[core_pos] + GICR_IPRIORITYR |
| 276 | + interrupt_id); |
| 277 | } else { |
| 278 | return mmio_read_8(gicd_base_addr + |
| 279 | GICD_IPRIORITYR + interrupt_id); |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | void gicv3_set_ipriorityr(unsigned int interrupt_id, |
| 284 | unsigned int priority) |
| 285 | { |
| 286 | unsigned int core_pos; |
| 287 | assert(gicd_base_addr); |
| 288 | assert(IS_VALID_INTR_ID(interrupt_id)); |
| 289 | |
| 290 | if (interrupt_id < MIN_SPI_ID) { |
| 291 | core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 292 | assert(rdist_pcpu_base[core_pos]); |
| 293 | mmio_write_8(rdist_pcpu_base[core_pos] + GICR_IPRIORITYR |
| 294 | + interrupt_id, priority & GIC_PRI_MASK); |
| 295 | } else { |
| 296 | mmio_write_8(gicd_base_addr + GICD_IPRIORITYR + interrupt_id, |
| 297 | priority & GIC_PRI_MASK); |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | void gicv3_send_sgi(unsigned int sgi_id, unsigned int core_pos) |
| 302 | { |
| 303 | unsigned long long aff0, aff1, aff2; |
| 304 | unsigned long long sgir, target_list; |
| 305 | |
| 306 | assert(IS_SGI(sgi_id)); |
| 307 | assert(core_pos < PLATFORM_CORE_COUNT); |
| 308 | |
| 309 | assert(mpidr_list[core_pos] != UINT64_MAX); |
| 310 | |
| 311 | /* Extract the affinity information */ |
| 312 | aff0 = MPIDR_AFF_ID(mpidr_list[core_pos], 0); |
| 313 | aff1 = MPIDR_AFF_ID(mpidr_list[core_pos], 1); |
| 314 | aff2 = MPIDR_AFF_ID(mpidr_list[core_pos], 2); |
| 315 | #ifndef AARCH32 |
| 316 | unsigned long long aff3; |
| 317 | aff3 = MPIDR_AFF_ID(mpidr_list[core_pos], 3); |
| 318 | #endif |
| 319 | |
| 320 | /* Construct the SGI target list using Affinity 0 */ |
| 321 | assert(aff0 < SGI_TARGET_MAX_AFF0); |
| 322 | target_list = 1 << aff0; |
| 323 | |
| 324 | /* Construct the SGI target affinity */ |
| 325 | sgir = |
| 326 | #ifndef AARCH32 |
| 327 | ((aff3 & SGI1R_AFF_MASK) << SGI1R_AFF3_SHIFT) | |
| 328 | #endif |
| 329 | ((aff2 & SGI1R_AFF_MASK) << SGI1R_AFF2_SHIFT) | |
| 330 | ((aff1 & SGI1R_AFF_MASK) << SGI1R_AFF1_SHIFT) | |
| 331 | ((target_list & SGI1R_TARGET_LIST_MASK) |
| 332 | << SGI1R_TARGET_LIST_SHIFT); |
| 333 | |
| 334 | /* Combine SGI target affinity with the SGI ID */ |
| 335 | sgir |= ((sgi_id & SGI1R_INTID_MASK) << SGI1R_INTID_SHIFT); |
| 336 | #ifndef AARCH32 |
| 337 | write_icc_sgi1r(sgir); |
| 338 | #else |
| 339 | write64_icc_sgi1r(sgir); |
| 340 | #endif |
| 341 | isb(); |
| 342 | } |
| 343 | |
| 344 | void gicv3_set_intr_route(unsigned int interrupt_id, |
| 345 | unsigned int core_pos) |
| 346 | { |
| 347 | unsigned long long route_affinity; |
| 348 | |
| 349 | assert(gicd_base_addr); |
| 350 | assert(core_pos < PLATFORM_CORE_COUNT); |
| 351 | assert(mpidr_list[core_pos] != UINT64_MAX); |
| 352 | |
| 353 | /* Routing information can be set only for SPIs */ |
| 354 | assert(IS_SPI(interrupt_id)); |
| 355 | route_affinity = mpidr_list[core_pos]; |
| 356 | |
| 357 | gicd_write_irouter(gicd_base_addr, interrupt_id, route_affinity); |
| 358 | } |
| 359 | |
| 360 | unsigned int gicv3_get_isenabler(unsigned int interrupt_id) |
| 361 | { |
| 362 | unsigned int core_pos; |
| 363 | |
| 364 | assert(gicd_base_addr); |
| 365 | assert(IS_VALID_INTR_ID(interrupt_id)); |
| 366 | |
| 367 | if (interrupt_id < MIN_SPI_ID) { |
| 368 | core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 369 | assert(rdist_pcpu_base[core_pos]); |
| 370 | return gicr_get_isenabler0(rdist_pcpu_base[core_pos], interrupt_id); |
| 371 | } else |
| 372 | return gicd_get_isenabler(gicd_base_addr, interrupt_id); |
| 373 | } |
| 374 | |
| 375 | void gicv3_set_isenabler(unsigned int interrupt_id) |
| 376 | { |
| 377 | unsigned int core_pos; |
| 378 | |
| 379 | assert(gicd_base_addr); |
| 380 | assert(IS_VALID_INTR_ID(interrupt_id)); |
| 381 | |
| 382 | if (interrupt_id < MIN_SPI_ID) { |
| 383 | core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 384 | assert(rdist_pcpu_base[core_pos]); |
| 385 | gicr_set_isenabler0(rdist_pcpu_base[core_pos], interrupt_id); |
| 386 | } else |
| 387 | gicd_set_isenabler(gicd_base_addr, interrupt_id); |
| 388 | } |
| 389 | |
| 390 | void gicv3_set_icenabler(unsigned int interrupt_id) |
