blob: fa757d930905ae6b39b210f92830094f425d0d3e [file] [log] [blame]
/*
* Copyright (c) 2015, Linaro Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <time.h>
#include <unistd.h>
#include <adbg.h>
#include <tee_client_api.h>
#include "crypto_common.h"
/*
* TEE client stuff
*/
static TEEC_Context ctx;
static TEEC_Session sess;
static TEEC_SharedMemory in_shm = {
.flags = TEEC_MEM_INPUT
};
static TEEC_SharedMemory out_shm = {
.flags = TEEC_MEM_OUTPUT
};
static void errx(const char *msg, TEEC_Result res)
{
fprintf(stderr, "%s: 0x%08x", msg, res);
exit (1);
}
static void check_res(TEEC_Result res, const char *errmsg)
{
if (res != TEEC_SUCCESS)
errx(errmsg, res);
}
static void open_ta(void)
{
TEEC_Result res;
TEEC_UUID uuid = TA_SHA_PERF_UUID;
uint32_t err_origin;
res = TEEC_InitializeContext(NULL, &ctx);
check_res(res,"TEEC_InitializeContext");
res = TEEC_OpenSession(&ctx, &sess, &uuid, TEEC_LOGIN_PUBLIC, NULL,
NULL, &err_origin);
check_res(res,"TEEC_OpenSession");
}
/*
* Statistics
*
* We want to compute min, max, mean and standard deviation of processing time
*/
struct statistics {
int n;
double m;
double M2;
double min;
double max;
int initialized;
};
/* Take new sample into account (Knuth/Welford algorithm) */
static void update_stats(struct statistics *s, uint64_t t)
{
double x = (double)t;
double delta = x - s->m;
s->n++;
s->m += delta/s->n;
s->M2 += delta*(x - s->m);
if (!s->initialized) {
s->min = s->max = x;
s->initialized = 1;
} else {
if (s->min > x)
s->min = x;
if (s->max < x)
s->max = x;
}
}
static double stddev(struct statistics *s)
{
if (s->n < 2)
return NAN;
return sqrt(s->M2/s->n);
}
static const char *algo_str(uint32_t algo)
{
switch (algo) {
case TA_SHA_SHA1:
return "SHA1";
case TA_SHA_SHA224:
return "SHA224";
case TA_SHA_SHA256:
return "SHA256";
case TA_SHA_SHA384:
return "SHA384";
case TA_SHA_SHA512:
return "SHA512";
default:
return "???";
}
}
static int hash_size(uint32_t algo)
{
switch (algo) {
case TA_SHA_SHA1:
return 20;
case TA_SHA_SHA224:
return 28;
case TA_SHA_SHA256:
return 32;
case TA_SHA_SHA384:
return 48;
case TA_SHA_SHA512:
return 64;
default:
return 0;
}
}
#define _TO_STR(x) #x
#define TO_STR(x) _TO_STR(x)
static void alloc_shm(size_t sz, uint32_t algo, int offset)
{
TEEC_Result res;
in_shm.buffer = NULL;
in_shm.size = sz + offset;
res = TEEC_AllocateSharedMemory(&ctx, &in_shm);
check_res(res, "TEEC_AllocateSharedMemory");
out_shm.buffer = NULL;
out_shm.size = hash_size(algo);
res = TEEC_AllocateSharedMemory(&ctx, &out_shm);
check_res(res, "TEEC_AllocateSharedMemory");
}
static void free_shm(void)
{
TEEC_ReleaseSharedMemory(&in_shm);
TEEC_ReleaseSharedMemory(&out_shm);
}
static ssize_t read_random(void *in, size_t rsize)
{
static int rnd;
ssize_t s;
if (!rnd) {
rnd = open("/dev/urandom", O_RDONLY);
if (rnd < 0) {
perror("open");
return 1;
}
}
s = read(rnd, in, rsize);
if (s < 0) {
perror("read");
return 1;
}
if ((size_t)s != rsize) {
printf("read: requested %zu bytes, got %zd\n",
rsize, s);
}
return 0;
}
static long get_current_time(struct timespec *ts)
{
if (clock_gettime(CLOCK_MONOTONIC, ts) < 0) {
perror("clock_gettime");
exit(1);
}
return 0;
}
static uint64_t timespec_diff_ns(struct timespec *start, struct timespec *end)
{
uint64_t ns = 0;
if (end->tv_nsec < start->tv_nsec) {
ns += 1000000000 * (end->tv_sec - start->tv_sec - 1);
