| /* |
| * Copyright (c) 2024-2025, Arm Limited. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| #include <errno.h> |
| #include <stddef.h> |
| |
| #include <debug.h> |
| #include <mmio.h> |
| #include <pcie.h> |
| #include <pcie_doe.h> |
| #include <pcie_spec.h> |
| #include <pcie_dvsec_rmeda.h> |
| #include <platform.h> |
| #include <plat_pcie_enum.h> |
| #include <tftf_lib.h> |
| |
| #define PCIE_DEBUG VERBOSE |
| |
| const struct pcie_info_table *g_pcie_info_table; |
| static pcie_device_bdf_table_t *g_pcie_bdf_table; |
| static pcie_device_bdf_table_t pcie_bdf_table; |
| |
| static uint32_t g_pcie_index; |
| static uint32_t g_enumerate; |
| |
| /* 64-bit address initialisation */ |
| static uint64_t g_bar64_p_start; |
| static uint64_t g_rp_bar64_value; |
| static uint64_t g_bar64_p_max; |
| static uint32_t g_64_bus, g_bar64_size; |
| |
| /* 32-bit address initialisation */ |
| static uint32_t g_bar32_np_start; |
| static uint32_t g_bar32_p_start; |
| static uint32_t g_rp_bar32_value; |
| static uint32_t g_bar32_np_max; |
| static uint32_t g_bar32_p_max; |
| static uint32_t g_np_bar_size, g_p_bar_size; |
| static uint32_t g_np_bus, g_p_bus; |
| |
| static uintptr_t pcie_cfg_addr(uint32_t bdf) |
| { |
| uint32_t bus = PCIE_EXTRACT_BDF_BUS(bdf); |
| uint32_t dev = PCIE_EXTRACT_BDF_DEV(bdf); |
| uint32_t func = PCIE_EXTRACT_BDF_FUNC(bdf); |
| uint32_t segment = PCIE_EXTRACT_BDF_SEG(bdf); |
| uint32_t cfg_addr; |
| uintptr_t ecam_base = 0; |
| unsigned int i = 0; |
| |
| assert((bus < PCIE_MAX_BUS) && (dev < PCIE_MAX_DEV) && (func < PCIE_MAX_FUNC)); |
| assert(g_pcie_info_table != NULL); |
| |
| while (i < g_pcie_info_table->num_entries) { |
| /* Derive ECAM specific information */ |
| const pcie_info_block_t *block = &g_pcie_info_table->block[i]; |
| |
| if ((bus >= block->start_bus_num) && |
| (bus <= block->end_bus_num) && |
| (segment == block->segment_num)) { |
| ecam_base = block->ecam_base; |
| break; |
| } |
| i++; |
| } |
| |
| assert(ecam_base != 0); |
| |
| /* |
| * There are 8 functions / device |
| * 32 devices / Bus and each has a 4KB config space |
| */ |
| cfg_addr = (bus * PCIE_MAX_DEV * PCIE_MAX_FUNC * PCIE_CFG_SIZE) + |
| (dev * PCIE_MAX_FUNC * PCIE_CFG_SIZE) + (func * PCIE_CFG_SIZE); |
| |
| return ecam_base + cfg_addr; |
| } |
| |
| /* |
| * @brief This API reads 32-bit data from PCIe config space pointed by Bus, |
| * Device, Function and register offset. |
| * 1. Caller - Test Suite |
| * 2. Prerequisite - pcie_create_info_table |
| * @param bdf - concatenated Bus(8-bits), device(8-bits) & function(8-bits) |
| * @param offset - Register offset within a device PCIe config space |
| * |
| * @return 32-bit data read from the config space |
| */ |
| uint32_t pcie_read_cfg(uint32_t bdf, uint32_t offset) |
| { |
| uintptr_t addr = pcie_cfg_addr(bdf); |
| |
| return mmio_read_32(addr + offset); |
| } |
| |
| /* |
| * @brief This API writes 32-bit data to PCIe config space pointed by Bus, |
| * Device, Function and register offset. |
| * 1. Caller - Test Suite |
| * 2. Prerequisite - val_pcie_create_info_table |
| * @param bdf - concatenated Bus(8-bits), device(8-bits) & function(8-bits) |
| * @param offset - Register offset within a device PCIe config space |
| * @param data - data to be written to the config space |
| * |
| * @return None |
| */ |
| void pcie_write_cfg(uint32_t bdf, uint32_t offset, uint32_t data) |
| { |
| uintptr_t addr = pcie_cfg_addr(bdf); |
| |
| mmio_write_32(addr + offset, data); |
| } |
| |
| /* |
| * @brief Check if BDF is PCIe Host Bridge. |
| * |
| * @param bdf - Function's Segment/Bus/Dev/Func in PCIE_CREATE_BDF format |
| * @return false If not a Host Bridge, true If it's a Host Bridge. |
| */ |
| static bool pcie_is_host_bridge(uint32_t bdf) |
| { |
| uint32_t reg_value = pcie_read_cfg(bdf, TYPE01_RIDR); |
| |
| if ((HB_BASE_CLASS == ((reg_value >> CC_BASE_SHIFT) & CC_BASE_MASK)) && |
| (HB_SUB_CLASS == ((reg_value >> CC_SUB_SHIFT) & CC_SUB_MASK))) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * @brief Find a Function's config capability offset matching it's input parameter |
| * cid. cid_offset set to the matching cpability offset w.r.t. zero. |
| * |
| * @param bdf - Segment/Bus/Dev/Func in the format of PCIE_CREATE_BDF |
| * @param cid - Capability ID |
| * @param cid_offset - On return, points to cid offset in Function config space |
| * @return PCIE_CAP_NOT_FOUND, if there was a failure in finding required capability. |
| * PCIE_SUCCESS, if the search was successful. |
| */ |
| uint32_t pcie_find_capability(uint32_t bdf, uint32_t cid_type, uint32_t cid, |
| uint32_t *cid_offset) |
| { |
| uint32_t reg_value, next_cap_offset; |