| 391 | { |
| 392 | unsigned int core_pos; |
| 393 | |
| 394 | assert(gicd_base_addr); |
| 395 | assert(IS_VALID_INTR_ID(interrupt_id)); |
| 396 | |
| 397 | if (interrupt_id < MIN_SPI_ID) { |
| 398 | core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 399 | assert(rdist_pcpu_base[core_pos]); |
| 400 | gicr_set_icenabler0(rdist_pcpu_base[core_pos], interrupt_id); |
| 401 | } else |
| 402 | gicd_set_icenabler(gicd_base_addr, interrupt_id); |
| 403 | } |
| 404 | |
| 405 | unsigned int gicv3_get_ispendr(unsigned int interrupt_id) |
| 406 | { |
| 407 | unsigned int ispendr; |
| 408 | unsigned int bit_pos, core_pos; |
| 409 | |
| 410 | assert(gicd_base_addr); |
| 411 | assert(IS_VALID_INTR_ID(interrupt_id)); |
| 412 | |
| 413 | if (interrupt_id < MIN_SPI_ID) { |
| 414 | core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 415 | assert(rdist_pcpu_base[core_pos]); |
| 416 | ispendr = gicr_read_ispendr0(rdist_pcpu_base[core_pos]); |
| 417 | } else |
| 418 | ispendr = gicd_read_ispendr(gicd_base_addr, interrupt_id); |
| 419 | |
| 420 | bit_pos = interrupt_id % (1 << ISPENDR_SHIFT); |
| 421 | return !!(ispendr & (1 << bit_pos)); |
| 422 | } |
| 423 | |
| 424 | void gicv3_set_icpendr(unsigned int interrupt_id) |
| 425 | { |
| 426 | unsigned int core_pos; |
| 427 | |
| 428 | assert(gicd_base_addr); |
| 429 | assert(IS_SPI(interrupt_id) || IS_PPI(interrupt_id)); |
| 430 | |
| 431 | if (interrupt_id < MIN_SPI_ID) { |
| 432 | core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 433 | assert(rdist_pcpu_base[core_pos]); |
| 434 | gicr_set_icpendr0(rdist_pcpu_base[core_pos], interrupt_id); |
| 435 | |
| 436 | } else |
| 437 | gicd_set_icpendr(gicd_base_addr, interrupt_id); |
| 438 | } |
| 439 | |
| 440 | void gicv3_probe_redistif_addr(void) |
| 441 | { |
| 442 | unsigned long long typer_val; |
| 443 | uintptr_t rdistif_base; |
| 444 | unsigned long long affinity; |
| 445 | unsigned int core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 446 | |
| 447 | assert(gicr_base_addr); |
| 448 | |
| 449 | /* |
| 450 | * Return if the re-distributor base address is already populated |
| 451 | * for this core. |
| 452 | */ |
| 453 | if (rdist_pcpu_base[core_pos]) |
| 454 | return; |
| 455 | |
| 456 | /* Iterate over the GICR frames and find the matching frame*/ |
| 457 | rdistif_base = gicr_base_addr; |
| 458 | affinity = gic_typer_affinity_from_mpidr(read_mpidr_el1() & MPIDR_AFFINITY_MASK); |
| 459 | do { |
| 460 | typer_val = gicr_read_typer(rdistif_base); |
| 461 | if (affinity == ((typer_val >> TYPER_AFF_VAL_SHIFT) & TYPER_AFF_VAL_MASK)) { |
| 462 | rdist_pcpu_base[core_pos] = rdistif_base; |
| 463 | mpidr_list[core_pos] = read_mpidr_el1() & MPIDR_AFFINITY_MASK; |
| 464 | return; |
| 465 | } |
| 466 | rdistif_base += (1 << GICR_PCPUBASE_SHIFT); |
| 467 | } while (!(typer_val & TYPER_LAST_BIT)); |
| 468 | |
| 469 | ERROR("Re-distributor address not found for core %d\n", core_pos); |
| 470 | panic(); |
| 471 | } |
| 472 | |
| 473 | void gicv3_setup_distif(void) |
| 474 | { |
| 475 | unsigned int gicd_ctlr; |
| 476 | |
| 477 | assert(gicd_base_addr); |
| 478 | |
| 479 | /* Check for system register support */ |
| 480 | #ifndef AARCH32 |
| 481 | assert(read_id_aa64pfr0_el1() & |
| 482 | (ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)); |
| 483 | #else |
| 484 | assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)); |
| 485 | #endif |
| 486 | |
| 487 | /* Assert that system register access is enabled */ |
| 488 | assert(is_sre_enabled()); |
| 489 | |
| 490 | /* Enable the forwarding of interrupts to CPU interface */ |
| 491 | gicd_ctlr = gicd_read_ctlr(gicd_base_addr); |
| 492 | |
| 493 | /* Assert ARE_NS bit in GICD */ |
| 494 | assert(gicd_ctlr & (GICD_CTLR_ARE_NS_MASK << GICD_CTLR_ARE_NS_SHIFT)); |
| 495 | |
| 496 | gicd_ctlr |= GICD_CTLR_ENABLE_GRP1A; |
| 497 | gicd_write_ctlr(gicd_base_addr, gicd_ctlr); |
| 498 | } |
| 499 | |
| 500 | void gicv3_init(uintptr_t gicr_base, uintptr_t gicd_base) |
| 501 | { |
| 502 | assert(gicr_base); |
| 503 | assert(gicd_base); |
| 504 | |
| 505 | gicr_base_addr = gicr_base; |
| 506 | gicd_base_addr = gicd_base; |
| 507 | } |