ns += 1000000000 - start->tv_nsec + end->tv_nsec;
} else {
ns += 1000000000 * (end->tv_sec - start->tv_sec);
ns += end->tv_nsec - start->tv_nsec;
}
return ns;
}
static uint64_t run_test_once(void *in, size_t size, int random_in, TEEC_Operation *op)
{
struct timespec t0, t1;
TEEC_Result res;
uint32_t ret_origin;
if (random_in)
read_random(in, size);
get_current_time(&t0);
res = TEEC_InvokeCommand(&sess, TA_SHA_PERF_CMD_PROCESS, op,
&ret_origin);
check_res(res, "TEEC_InvokeCommand");
get_current_time(&t1);
return timespec_diff_ns(&t0, &t1);
}
static void prepare_op(int algo)
{
TEEC_Result res;
uint32_t ret_origin;
TEEC_Operation op;
memset(&op, 0, sizeof(op));
op.paramTypes = TEEC_PARAM_TYPES(TEEC_VALUE_INPUT, TEEC_NONE,
TEEC_NONE, TEEC_NONE);
op.params[0].value.a = algo;
res = TEEC_InvokeCommand(&sess, TA_SHA_PERF_CMD_PREPARE_OP, &op,
&ret_origin);
check_res(res, "TEEC_InvokeCommand");
}
static void do_warmup(int warmup)
{
struct timespec t0, t;
int i;
get_current_time(&t0);
do {
for (i = 0; i < 100000; i++)
;
get_current_time(&t);
} while (timespec_diff_ns(&t0, &t) < (uint64_t)warmup * 1000000000);
}
static const char *yesno(int v)
{
return (v ? "yes" : "no");
}
static double mb_per_sec(size_t size, double usec)
{
return (1000000000/usec)*((double)size/(1024*1024));
}
/* Hash test: buffer of size byte. Run test n times.
* Entry point for running SHA benchmark
* Params:
* algo - Algorithm
* size - Buffer size
* n - Number of measurements
* l - Amount of inner loops
* random_in - Get input from /dev/urandom
* offset - Buffer offset wrt. alloc-ed address
* warmup - Start with a-second busy loop
* verbosity - Verbosity level
* */
extern void sha_perf_run_test(int algo, size_t size, unsigned int n,
unsigned int l, int random_in, int offset,
int warmup, int verbosity)
{
uint64_t t;
struct statistics stats;
TEEC_Operation op;
int n0 = n;
struct timespec ts;
vverbose("sha-perf version %s\n", TO_STR(VERSION));
if (clock_getres(CLOCK_MONOTONIC, &ts) < 0) {
perror("clock_getres");
return;
}
vverbose("Clock resolution is %lu ns\n", ts.tv_sec*1000000000 +
ts.tv_nsec);
open_ta();
prepare_op(algo);
alloc_shm(size, algo, offset);
if (!random_in)
memset((uint8_t *)in_shm.buffer + offset, 0, size);
memset(&op, 0, sizeof(op));
op.paramTypes = TEEC_PARAM_TYPES(TEEC_MEMREF_PARTIAL_INPUT,
TEEC_MEMREF_PARTIAL_OUTPUT,
TEEC_VALUE_INPUT, TEEC_NONE);
op.params[0].memref.parent = &in_shm;
op.params[0].memref.offset = 0;
op.params[0].memref.size = size + offset;
op.params[1].memref.parent = &out_shm;
op.params[1].memref.offset = 0;
op.params[1].memref.size = hash_size(algo);
op.params[2].value.a = l;
op.params[2].value.b = offset;
verbose("Starting test: %s, size=%zu bytes, ",
algo_str(algo), size);
verbose("random=%s, ", yesno(random_in));
verbose("unaligned=%s, ", yesno(offset));
verbose("inner loops=%u, loops=%u, warm-up=%u s\n", l, n, warmup);
if (warmup)
do_warmup(warmup);
memset(&stats, 0, sizeof(stats));
while (n-- > 0) {
t = run_test_once((uint8_t *)in_shm.buffer + offset, size, random_in, &op);
update_stats(&stats, t);
if (n % (n0/10) == 0)
vverbose("#");
}
vverbose("\n");
printf("min=%gμs max=%gμs mean=%gμs stddev=%gμs (%gMiB/s)\n",
stats.min/1000, stats.max/1000, stats.m/1000,
stddev(&stats)/1000, mb_per_sec(size, stats.m));
free_shm();
}
static void usage(const char *progname,