| |
| if (cid_type == PCIE_CAP) { |
| /* Search in PCIe configuration space */ |
| reg_value = pcie_read_cfg(bdf, TYPE01_CPR); |
| |
| next_cap_offset = (reg_value & TYPE01_CPR_MASK); |
| while (next_cap_offset != 0) { |
| reg_value = pcie_read_cfg(bdf, next_cap_offset); |
| if ((reg_value & PCIE_CIDR_MASK) == cid) { |
| *cid_offset = next_cap_offset; |
| return PCIE_SUCCESS; |
| } |
| next_cap_offset = ((reg_value >> PCIE_NCPR_SHIFT) & |
| PCIE_NCPR_MASK); |
| } |
| } else if (cid_type == PCIE_ECAP) { |
| /* Search in PCIe extended configuration space */ |
| next_cap_offset = PCIE_ECAP_START; |
| while (next_cap_offset != 0) { |
| reg_value = pcie_read_cfg(bdf, next_cap_offset); |
| if ((reg_value & PCIE_ECAP_CIDR_MASK) == cid) { |
| *cid_offset = next_cap_offset; |
| return PCIE_SUCCESS; |
| } |
| next_cap_offset = ((reg_value >> PCIE_ECAP_NCPR_SHIFT) & |
| PCIE_ECAP_NCPR_MASK); |
| } |
| } |
| |
| /* The capability was not found */ |
| return PCIE_CAP_NOT_FOUND; |
| } |
| |
| /* |
| * @brief This API is used as placeholder to check if the bdf |
| * obtained is valid or not |
| * |
| * @param bdf |
| * @return true if bdf is valid else false |
| */ |
| static bool pcie_check_device_valid(uint32_t bdf) |
| { |
| (void) bdf; |
| /* |
| * Add BDFs to this function if PCIe tests |
| * need to be ignored for a BDF for any reason |
| */ |
| return true; |
| } |
| |
| /* |
| * @brief Returns whether a PCIe Function is an on-chip peripheral or not |
| * |
| * @param bdf - Segment/Bus/Dev/Func in the format of PCIE_CREATE_BDF |
| * @return Returns TRUE if the Function is on-chip peripheral, FALSE if it is |
| * not an on-chip peripheral |
| */ |
| static bool pcie_is_onchip_peripheral(uint32_t bdf) |
| { |
| (void)bdf; |
| return false; |
| } |
| |
| /* |
| * @brief Returns the type of pcie device or port for the given bdf |
| * |
| * @param bdf - Segment/Bus/Dev/Func in the format of PCIE_CREATE_BDF |
| * @return Returns (1 << 0b1001) for RCiEP, (1 << 0b1010) for RCEC, |
| * (1 << 0b0000) for EP, (1 << 0b0100) for RP, |
| * (1 << 0b1100) for iEP_EP, (1 << 0b1011) for iEP_RP, |
| * (1 << PCIECR[7:4]) for any other device type. |
| */ |
| static uint32_t pcie_device_port_type(uint32_t bdf) |
| { |
| uint32_t pciecs_base, reg_value, dp_type; |
| |
| /* |
| * Get the PCI Express Capability structure offset and |
| * use that offset to read pci express capabilities register |
| */ |
| pcie_find_capability(bdf, PCIE_CAP, CID_PCIECS, &pciecs_base); |
| reg_value = pcie_read_cfg(bdf, pciecs_base + CIDR_OFFSET); |
| |
| /* Read Device/Port bits [7:4] in Function's PCIe Capabilities register */ |
| dp_type = (reg_value >> ((PCIECR_OFFSET - CIDR_OFFSET)*8 + |
| PCIECR_DPT_SHIFT)) & PCIECR_DPT_MASK; |
| dp_type = (1 << dp_type); |
| |
| /* Check if the device/port is an on-chip peripheral */ |
| if (pcie_is_onchip_peripheral(bdf)) { |
| if (dp_type == EP) { |
| dp_type = iEP_EP; |
| } else if (dp_type == RP) { |
| dp_type = iEP_RP; |
| } |
| } |
| |
| /* Return device/port type */ |
| return dp_type; |
| } |
| |
| /* |
| * @brief Returns BDF of the upstream Root Port of a pcie device function. |
| * |
| * @param bdf - Function's Segment/Bus/Dev/Func in PCIE_CREATE_BDF format |
| * @return pcie_dev for success, NULL for failure. |
| */ |
| static pcie_dev_t *pcie_get_rootport(uint32_t bdf) |
| { |
| uint32_t seg_num, sec_bus, sub_bus; |
| uint32_t reg_value, dp_type, index = 0; |
| uint32_t rp_bdf; |
| |
| dp_type = pcie_device_port_type(bdf); |
| |
| PCIE_DEBUG("DP type 0x%x\n", dp_type); |
| |
| /* If the device is RP or iEP_RP, set its rootport value to same */ |
| if ((dp_type == RP) || (dp_type == iEP_RP)) { |
| return NULL; |
| } |
| |
| /* If the device is RCiEP and RCEC, set RP as 0xff */ |
| if ((dp_type == RCiEP) || (dp_type == RCEC)) { |
| return NULL; |
| } |
| |
| assert(g_pcie_bdf_table != NULL); |
| |
| while (index < g_pcie_bdf_table->num_entries) { |
| rp_bdf = g_pcie_bdf_table->device[index].bdf; |
| |
| /* |
| * Extract Secondary and Subordinate Bus numbers of the |
| * upstream Root port and check if the input function's |
| * bus number falls within that range. |
| */ |
| reg_value = pcie_read_cfg(rp_bdf, TYPE1_PBN); |
| seg_num = PCIE_EXTRACT_BDF_SEG(rp_bdf); |
| sec_bus = ((reg_value >> SECBN_SHIFT) & SECBN_MASK); |
| sub_bus = ((reg_value >> SUBBN_SHIFT) & SUBBN_MASK); |
| dp_type = pcie_device_port_type(rp_bdf); |
| |
| if (((dp_type == RP) || (dp_type == iEP_RP)) && |
| (sec_bus <= PCIE_EXTRACT_BDF_BUS(bdf)) && |
| (sub_bus >= PCIE_EXTRACT_BDF_BUS(bdf)) && |
| (seg_num == PCIE_EXTRACT_BDF_SEG(bdf))) { |
| return &g_pcie_bdf_table->device[index]; |
| } |
| |
