blob: 32457f1cec76ef4e62c5c86d0acf14f95d31b94e [file] [log] [blame]
// SPDX-License-Identifier: BSD-2-Clause
/*
* Copyright (c) 2015, Linaro Limited
* All rights reserved.
*/
#include <adbg.h>
#include <fcntl.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <tee_client_api.h>
#include <time.h>
#include <unistd.h>
#include "crypto_common.h"
#include "xtest_helpers.h"
#include "xtest_test.h"
/*
* TEE client stuff
*/
static TEEC_Context ctx;
static TEEC_Session sess;
static TEEC_SharedMemory in_shm = {
.flags = TEEC_MEM_INPUT
};
static TEEC_SharedMemory out_shm = {
.flags = TEEC_MEM_OUTPUT
};
static void errx(const char *msg, TEEC_Result res, uint32_t *orig)
{
fprintf(stderr, "%s: 0x%08x", msg, res);
if (orig)
fprintf(stderr, " (orig=%d)", (int)*orig);
fprintf(stderr, "\n");
exit (1);
}
static void check_res(TEEC_Result res, const char *errmsg, uint32_t *orig)
{
if (res != TEEC_SUCCESS)
errx(errmsg, res, orig);
}
static void open_ta(void)
{
TEEC_Result res = TEEC_ERROR_GENERIC;
TEEC_UUID uuid = TA_CRYPTO_PERF_UUID;
uint32_t err_origin = 0;
res = TEEC_InitializeContext(NULL, &ctx);
check_res(res,"TEEC_InitializeContext", NULL);
res = TEEC_OpenSession(&ctx, &sess, &uuid, TEEC_LOGIN_PUBLIC, NULL,
NULL, &err_origin);
check_res(res,"TEEC_OpenSession", &err_origin);
}
/*
* Statistics
*
* We want to compute min, max, mean and standard deviation of processing time
*/
struct statistics {
int n;
double m;
double M2;
double min;
double max;
int initialized;
};
/* Take new sample into account (Knuth/Welford algorithm) */
static void update_stats(struct statistics *s, uint64_t t)
{
double x = (double)t;
double delta = x - s->m;
s->n++;
s->m += delta/s->n;
s->M2 += delta*(x - s->m);
if (!s->initialized) {
s->min = s->max = x;
s->initialized = 1;
} else {
if (s->min > x)
s->min = x;
if (s->max < x)
s->max = x;
}
}
static double stddev(struct statistics *s)
{
if (s->n < 2)
return NAN;
return sqrt(s->M2/s->n);
}
static const char *algo_str(uint32_t algo)
{
switch (algo) {
case TA_SHA_SHA1:
return "SHA1";
case TA_SHA_SHA224:
return "SHA224";
case TA_SHA_SHA256:
return "SHA256";
case TA_SHA_SHA384:
return "SHA384";
case TA_SHA_SHA512:
return "SHA512";
case TA_SM3:
return "SM3";
case TA_HMAC_SHA1:
return "HMAC_SHA1";
case TA_HMAC_SHA224:
return "HMAC_SHA224";
case TA_HMAC_SHA256:
return "HMAC_SHA256";
case TA_HMAC_SHA384:
return "HMAC_SHA384";
case TA_HMAC_SHA512:
return "HMAC_SHA512";
case TA_HMAC_SM3:
return "HMAC_SM3";
default:
return "???";
}
}
static int hash_size(uint32_t algo)
{
switch (algo) {
case TA_SHA_SHA1:
case TA_HMAC_SHA1:
return 20;
case TA_SHA_SHA224:
case TA_HMAC_SHA224:
return 28;
case TA_SHA_SHA256:
case TA_HMAC_SHA256:
return 32;
case TA_SHA_SHA384:
case TA_HMAC_SHA384:
return 48;
case TA_SHA_SHA512:
case TA_HMAC_SHA512:
return 64;
case TA_SM3:
case TA_HMAC_SM3:
return 32;
default:
return 0;
}
}
#define _TO_STR(x) #x
#define TO_STR(x) _TO_STR(x)
static void alloc_shm(size_t sz, uint32_t algo, int offset)
{
TEEC_Result res = TEEC_ERROR_GENERIC;
in_shm.buffer = NULL;
in_shm.size = sz + offset;
res = TEEC_AllocateSharedMemory(&ctx, &in_shm);
check_res(res, "TEEC_AllocateSharedMemory", NULL);
out_shm.buffer = NULL;
out_shm.size = hash_size(algo);
res = TEEC_AllocateSharedMemory(&ctx, &out_shm);
check_res(res, "TEEC_AllocateSharedMemory", NULL);
}
static void free_shm(void)
{
TEEC_ReleaseSharedMemory(&in_shm);
TEEC_ReleaseSharedMemory(&out_shm);
}
static ssize_t read_random(void *in, size_t rsize)
{
static int rnd;
ssize_t s = 0;
if (!rnd) {
rnd = open("/dev/urandom", O_RDONLY);
if (rnd < 0) {
perror("open");
return 1;
}
}
s = read(rnd, in, rsize);
if (s < 0) {
perror("read");
return 1;
}
if ((size_t)s != rsize) {
printf("read: requested %zu bytes, got %zd\n",
rsize, s);
}
return 0;
}
static long get_current_time(struct timespec *ts)
{
if (clock_gettime(CLOCK_MONOTONIC, ts) < 0) {
perror("clock_gettime");
exit(1);
}
return 0;
}
static uint64_t timespec_diff_ns(struct timespec *start, struct timespec *end)
{
uint64_t ns = 0;
if (end->tv_nsec < start->tv_nsec) {
ns += 1000000000 * (end->tv_sec - start->tv_sec - 1);
ns += 1000000000 - start->tv_nsec + end->tv_nsec;
} else {
ns += 1000000000 * (end->tv_sec - start->tv_sec);
ns += end->tv_nsec - start->tv_nsec;
}
return ns;
}
static uint64_t run_test_once(void *in, size_t size, int random_in,
TEEC_Operation *op)
{
struct timespec t0 = { };
struct timespec t1 = { };
TEEC_Result res = TEEC_ERROR_GENERIC;
uint32_t ret_origin = 0;
if (random_in == CRYPTO_USE_RANDOM)
read_random(in, size);
get_current_time(&t0);
res = TEEC_InvokeCommand(&sess, TA_CRYPTO_PERF_CMD_HASH_PROCESS, op,
&ret_origin);
check_res(res, "TEEC_InvokeCommand", &ret_origin);
get_current_time(&t1);
return timespec_diff_ns(&t0, &t1);
}
static void prepare_op(int algo)
{
TEEC_Result res = TEEC_ERROR_GENERIC;
uint32_t ret_origin = 0;
TEEC_Operation op = TEEC_OPERATION_INITIALIZER;
op.paramTypes = TEEC_PARAM_TYPES(TEEC_VALUE_INPUT, TEEC_NONE,
TEEC_NONE, TEEC_NONE);
op.params[0].value.a = algo;
res = TEEC_InvokeCommand(&sess, TA_CRYPTO_PERF_CMD_HASH_PREPARE_OP, &op,
&ret_origin);
check_res(res, "TEEC_InvokeCommand", &ret_origin);
}
static void do_warmup(int warmup)
{
struct timespec t0 = { };
struct timespec t = { };
int i = 0;
get_current_time(&t0);
do {
for (i = 0; i < 100000; i++)
;
get_current_time(&t);
} while (timespec_diff_ns(&t0, &t) < (uint64_t)warmup * 1000000000);
}
static const char *yesno(int v)
{
return (v ? "yes" : "no");
}
static double mb_per_sec(size_t size, double usec)
{
return (1000000000/usec)*((double)size/(1024*1024));
}
/* Hash test: buffer of size byte. Run test n times.