/* Default params */
int algo, size_t size, int warmup, int l, int n)
{
fprintf(stderr, "SHA performance testing tool for OP-TEE (%s)\n\n",
TO_STR(VERSION));
fprintf(stderr, "Usage:\n");
fprintf(stderr, " %s -h\n", progname);
fprintf(stderr, " %s [-v] [-a algo] ", progname);
fprintf(stderr, "[-s bufsize] [-r] [-n loops] [-l iloops] ");
fprintf(stderr, "[-w warmup_time]\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -h Print this help and exit\n");
fprintf(stderr, " -l Inner loop iterations (TA hashes ");
fprintf(stderr, "the buffer <x> times) [%u]\n", l);
fprintf(stderr, " -a Algorithm (SHA1, SHA224, SHA256, SHA384, ");
fprintf(stderr, "SHA512) [%s]\n", algo_str(algo));
fprintf(stderr, " -n Outer loop iterations [%u]\n", n);
fprintf(stderr, " -r Get input data from /dev/urandom ");
fprintf(stderr, "(otherwise use zero-filled buffer)\n");
fprintf(stderr, " -s Buffer size (process <x> bytes at a time) ");
fprintf(stderr, "[%zu]\n", size);
fprintf(stderr, " -u Use unaligned buffer (odd address)\n");
fprintf(stderr, " -v Be verbose (use twice for greater effect)\n");
fprintf(stderr, " -w Warm-up time in seconds: execute a busy ");
fprintf(stderr, "loop before the test\n");
fprintf(stderr, " to mitigate the effects of cpufreq etc. ");
fprintf(stderr, "[%u]\n", warmup);
}
#define NEXT_ARG(i) \
do { \
if (++i == argc) { \
fprintf(stderr, "%s: %s: missing argument\n", \
argv[0], argv[i-1]); \
return 1; \
} \
} while (0);
extern int sha_perf_runner_cmd_parser(int argc, char *argv[])
{
int i;
/* Command line params */
size_t size = 1024; /* Buffer size (-s) */
unsigned int n = CRYPTO_DEF_COUNT;/* Number of measurements (-n)*/
unsigned int l = CRYPTO_DEF_LOOPS; /* Inner loops (-l) */
int verbosity = CRYPTO_DEF_VERBOSITY; /* Verbosity (-v) */
int algo = TA_SHA_SHA1; /* Algorithm (-a) */
/* Get input data from /dev/urandom (-r) */
int random_in = CRYPTO_USE_RANDOM;
/* Start with a 2-second busy loop (-w) */
int warmup = CRYPTO_DEF_WARMUP;
int offset = 0; /* Buffer offset wrt. alloc'ed address (-u) */
/* Parse command line */
for (i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-h")) {
usage(argv[0], algo, size, warmup, l, n);
return 0;
}
}
for (i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-l")) {
NEXT_ARG(i);
l = atoi(argv[i]);
} else if (!strcmp(argv[i], "-a")) {
NEXT_ARG(i);
if (!strcasecmp(argv[i], "SHA1"))
algo = TA_SHA_SHA1;
else if (!strcasecmp(argv[i], "SHA224"))
algo = TA_SHA_SHA224;
else if (!strcasecmp(argv[i], "SHA256"))
algo = TA_SHA_SHA256;
else if (!strcasecmp(argv[i], "SHA384"))
algo = TA_SHA_SHA384;
else if (!strcasecmp(argv[i], "SHA512"))
algo = TA_SHA_SHA512;
else {
fprintf(stderr, "%s, invalid algorithm\n",
argv[0]);
usage(argv[0], algo, size, warmup, l, n);
return 1;
}
} else if (!strcmp(argv[i], "-n")) {
NEXT_ARG(i);
n = atoi(argv[i]);
} else if (!strcmp(argv[i], "-r")) {
random_in = 1;
} else if (!strcmp(argv[i], "-s")) {
NEXT_ARG(i);
size = atoi(argv[i]);
} else if (!strcmp(argv[i], "-u")) {
offset = 1;
} else if (!strcmp(argv[i], "-v")) {
verbosity++;
} else if (!strcmp(argv[i], "-w")) {
NEXT_ARG(i);
warmup = atoi(argv[i]);
} else {
fprintf(stderr, "%s: invalid argument: %s\n",
argv[0], argv[i]);
usage(argv[0], algo, size, warmup, l, n);
return 1;
}
}
sha_perf_run_test(algo, size, n, l, random_in, offset, warmup, verbosity);
return 0;
}