| index++; |
| } |
| |
| /* Return failure */ |
| ERROR("PCIe Hierarchy fail: RP of bdf 0x%x not found\n", bdf); |
| return NULL; |
| } |
| |
| /* |
| * @brief Sanity checks that all Endpoints must have a Rootport |
| * |
| * @param None |
| * @return 0 if sanity check passes, 1 if sanity check fails |
| */ |
| static uint32_t pcie_populate_device_rootport(void) |
| { |
| uint32_t bdf; |
| pcie_device_bdf_table_t *bdf_tbl_ptr = g_pcie_bdf_table; |
| pcie_dev_t *rp_dev; |
| |
| assert(bdf_tbl_ptr != NULL); |
| |
| for (unsigned int tbl_index = 0; tbl_index < bdf_tbl_ptr->num_entries; |
| tbl_index++) { |
| bdf = bdf_tbl_ptr->device[tbl_index].bdf; |
| |
| /* Checks if the BDF has RootPort */ |
| rp_dev = pcie_get_rootport(bdf); |
| |
| bdf_tbl_ptr->device[tbl_index].rp_dev = rp_dev; |
| |
| if (rp_dev != NULL) { |
| INFO("Dev bdf: 0x%x RP bdf: 0x%x\n", bdf, |
| rp_dev->bdf); |
| } else { |
| INFO("Dev bdf: 0x%x RP bdf: none\n", bdf); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * @brief Returns the header type of the input pcie device function |
| * |
| * @param bdf - Segment/Bus/Dev/Func in the format of PCIE_CREATE_BDF |
| * @return TYPE0_HEADER for functions with Type 0 config space header, |
| * TYPE1_HEADER for functions with Type 1 config space header, |
| */ |
| static uint32_t pcie_function_header_type(uint32_t bdf) |
| { |
| /* Read four bytes of config space starting from cache line size register */ |
| uint32_t reg_value = pcie_read_cfg(bdf, TYPE01_CLSR); |
| |
| /* Extract header type register value */ |
| reg_value = ((reg_value >> TYPE01_HTR_SHIFT) & TYPE01_HTR_MASK); |
| |
| /* Header layout bits within header type register indicate the header type */ |
| return ((reg_value >> HTR_HL_SHIFT) & HTR_HL_MASK); |
| } |
| |
| /* |
| * @brief Returns the ECAM address of the input PCIe function |
| * |
| * @param bdf - Segment/Bus/Dev/Func in PCIE_CREATE_BDF format |
| * @return ECAM address if success, else NULL address |
| */ |
| static uintptr_t pcie_get_ecam_base(uint32_t bdf) |
| { |
| uint8_t ecam_index = 0, sec_bus = 0, sub_bus; |
| uint16_t seg_num = (uint16_t)PCIE_EXTRACT_BDF_SEG(bdf); |
| uint32_t reg_value; |
| uintptr_t ecam_base = 0; |
| |
| assert(g_pcie_info_table != NULL); |
| |
| while (ecam_index < g_pcie_info_table->num_entries) { |
| /* Derive ECAM specific information */ |
| const pcie_info_block_t *block = &g_pcie_info_table->block[ecam_index]; |
| |
| if (seg_num == block->segment_num) { |
| if (pcie_function_header_type(bdf) == TYPE0_HEADER) { |
| /* Return ecam_base if Type0 Header */ |
| ecam_base = block->ecam_base; |
| break; |
| } |
| |
| /* Check for Secondary/Subordinate bus if Type1 Header */ |
| reg_value = pcie_read_cfg(bdf, TYPE1_PBN); |
| sec_bus = ((reg_value >> SECBN_SHIFT) & SECBN_MASK); |
| sub_bus = ((reg_value >> SUBBN_SHIFT) & SUBBN_MASK); |
| |
| if ((sec_bus >= block->start_bus_num) && |
| (sub_bus <= block->end_bus_num)) { |
| ecam_base = block->ecam_base; |
| break; |
| } |
| } |
| ecam_index++; |
| } |
| |
| return ecam_base; |
| } |
| |
| static void pcie_devices_init_fields(void) |
| { |
| pcie_device_bdf_table_t *bdf_tbl_ptr = g_pcie_bdf_table; |
| pcie_dev_t *pcie_dev; |
| uint32_t status; |
| uint32_t base; |
| uint32_t bdf; |
| |
| assert(bdf_tbl_ptr != NULL); |
| |
| for (uint32_t i = 0; i < bdf_tbl_ptr->num_entries; i++) { |
| pcie_dev = &bdf_tbl_ptr->device[i]; |
| bdf = pcie_dev->bdf; |
| |
| pcie_dev->dp_type = pcie_device_port_type(bdf); |
| pcie_dev->ecam_base = pcie_get_ecam_base(bdf); |
| |
| /* Has DOE? */ |
| status = pcie_find_capability(bdf, PCIE_ECAP, ECID_DOE, &base); |
| if (status == PCIE_SUCCESS) { |
| pcie_dev->cflags |= PCIE_DEV_CFLAG_DOE; |
| pcie_dev->doe_cap_base = base; |
| } |
| |
| /* Has IDE? */ |
| status = pcie_find_capability(bdf, PCIE_ECAP, ECID_IDE, &base); |
| if (status == PCIE_SUCCESS) { |
| pcie_dev->cflags |= PCIE_DEV_CFLAG_IDE; |
| pcie_dev->ide_cap_base = base; |
| } |
| |
| if (pcie_dev->dp_type == RP) { |
| status = pcie_find_rmeda_capability(bdf, &base); |
| if (status == PCIE_SUCCESS) { |
| pcie_dev->cflags |= PCIE_DEV_CFLAG_DVSEC_RMEDA; |
| pcie_dev->dvsec_rmeda_cap_base = base; |
| } |
| } |
| } |
| } |
| |
| /* |
| * @brief Returns the BDF Table pointer |
| * |
| * @param None |
| * |
| * @return BDF Table pointer |
| */ |
| pcie_device_bdf_table_t *pcie_get_bdf_table(void) |
| { |
| assert(g_pcie_bdf_table != NULL); |
| |
| return g_pcie_bdf_table; |
| } |
| |
| /* |
| * @brief This API creates the device bdf table from enumeration |
| * |
| * @param None |
| * |
| * @return None |
| */ |
| static void pcie_create_device_bdf_table(void) |
| { |