* Entry point for running SHA benchmark
* Params:
* algo - Algorithm
* size - Buffer size
* n - Number of measurements
* l - Amount of inner loops
* random_in - Get input from /dev/urandom
* offset - Buffer offset wrt. alloc-ed address
* warmup - Start with a-second busy loop
* verbosity - Verbosity level
* */
extern void hash_perf_run_test(int algo, size_t size, unsigned int n,
unsigned int l, int random_in, int offset,
int warmup, int verbosity)
{
uint64_t t = 0;
struct statistics stats = { };
TEEC_Operation op = TEEC_OPERATION_INITIALIZER;
int n0 = n;
struct timespec ts = { };
double sd = 0;
vverbose("hash-perf\n");
if (clock_getres(CLOCK_MONOTONIC, &ts) < 0) {
perror("clock_getres");
return;
}
vverbose("Clock resolution is %jd ns\n",
(intmax_t)ts.tv_sec * 1000000000 + ts.tv_nsec);
open_ta();
prepare_op(algo);
alloc_shm(size, algo, offset);
if (random_in == CRYPTO_USE_ZEROS)
memset((uint8_t *)in_shm.buffer + offset, 0, size);
op.paramTypes = TEEC_PARAM_TYPES(TEEC_MEMREF_PARTIAL_INPUT,
TEEC_MEMREF_PARTIAL_OUTPUT,
TEEC_VALUE_INPUT, TEEC_NONE);
op.params[0].memref.parent = &in_shm;
op.params[0].memref.offset = 0;
op.params[0].memref.size = size + offset;
op.params[1].memref.parent = &out_shm;
op.params[1].memref.offset = 0;
op.params[1].memref.size = hash_size(algo);
op.params[2].value.a = l;
op.params[2].value.b = offset;
verbose("Starting test: %s, size=%zu bytes, ",
algo_str(algo), size);
verbose("random=%s, ", yesno(random_in == CRYPTO_USE_RANDOM));
verbose("unaligned=%s, ", yesno(offset));
verbose("inner loops=%u, loops=%u, warm-up=%u s\n", l, n, warmup);
if (warmup)
do_warmup(warmup);
while (n-- > 0) {
t = run_test_once((uint8_t *)in_shm.buffer + offset, size,
random_in, &op);
update_stats(&stats, t);
if (n % (n0 / 10) == 0)
vverbose("#");
}
vverbose("\n");
sd = stddev(&stats);
printf("min=%gus max=%gus mean=%gus stddev=%gus (cv %g%%) (%gMiB/s)\n",
stats.min / 1000, stats.max / 1000, stats.m / 1000,
sd / 1000, 100 * sd / stats.m, mb_per_sec(size, stats.m));
verbose("2-sigma interval: %g..%gus (%g..%gMiB/s)\n",
(stats.m - 2 * sd) / 1000, (stats.m + 2 * sd) / 1000,
mb_per_sec(size, stats.m + 2 * sd),
mb_per_sec(size, stats.m - 2 * sd));
free_shm();
}
static void usage(const char *applet_optname,
/* Default params */
int algo, size_t size, int warmup, int l, int n)
{
fprintf(stderr, "Usage: %s %s [-h]\n", xtest_progname, applet_optname);
fprintf(stderr, "Usage: %s %s [-a ALGO] [-l LOOP] [-n LOOP] [-r] [-s SIZE]",
xtest_progname, applet_optname);
fprintf(stderr, " [-v [-v]] [-w SEC]\n");
fprintf(stderr, "Hash performance testing tool for OP-TEE\n");
fprintf(stderr, "\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -a ALGO Algorithm (SHA1, SHA224, SHA256, SHA384, SHA512, SM3,"
" HMAC_SHA1, HMAC_SHA224, HMAC_SHA256,"
" HMAC_SHA384, HMAC_SHA512, HMAC_SM3) [%s]\n", algo_str(algo));
fprintf(stderr, " -h|--help Print this help and exit\n");
fprintf(stderr, " -l LOOP Inner loop iterations (TA calls TEE_DigestDoFinal() <x> times) [%u]\n", l);
fprintf(stderr, " -n LOOP Outer test loop iterations [%u]\n", n);
fprintf(stderr, " -r|--random Get input data from /dev/urandom (default: all-zeros)\n");