| uint32_t seg_num, start_bus, end_bus; |
| uint32_t bus_index, dev_index, func_index, ecam_index; |
| uint32_t bdf, reg_value, cid_offset, status; |
| |
| assert(g_pcie_bdf_table != NULL); |
| |
| g_pcie_bdf_table->num_entries = 0; |
| |
| assert(g_pcie_info_table != NULL); |
| assert(g_pcie_info_table->num_entries != 0); |
| |
| for (ecam_index = 0; ecam_index < g_pcie_info_table->num_entries; ecam_index++) { |
| /* Derive ECAM specific information */ |
| const pcie_info_block_t *block = &g_pcie_info_table->block[ecam_index]; |
| |
| seg_num = block->segment_num; |
| start_bus = block->start_bus_num; |
| end_bus = block->end_bus_num; |
| |
| /* Iterate over all buses, devices and functions in this ecam */ |
| for (bus_index = start_bus; bus_index <= end_bus; bus_index++) { |
| for (dev_index = 0; dev_index < PCIE_MAX_DEV; dev_index++) { |
| for (func_index = 0; func_index < PCIE_MAX_FUNC; func_index++) { |
| /* Form BDF using seg, bus, device, function numbers */ |
| bdf = PCIE_CREATE_BDF(seg_num, bus_index, dev_index, |
| func_index); |
| |
| /* Probe PCIe device Function with this BDF */ |
| reg_value = pcie_read_cfg(bdf, TYPE01_VIDR); |
| |
| /* Store the Function's BDF if there was a valid response */ |
| if (reg_value != PCIE_UNKNOWN_RESPONSE) { |
| /* Skip if the device is a host bridge */ |
| if (pcie_is_host_bridge(bdf)) { |
| continue; |
| } |
| |
| /* Skip if the device is a PCI legacy device */ |
| if (pcie_find_capability(bdf, PCIE_CAP, |
| CID_PCIECS, &cid_offset) != PCIE_SUCCESS) { |
| continue; |
| } |
| |
| status = pcie_check_device_valid(bdf); |
| if (!status) { |
| continue; |
| } |
| |
| g_pcie_bdf_table->device[ |
| g_pcie_bdf_table->num_entries++].bdf = bdf; |
| |
| assert(g_pcie_bdf_table->num_entries < PCIE_DEVICES_MAX); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Sanity Check : Confirm all EP (normal, integrated) have a rootport */ |
| pcie_populate_device_rootport(); |
| |
| /* |
| * Once devices are enumerated and rootports are assigned, initialize |
| * the rest of pcie_dev fields |
| */ |
| pcie_devices_init_fields(); |
| |
| INFO("Number of BDFs found : %u\n", g_pcie_bdf_table->num_entries); |
| } |
| |
| /* |
| * @brief This API prints all the PCIe Devices info |
| * 1. Caller - Validation layer. |
| * 2. Prerequisite - val_pcie_create_info_table() |
| * @param None |
| * @return None |
| */ |
| static void pcie_print_device_info(void) |
| { |
| uint32_t bdf, dp_type; |
| uint32_t tbl_index = 0; |
| uint32_t ecam_index = 0; |
| uint32_t ecam_base, ecam_start_bus, ecam_end_bus; |
| pcie_device_bdf_table_t *bdf_tbl_ptr = g_pcie_bdf_table; |
| uint32_t num_rciep __unused = 0, num_rcec __unused = 0; |
| uint32_t num_iep __unused = 0, num_irp __unused = 0; |
| uint32_t num_ep __unused = 0, num_rp __unused = 0; |
| uint32_t num_dp __unused = 0, num_up __unused = 0; |
| uint32_t num_pcie_pci __unused = 0, num_pci_pcie __unused = 0; |
| uint32_t bdf_counter; |
| |
| assert(bdf_tbl_ptr != NULL); |
| |
| if (bdf_tbl_ptr->num_entries == 0) { |
| INFO("BDF Table: No RCiEP or iEP found\n"); |
| return; |
| } |
| |
| for (tbl_index = 0; tbl_index < bdf_tbl_ptr->num_entries; tbl_index++) { |
| bdf = bdf_tbl_ptr->device[tbl_index].bdf; |
| dp_type = pcie_device_port_type(bdf); |
| |
| switch (dp_type) { |
| case RCiEP: |
| num_rciep++; |
| break; |
| case RCEC: |
| num_rcec++; |
| break; |
| case EP: |
| num_ep++; |
| break; |
| case RP: |
| num_rp++; |
| break; |
| case iEP_EP: |
| num_iep++; |
| break; |
| case iEP_RP: |
| num_irp++; |
| break; |
| case UP: |
| num_up++; |
| break; |
| case DP: |
| num_dp++; |
| break; |
| case PCI_PCIE: |
| num_pci_pcie++; |
| break; |
| case PCIE_PCI: |
| num_pcie_pci++; |
| break; |
| default: |
| ERROR("Unknown dp_type 0x%x\n", dp_type); |
| } |
| } |
| |
| INFO("Number of RCiEP : %u\n", num_rciep); |
| INFO("Number of RCEC : %u\n", num_rcec); |
| INFO("Number of EP : %u\n", num_ep); |
| INFO("Number of RP : %u\n", num_rp); |
| INFO("Number of iEP_EP : %u\n", num_iep); |
| INFO("Number of iEP_RP : %u\n", num_irp); |
| INFO("Number of UP of switch : %u\n", num_up); |
| INFO("Number of DP of switch : %u\n", num_dp); |
| INFO("Number of PCI/PCIe Bridge: %u\n", num_pci_pcie); |
| INFO("Number of PCIe/PCI Bridge: %u\n", num_pcie_pci); |
| |
| assert(g_pcie_info_table != NULL); |
| |
| while (ecam_index < g_pcie_info_table->num_entries) { |
| |
| /* Derive ECAM specific information */ |
| const pcie_info_block_t *block = &g_pcie_info_table->block[ecam_index]; |
| |
| ecam_base = block->ecam_base; |
| ecam_start_bus = block->start_bus_num; |
| ecam_end_bus = block->end_bus_num; |
| tbl_index = 0; |
| bdf_counter = 0; |
| |
| INFO("ECAM %u: base 0x%x\n", ecam_index, ecam_base); |
| |
| while (tbl_index < bdf_tbl_ptr->num_entries) { |
| uint32_t seg_num, bus_num, dev_num, func_num; |
| uint32_t device_id __unused, vendor_id __unused, reg_value; |
| uint32_t bdf, dev_ecam_base; |
| |
| bdf = bdf_tbl_ptr->device[tbl_index++].bdf; |
| seg_num = PCIE_EXTRACT_BDF_SEG(bdf); |
| bus_num = PCIE_EXTRACT_BDF_BUS(bdf); |
| dev_num = PCIE_EXTRACT_BDF_DEV(bdf); |
| func_num = PCIE_EXTRACT_BDF_FUNC(bdf); |
| |
| reg_value = pcie_read_cfg(bdf, TYPE01_VIDR); |
| device_id = (reg_value >> TYPE01_DIDR_SHIFT) & TYPE01_DIDR_MASK; |
| vendor_id = (reg_value >> TYPE01_VIDR_SHIFT) & TYPE01_VIDR_MASK; |
| |
| dev_ecam_base = pcie_get_ecam_base(bdf); |
| |
| if ((ecam_base == dev_ecam_base) && |
| (bus_num >= ecam_start_bus) && |
| (bus_num <= ecam_end_bus)) { |
| bdf_counter = 1; |
| bdf = PCIE_CREATE_BDF(seg_num, bus_num, dev_num, func_num); |
| INFO(" BDF: 0x%x\n", bdf); |
| INFO(" Seg: 0x%x Bus: 0x%x Dev: 0x%x " |
| "Func: 0x%x Dev ID: 0x%x Vendor ID: 0x%x\n", |
| seg_num, bus_num, dev_num, func_num, |
| device_id, vendor_id); |
| } |
| } |
| |
| if (bdf_counter == 0) { |
| INFO(" No BDF devices in ECAM region index %d\n", ecam_index); |
| } |
| |
| ecam_index++; |
| } |
| } |
| |
| /* |
| * @brief Create PCIe table and PCI enumeration |
| * @param void |
| * @return void |
| */ |
| static void pcie_create_info_table(void) |
| { |
| unsigned int num_ecam; |
| |
| INFO("Creating PCIe info table\n"); |
| g_pcie_bdf_table = &pcie_bdf_table; |
| |
| num_ecam = g_pcie_info_table->num_entries; |
| INFO("Number of ECAM regions : %u\n", num_ecam); |
| if ((num_ecam == 0) || (num_ecam > MAX_PCIE_INFO_ENTRIES)) { |
| ERROR("PCIe info entries invalid\n"); |
| panic(); |
| } |
| pcie_create_device_bdf_table(); |
| pcie_print_device_info(); |
| } |
| |
| static void pal_pci_cfg_write(uint32_t bus, uint32_t dev, uint32_t func, |
| uint32_t offset, uint32_t data) |
| { |
| pcie_write_cfg(PCIE_CREATE_BDF(0, bus, dev, func), offset, data); |
| } |
| |
| static void pal_pci_cfg_read(uint32_t bus, uint32_t dev, uint32_t func, |
| uint32_t offset, uint32_t *value) |
| { |
| *value = pcie_read_cfg(PCIE_CREATE_BDF(0, bus, dev, func), offset); |
| } |
| |
| /* |
| * This API programs the Memory Base and Memeory limit register of the Bus, |
| * Device and Function of Type1 Header |
| */ |
| static void get_resource_base_32(uint32_t bus, uint32_t dev, uint32_t func, |
| uint32_t bar32_p_base, uint32_t bar32_np_base, |
| uint32_t bar32_p_limit, uint32_t bar32_np_limit) |
| { |
| uint32_t mem_bar_np; |
| uint32_t mem_bar_p; |
| |
| /* Update the 32 bit NP-BAR start address for the next iteration */ |
| if (bar32_np_base != g_bar32_np_start) { |
| if ((g_bar32_np_start << 12) != 0) { |
| g_bar32_np_start = (g_bar32_np_start & |
| MEM_BASE32_LIM_MASK) + BAR_INCREMENT; |
| } |
| |
| if (bar32_np_limit == g_bar32_np_start) { |
| bar32_np_limit = bar32_np_limit - BAR_INCREMENT; |
| } |
| |
| pal_pci_cfg_read(bus, dev, func, NON_PRE_FET_OFFSET, |
| &mem_bar_np); |
| mem_bar_np = ((bar32_np_limit & MEM_BASE32_LIM_MASK) | |
| mem_bar_np); |
| pal_pci_cfg_write(bus, dev, func, NON_PRE_FET_OFFSET, |
| mem_bar_np); |
| } |
| |
| /* Update the 32 bit P-BAR start address for the next iteration */ |
| if (bar32_p_base != g_bar32_p_start) { |
| if ((g_bar32_p_start << 12) != 0) { |
| g_bar32_p_start = (g_bar32_p_start & |
| MEM_BASE32_LIM_MASK) + BAR_INCREMENT; |
| } |
| |
| if (bar32_p_limit == g_bar32_p_start) { |
| bar32_p_limit = bar32_p_limit - BAR_INCREMENT; |
| } |
| |
| pal_pci_cfg_read(bus, dev, func, PRE_FET_OFFSET, &mem_bar_p); |
| mem_bar_p = ((bar32_p_limit & MEM_BASE32_LIM_MASK) | mem_bar_p); |
| pal_pci_cfg_write(bus, dev, func, PRE_FET_OFFSET, mem_bar_p); |
| } |
| } |
| |
| /* |
| * This API programs the Memory Base and Memeory limit register of the Bus, |
| * Device and Function of Type1 Header |
| */ |
| static void get_resource_base_64(uint32_t bus, uint32_t dev, uint32_t func, |
| uint64_t bar64_p_base, uint64_t g_bar64_p_max) |
| { |
| uint32_t bar64_p_lower32_base = (uint32_t)bar64_p_base; |
| uint32_t bar64_p_upper32_base = (uint32_t)(bar64_p_base >> 32); |
| uint32_t bar64_p_lower32_limit = (uint32_t)g_bar64_p_max; |
| uint32_t bar64_p_upper32_limit = (uint32_t)(g_bar64_p_max >> 32); |
| |
| /* Obtain the memory base and memory limit */ |
| bar64_p_lower32_base = REG_MASK_SHIFT(bar64_p_lower32_base); |
| bar64_p_lower32_limit = REG_MASK_SHIFT(bar64_p_lower32_limit); |
| uint32_t mem_bar_p = ((bar64_p_lower32_limit << 16) | |
| bar64_p_lower32_base); |
| |
| /* Configure Memory base and Memory limit register */ |
| if ((bar64_p_base != g_bar64_p_max) && (g_bar64_p_start <= |