fprintf(stderr, " -s SIZE Test buffer size in bytes [%zu]\n", size);
fprintf(stderr, " -u|--unalign Use unaligned buffer (odd address)\n");
fprintf(stderr, " -v Be verbose (use twice for greater effect)\n");
fprintf(stderr, " -w|--warmup SEC Warm-up time in seconds: execute a busy loop before\n");
fprintf(stderr, " the test to mitigate the effects of cpufreq etc. [%u]\n", warmup);
}
#define NEXT_ARG(i) \
do { \
if (++i == argc) { \
fprintf(stderr, "%s %s: %s: missing argument\n", \
xtest_progname, argv[0], argv[i - 1]); \
return 1; \
} \
} while (0);
extern int hash_perf_runner_cmd_parser(int argc, char *argv[])
{
int i = 0;
/* Command line params */
size_t size = 1024; /* Buffer size (-s) */
unsigned int n = CRYPTO_DEF_COUNT;/* Number of measurements (-n)*/
unsigned int l = CRYPTO_DEF_LOOPS; /* Inner loops (-l) */
int verbosity = CRYPTO_DEF_VERBOSITY; /* Verbosity (-v) */
int algo = TA_SHA_SHA1; /* Algorithm (-a) */
/* Get input data from /dev/urandom (-r) */
int random_in = CRYPTO_USE_ZEROS;
/* Start with a 2-second busy loop (-w) */
int warmup = CRYPTO_DEF_WARMUP;
int offset = 0; /* Buffer offset wrt. alloc'ed address (-u) */
/* Parse command line */
for (i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-h") || !strcmp(argv[i], "--help")) {
usage(argv[0], algo, size, warmup, l, n);
return 0;
}
}
for (i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-l")) {
NEXT_ARG(i);
l = atoi(argv[i]);
} else if (!strcmp(argv[i], "-a")) {
NEXT_ARG(i);
if (!strcasecmp(argv[i], "SHA1"))
algo = TA_SHA_SHA1;
else if (!strcasecmp(argv[i], "SHA224"))
algo = TA_SHA_SHA224;
else if (!strcasecmp(argv[i], "SHA256"))
algo = TA_SHA_SHA256;
else if (!strcasecmp(argv[i], "SHA384"))
algo = TA_SHA_SHA384;
else if (!strcasecmp(argv[i], "SHA512"))
algo = TA_SHA_SHA512;
else if (!strcasecmp(argv[i], "SM3"))
algo = TA_SM3;
else if (!strcasecmp(argv[i], "HMAC_SHA1"))
algo = TA_HMAC_SHA1;
else if (!strcasecmp(argv[i], "HMAC_SHA224"))
algo = TA_HMAC_SHA224;
else if (!strcasecmp(argv[i], "HMAC_SHA256"))
algo = TA_HMAC_SHA256;
else if (!strcasecmp(argv[i], "HMAC_SHA384"))
algo = TA_HMAC_SHA384;
else if (!strcasecmp(argv[i], "HMAC_SHA512"))
algo = TA_HMAC_SHA512;
else if (!strcasecmp(argv[i], "HMAC_SM3"))
algo = TA_HMAC_SM3;
else {
fprintf(stderr, "%s %s, invalid algorithm\n",
xtest_progname, argv[0]);
usage(argv[0], algo, size, warmup, l, n);
return 1;
}
} else if (!strcmp(argv[i], "-n")) {
NEXT_ARG(i);
n = atoi(argv[i]);
} else if (!strcmp(argv[i], "--random") ||
!strcmp(argv[i], "-r")) {
random_in = CRYPTO_USE_RANDOM;
} else if (!strcmp(argv[i], "-s")) {
NEXT_ARG(i);
size = atoi(argv[i]);
} else if (!strcmp(argv[i], "--unalign") ||
!strcmp(argv[i], "-u")) {
offset = 1;
} else if (!strcmp(argv[i], "-v")) {
verbosity++;
} else if (!strcmp(argv[i], "--warmup") ||
!strcmp(argv[i], "-w")) {
NEXT_ARG(i);
warmup = atoi(argv[i]);
} else {
fprintf(stderr, "%s %s: invalid argument: %s\n",
xtest_progname, argv[0], argv[i]);
usage(argv[0], algo, size, warmup, l, n);
return 1;
}
}
hash_perf_run_test(algo, size, n, l, random_in, offset, warmup, verbosity);
return 0;
}