| g_bar64_p_max)) { |
| if ((g_bar64_p_start << 12) != 0) { |
| g_bar64_p_start = (g_bar64_p_start & |
| MEM_BASE64_LIM_MASK) + BAR_INCREMENT; |
| } |
| |
| if (bar64_p_lower32_limit == g_bar64_p_start) { |
| bar64_p_lower32_limit = bar64_p_lower32_limit - |
| BAR_INCREMENT; |
| } |
| |
| g_bar64_p_start = (g_bar64_p_start & MEM_BASE64_LIM_MASK) + |
| BAR_INCREMENT; |
| |
| pal_pci_cfg_write(bus, dev, func, PRE_FET_OFFSET, mem_bar_p); |
| pal_pci_cfg_write(bus, dev, func, PRE_FET_OFFSET + 4, |
| bar64_p_upper32_base); |
| pal_pci_cfg_write(bus, dev, func, PRE_FET_OFFSET + 8, |
| bar64_p_upper32_limit); |
| } |
| } |
| |
| static void pcie_rp_program_bar(uint32_t bus, uint32_t dev, uint32_t func) |
| { |
| uint64_t bar_size, bar_upper_bits; |
| uint32_t offset = BAR0_OFFSET; |
| uint32_t bar_reg_value, bar_lower_bits; |
| |
| while (offset <= TYPE1_BAR_MAX_OFF) { |
| pal_pci_cfg_read(bus, dev, func, offset, &bar_reg_value); |
| |
| if (BAR_REG(bar_reg_value) == BAR_64_BIT) { |
| /* |
| * BAR supports 64-bit address therefore, write all 1's |
| * to BARn and BARn+1 and identify the size requested |
| */ |
| pal_pci_cfg_write(bus, dev, func, offset, 0xFFFFFFF0); |
| pal_pci_cfg_write(bus, dev, func, offset + 4, |
| 0xFFFFFFFF); |
| pal_pci_cfg_read(bus, dev, func, offset, |
| &bar_lower_bits); |
| bar_size = bar_lower_bits & BAR_MASK; |
| |
| pal_pci_cfg_read(bus, dev, func, offset + 4, |
| &bar_reg_value); |
| bar_upper_bits = bar_reg_value; |
| bar_size = bar_size | (bar_upper_bits << 32); |
| |
| bar_size = ~bar_size + 1; |
| |
| /* |
| * If BAR size is 0, then BAR not implemented, move to |
| * next BAR |
| */ |
| if (bar_size == 0) { |
| offset = offset + 8; |
| continue; |
| } |
| |
| pal_pci_cfg_write(bus, dev, func, offset, |
| (uint32_t)g_rp_bar64_value); |
| pal_pci_cfg_write(bus, dev, func, offset + 4, |
| (uint32_t)(g_rp_bar64_value >> 32)); |
| offset = offset + 8; |
| } else { |
| /* |
| * BAR supports 32-bit address. Write all 1's to BARn |
| * and identify the size requested |
| */ |
| pal_pci_cfg_write(bus, dev, func, offset, 0xFFFFFFF0); |
| pal_pci_cfg_read(bus, dev, func, offset, |
| &bar_lower_bits); |
| bar_reg_value = bar_lower_bits & BAR_MASK; |
| bar_size = ~bar_reg_value + 1; |
| |
| /* |
| * If BAR size is 0, then BAR not implemented, move to |
| * next BAR |
| */ |
| if (bar_size == 0) { |
| offset = offset + 4; |
| continue; |
| } |
| |
| pal_pci_cfg_write(bus, dev, func, offset, |
| g_rp_bar32_value); |
| g_rp_bar32_value = g_rp_bar32_value + (uint32_t)bar_size; |
| offset = offset + 4; |
| } |
| } |
| } |
| |
| /* |
| * This API programs all the BAR register in PCIe config space pointed by Bus, |
| * Device and Function for an End Point PCIe device |
| */ |
| static void pcie_program_bar_reg(uint32_t bus, uint32_t dev, uint32_t func) |
| { |
| uint64_t bar_size, bar_upper_bits; |
| uint32_t bar_reg_value, bar_lower_bits; |
| uint32_t offset = BAR0_OFFSET; |
| uint32_t np_bar_size = 0; |
| uint32_t p_bar_size = 0, p_bar64_size = 0; |
| |
| while (offset <= TYPE0_BAR_MAX_OFF) { |
| pal_pci_cfg_read(bus, dev, func, offset, &bar_reg_value); |
| |
| if (BAR_MEM(bar_reg_value) == BAR_PRE_MEM) { |
| if (BAR_REG(bar_reg_value) == BAR_64_BIT) { |
| /* |
| * BAR supports 64-bit address therefore, |
| * write all 1's to BARn and BARn+1 and identify |
| * the size requested |
| */ |
| |
| pal_pci_cfg_write(bus, dev, func, offset, |
| 0xFFFFFFF0); |
| pal_pci_cfg_write(bus, dev, func, offset + 4, |
| 0xFFFFFFFF); |
| pal_pci_cfg_read(bus, dev, func, offset, |
| &bar_lower_bits); |
| bar_size = bar_lower_bits & BAR_MASK; |
| |
| pal_pci_cfg_read(bus, dev, func, offset + 4, |
| &bar_reg_value); |
| bar_upper_bits = bar_reg_value; |
| bar_size = bar_size | (bar_upper_bits << 32); |
| |
| bar_size = ~bar_size + 1; |
| |
| /* |
| * If BAR size is 0, then BAR not implemented, |
| * move to next BAR |
| */ |
| if (bar_size == 0) { |
| offset = offset + 8; |
| continue; |
| } |
| |
| /* |
| * If p_bar64_size = 0 and bus number is same as |
| * bus of previous bus number, then check if the |
| * current PCIe Device BAR size is greater than |
| * the previous BAR size, if yes then add current |
| * BAR size to the updated start address else |
| * add the previous BAR size to the updated |
| * start address |
| */ |
| if ((p_bar64_size == 0) && ((g_64_bus == bus))) { |
| if (g_bar64_size < bar_size) { |
| g_bar64_p_start = |
| g_bar64_p_start + |
| bar_size; |
| } else { |
| g_bar64_p_start = |
| g_bar64_p_start + |
| g_bar64_size; |
| } |
| } else if ((g_bar64_size < bar_size) && |
| (p_bar64_size != 0)) { |
| g_bar64_p_start = g_bar64_p_start + |
| bar_size; |
| } else { |
| g_bar64_p_start = g_bar64_p_start + |
| p_bar64_size; |
| } |
| |
| pal_pci_cfg_write(bus, dev, func, offset, |
| (uint32_t)g_bar64_p_start); |
| pal_pci_cfg_write(bus, dev, func, offset + 4, |
| (uint32_t)(g_bar64_p_start >> |
| 32)); |
| |
| p_bar64_size = (uint32_t)bar_size; |
| g_bar64_size = (uint32_t)bar_size; |
| g_64_bus = bus; |
| offset = offset + 8; |
| } else { |
| /* |
| * BAR supports 32-bit address. Write all 1's |
| * to BARn and identify the size requested |
| */ |
| pal_pci_cfg_write(bus, dev, func, offset, |
| 0xFFFFFFF0); |
| pal_pci_cfg_read(bus, dev, func, offset, |
| &bar_lower_bits); |
| bar_reg_value = bar_lower_bits & BAR_MASK; |
| bar_size = ~bar_reg_value + 1; |
| |
| /* |
| * If BAR size is 0, then BAR not implemented, |
| * move to next BAR |
| */ |
| if (bar_size == 0) { |
| offset = offset + 4; |
| continue; |
| } |
| |
| /* |
| * If p_bar_size = 0 and bus number is same as |
| * bus of previous bus number, then check if the |
| * current PCIe Device BAR size is greater than |
| * the previous BAR size, if yes then add |
| * current BAR size to the updated start |
| * address else add the previous BAR size to the |
| * updated start address |
| */ |
| if ((p_bar_size == 0) && ((g_p_bus == bus))) { |
| if (g_p_bar_size < bar_size) { |
| g_bar32_p_start = |
| g_bar32_p_start + |
| (uint32_t)bar_size; |
| } else { |
| g_bar32_p_start = |
| g_bar32_p_start + |
| g_p_bar_size; |
| } |
| } else if ((g_p_bar_size < bar_size) && |
| (p_bar_size != 0)) { |
| g_bar32_p_start = g_bar32_p_start + |
| (uint32_t)bar_size; |
| } else { |
| g_bar32_p_start = g_bar32_p_start + |
| p_bar_size; |
| } |
| |
| pal_pci_cfg_write(bus, dev, func, offset, |
| g_bar32_p_start); |
| p_bar_size = (uint32_t)bar_size; |
| g_p_bar_size = (uint32_t)bar_size; |
| g_p_bus = bus; |
| |
| offset = offset + 4; |
| } |
| } else { |
| /* |
| * BAR supports 32-bit address. Write all 1's to BARn |
| * and identify the size requested |
| */ |
| pal_pci_cfg_write(bus, dev, func, offset, 0xFFFFFFF0); |
| pal_pci_cfg_read(bus, dev, func, offset, |
| &bar_lower_bits); |
| bar_reg_value = bar_lower_bits & BAR_MASK; |
| bar_size = ~bar_reg_value + 1; |
| |
| /* |
| * If BAR size is 0, then BAR not implemented, move to |
| * next BAR |
| */ |
| if (bar_size == 0) { |
| if (BAR_REG(bar_lower_bits) == BAR_64_BIT) { |
| offset = offset + 8; |
| } |
| |
| if (BAR_REG(bar_lower_bits) == BAR_32_BIT) { |
| offset = offset + 4; |
| } |
| |
| continue; |
| } |
| |
| /* |
| * If np_bar_size = 0 and bus number is same as bus of |
| * previous bus number, then check if the current PCIe |
| * Device BAR size is greater than the previous BAR |
| * size, if yes then add current BAR size to the |
| * updated start address else add the previous BAR size |
| * to the updated start address |
| */ |
| if ((np_bar_size == 0) && ((g_np_bus == bus))) { |
| if (g_np_bar_size < bar_size) { |
| g_bar32_np_start = g_bar32_np_start + |
| (uint32_t)bar_size; |
| } else { |
| g_bar32_np_start = g_bar32_np_start + |
| g_np_bar_size; |
| } |
| } else if ((g_np_bar_size < bar_size) && |
| (np_bar_size != 0)) { |
| g_bar32_np_start = g_bar32_np_start + |
| (uint32_t)bar_size; |
| } else { |
| g_bar32_np_start = g_bar32_np_start + |
| np_bar_size; |
| } |
| |
| pal_pci_cfg_write(bus, dev, func, offset, |
| g_bar32_np_start); |
| np_bar_size = (uint32_t)bar_size; |
| g_np_bar_size = (uint32_t)bar_size; |
| g_np_bus = bus; |
| |
| pal_pci_cfg_read(bus, dev, func, offset, &bar_reg_value); |
| if (BAR_REG(bar_reg_value) == BAR_64_BIT) { |
| pal_pci_cfg_write(bus, dev, func, |
| offset + 4, 0); |
| offset = offset + 8; |
| } |
| |
| if (BAR_REG(bar_reg_value) == BAR_32_BIT) { |
| offset = offset + 4; |
| } |
| } |
| |
| g_bar32_p_max = g_bar32_p_start; |
| g_bar32_np_max = g_bar32_np_start; |
| g_bar64_p_max = g_bar64_p_start; |
| } |
| } |
| |
| /* |
| * This API performs the PCIe bus enumeration |
| * |
| * bus,sec_bus - Bus(8-bits), secondary bus (8-bits) |
| * sub_bus - Subordinate bus |
| */ |
| static uint32_t pcie_enumerate_device(uint32_t bus, uint32_t sec_bus) |
| { |
| uint32_t vendor_id = 0; |
| uint32_t header_value; |
| uint32_t sub_bus = bus; |
| uint32_t dev; |
| uint32_t func; |
| uint32_t class_code; |
| uint32_t com_reg_value; |
| uint32_t bar32_p_limit; |
| uint32_t bar32_np_limit; |
| uint32_t bar32_p_base = g_bar32_p_start; |
| uint32_t bar32_np_base = g_bar32_np_start; |
| uint64_t bar64_p_base = g_bar64_p_start; |
| |
| if (bus == ((g_pcie_info_table->block[g_pcie_index].end_bus_num) + 1)) { |
| return sub_bus; |
| } |
| |
| for (dev = 0; dev < PCIE_MAX_DEV; dev++) { |
| for (func = 0; func < PCIE_MAX_FUNC; func++) { |
| pal_pci_cfg_read(bus, dev, func, 0, &vendor_id); |
| |
| if ((vendor_id == 0x0) || (vendor_id == 0xFFFFFFFF)) { |
| continue; |
| } |
| |
| /* Skip Hostbridge configuration */ |
| pal_pci_cfg_read(bus, dev, func, TYPE01_RIDR, |
| &class_code); |
| |
| if ((((class_code >> CC_BASE_SHIFT) & CC_BASE_MASK) == |
| HB_BASE_CLASS) && |
| (((class_code >> CC_SUB_SHIFT) & CC_SUB_MASK)) == |
| HB_SUB_CLASS) { |
| continue; |
| } |
| |
| pal_pci_cfg_read(bus, dev, func, HEADER_OFFSET, |
| &header_value); |
| if (PCIE_HEADER_TYPE(header_value) == TYPE1_HEADER) { |
| /* |
| * Enable memory access, Bus master enable and |
| * I/O access |
| */ |
| pal_pci_cfg_read(bus, dev, func, |
| COMMAND_REG_OFFSET, |
| &com_reg_value); |
| |
| pal_pci_cfg_write(bus, dev, func, |
| COMMAND_REG_OFFSET, |
| (com_reg_value | |
| REG_ACC_DATA)); |
| |
| pal_pci_cfg_write(bus, dev, func, |
| BUS_NUM_REG_OFFSET, |
| BUS_NUM_REG_CFG(0xFF, sec_bus, |
| bus)); |
| |
| pal_pci_cfg_write(bus, dev, func, |
| NON_PRE_FET_OFFSET, |
| ((g_bar32_np_start >> 16) & |
| 0xFFF0)); |
| |
| pal_pci_cfg_write(bus, dev, func, |
| PRE_FET_OFFSET, |
| ((g_bar32_p_start >> 16) & |
| 0xFFF0)); |
| |
| sub_bus = pcie_enumerate_device(sec_bus, |
| (sec_bus + 1)); |
| pal_pci_cfg_write(bus, dev, func, |
| BUS_NUM_REG_OFFSET, |
| BUS_NUM_REG_CFG(sub_bus, |
| sec_bus, bus)); |
| sec_bus = sub_bus + 1; |
| |
| /* |
| * Obtain the start memory base address & the |
| * final memory base address of 32 bit BAR |
| */ |
| bar32_p_limit = g_bar32_p_max; |
| bar32_np_limit = g_bar32_np_max; |
| |
| get_resource_base_32(bus, dev, func, |
| bar32_p_base, |
| bar32_np_base, |
| bar32_p_limit, |
| bar32_np_limit); |
| |
| /* |
| * Obtain the start memory base address & the |
| * final memory base address of 64 bit BAR |
| */ |
| get_resource_base_64(bus, dev, func, |
| bar64_p_base, |
| g_bar64_p_max); |
| |
| /* Update the BAR values of Type 1 Devices */ |
| pcie_rp_program_bar(bus, dev, func); |
| |
| /* Update the base and limit values */ |
| bar32_p_base = g_bar32_p_start; |
| bar32_np_base = g_bar32_np_start; |
| bar64_p_base = g_bar64_p_start; |
| } |
| |
| if (PCIE_HEADER_TYPE(header_value) == TYPE0_HEADER) { |
| pcie_program_bar_reg(bus, dev, func); |
| sub_bus = sec_bus - 1; |
| } |
| } |
| } |
| |
| return sub_bus; |
| } |
| |
| /* |
| * This API clears the primary bus number configured in the Type1 Header. |
| * Note: This is done to make sure the hardware is compatible |
| * with Linux enumeration. |
| */ |
| static void pcie_clear_pri_bus(void) |
| { |
| uint32_t bus; |
| uint32_t dev; |
| uint32_t func; |
| uint32_t bus_value; |
| uint32_t header_value; |
| uint32_t vendor_id; |
| |
| for (bus = 0; bus <= g_pcie_info_table->block[g_pcie_index].end_bus_num; |
| bus++) { |
| for (dev = 0; dev < PCIE_MAX_DEV; dev++) { |
| for (func = 0; func < PCIE_MAX_FUNC; func++) { |
| pal_pci_cfg_read(bus, dev, func, 0, &vendor_id); |
| |
| if ((vendor_id == 0x0) || |
| (vendor_id == 0xFFFFFFFF)) { |
| continue; |
| } |
| |
| pal_pci_cfg_read(bus, dev, func, HEADER_OFFSET, |
| &header_value); |
| if (PCIE_HEADER_TYPE(header_value) == |
| TYPE1_HEADER) { |
| pal_pci_cfg_read(bus, dev, func, |
| BUS_NUM_REG_OFFSET, |
| &bus_value); |
| |
| bus_value = bus_value & |
| PRI_BUS_CLEAR_MASK; |
| |
| pal_pci_cfg_write(bus, dev, func, |
| BUS_NUM_REG_OFFSET, |
| bus_value); |
| } |
| } |
| } |
| } |
| } |
| |
| static void pcie_enumerate_devices(void) |
| { |
| uint32_t pri_bus, sec_bus; |
| int rc; |
| |
| g_pcie_info_table = plat_pcie_get_info_table(); |
| if (g_pcie_info_table == NULL) { |
| ERROR("PCIe info not returned by platform\n"); |
| panic(); |
| } |
| |
| if (g_pcie_info_table->num_entries == 0) { |
| INFO("Skipping Enumeration\n"); |
| return; |
| } |
| |
| /* Get platform specific bar config parameters */ |
| rc = plat_pcie_get_bar_config(&g_bar64_p_start, &g_rp_bar64_value, |
| &g_bar32_np_start, &g_bar32_p_start, |
| &g_rp_bar32_value); |
| if (rc != 0) { |
| ERROR("PCIe bar config parameters not returned by platform\n"); |
| panic(); |
| } |
| |
| INFO("Starting Enumeration\n"); |
| while (g_pcie_index < g_pcie_info_table->num_entries) { |
| pri_bus = g_pcie_info_table->block[g_pcie_index].start_bus_num; |
| |
| sec_bus = pri_bus + 1; |
| |
| pcie_enumerate_device(pri_bus, sec_bus); |
| pcie_clear_pri_bus(); |
| |
| g_pcie_index++; |
| } |
| g_enumerate = 0; |
| g_pcie_index = 0; |
| } |
| |
| void pcie_init(void) |
| { |
| static bool is_init; |
| |
| /* Create PCIe table and enumeration */ |
| if (!is_init) { |
| pcie_enumerate_devices(); |
| |
| pcie_create_info_table(); |
| is_init = true; |
| } |
| } |