blob: cf0afa0aa7ff9686a317943bd1a960dfbd7cf859 [file] [log] [blame]
/*
* Copyright (c) 2014, STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <setjmp.h>
#include <compiler.h>
#include <ta_crypt.h>
#include <ta_os_test.h>
#include <tee_internal_api_extensions.h>
#include "os_test.h"
#include "testframework.h"
#include "test_float_subj.h"
enum p_type {
P_TYPE_BOOL,
P_TYPE_INT,
P_TYPE_UUID,
P_TYPE_IDENTITY,
P_TYPE_STRING,
P_TYPE_BINARY_BLOCK,
};
struct p_attr {
const char *str;
enum p_type type;
bool retrieved;
};
static TEE_Result check_returned_prop(
int line __maybe_unused, char *prop_name __maybe_unused,
TEE_Result return_res, TEE_Result expected_res,
uint32_t return_len, uint32_t expected_len)
{
if (return_res != expected_res) {
EMSG("From line %d (property name=%s): return_res=0x%x vs expected_res=0x%x",
line, (prop_name ? prop_name : "unknown"),
(unsigned int)return_res, (unsigned int)expected_res);
return TEE_ERROR_GENERIC;
}
if (return_len != expected_len) {
EMSG("From line %d (property name=%s): return_len=%u vs expected_res=%u",
line, (prop_name ? prop_name : "unknown"),
return_len, expected_len);
return TEE_ERROR_GENERIC;
}
return TEE_SUCCESS;
}
static TEE_Result print_properties(TEE_PropSetHandle h,
TEE_PropSetHandle prop_set,
struct p_attr *p_attrs, size_t num_p_attrs)
{
TEE_Result res;
size_t n;
TEE_StartPropertyEnumerator(h, prop_set);
while (true) {
char nbuf[256];
char nbuf_small[256];
char vbuf[256];
char vbuf2[256];
uint32_t nblen = sizeof(nbuf);
uint32_t nblen_small;
uint32_t vblen = sizeof(vbuf);
uint32_t vblen2 = sizeof(vbuf2);
res = TEE_GetPropertyName(h, nbuf, &nblen);
if (res != TEE_SUCCESS) {
EMSG("TEE_GetPropertyName returned 0x%x\n",
(unsigned int)res);
return res;
}
if (nblen != strlen(nbuf) + 1) {
EMSG("Name has wrong size: %u vs %zu", nblen, strlen(nbuf) + 1);
return TEE_ERROR_GENERIC;
}
/* Get the property name with a very small buffer */
nblen_small = 2;
res = TEE_GetPropertyName(h, nbuf_small, &nblen_small);
res = check_returned_prop(__LINE__, nbuf, res, TEE_ERROR_SHORT_BUFFER,
nblen_small, nblen);
if (res != TEE_SUCCESS)
return res;
/* Get the property name with almost the correct buffer */
nblen_small = nblen - 1;
res = TEE_GetPropertyName(h, nbuf_small, &nblen_small);
res = check_returned_prop(__LINE__, nbuf, res, TEE_ERROR_SHORT_BUFFER,
nblen_small, nblen);
if (res != TEE_SUCCESS)
return res;
/* Get the property name with the exact buffer length */
nblen_small = nblen;
res = TEE_GetPropertyName(h, nbuf_small, &nblen_small);
res = check_returned_prop(__LINE__, nbuf, res, TEE_SUCCESS,
nblen_small, nblen);
if (res != TEE_SUCCESS)
return res;
/* Get the property value */
res = TEE_GetPropertyAsString(h, NULL, vbuf, &vblen);
res = check_returned_prop(__LINE__, nbuf, res, TEE_SUCCESS,
vblen, strlen(vbuf) + 1);
if (res != TEE_SUCCESS)
return res;
res = TEE_GetPropertyAsString(prop_set, nbuf, vbuf2, &vblen2);
res = check_returned_prop(__LINE__, nbuf, res, TEE_SUCCESS,
vblen2, strlen(vbuf2) + 1);
if (res != TEE_SUCCESS)
return res;
if (my_strcmp(vbuf, vbuf2) != 0) {
EMSG("String of \"%s\" differs\n", nbuf);
return TEE_ERROR_GENERIC;
}
/* Get the property with a very small buffer */
vblen2 = 1;
res = TEE_GetPropertyAsString(prop_set, nbuf, vbuf2, &vblen2);
res = check_returned_prop(__LINE__, nbuf, res, TEE_ERROR_SHORT_BUFFER,
vblen2, vblen);
if (res != TEE_SUCCESS)
return res;
/* Get the property with almost the correct buffer */
vblen2 = vblen - 1;
res = TEE_GetPropertyAsString(prop_set, nbuf, vbuf2, &vblen2);
res = check_returned_prop(__LINE__, nbuf, res, TEE_ERROR_SHORT_BUFFER,
vblen2, vblen);
if (res != TEE_SUCCESS)
return res;
/* Get the property name with the exact buffer length */
vblen2 = vblen;
res = TEE_GetPropertyAsString(prop_set, nbuf, vbuf2, &vblen2);
res = check_returned_prop(__LINE__, nbuf, res, TEE_SUCCESS, vblen2, vblen);
if (res != TEE_SUCCESS)
return res;
/* check specific myprop.hello property, which is larger than 80 */
if (!strcmp("myprop.hello", nbuf) &&
vblen2 != 1 + strlen("hello property, larger than 80 characters, so that it checks that it is not truncated by anything in the source code which may be wrong")) {
EMSG("TEE_GetPropertyAsString(\"%s\") is truncated - returned \"%s\"\n",
nbuf, vbuf);
return TEE_ERROR_GENERIC;
}
DMSG("Found \"%s\" value \"%s\"\n", nbuf, vbuf);
for (n = 0; n < num_p_attrs; n++) {
if (my_strcmp(nbuf, p_attrs[n].str) != 0)
continue;
if (p_attrs[n].retrieved) {
EMSG("Value \"%s\" already retrieved\n",
p_attrs[n].str);
return TEE_ERROR_GENERIC;
}
p_attrs[n].retrieved = true;
switch (p_attrs[n].type) {
case P_TYPE_BOOL:
{
bool v;
res =
TEE_GetPropertyAsBool(h, NULL, &v);
if (res != TEE_SUCCESS) {
EMSG(
"TEE_GetPropertyAsBool(\"%s\") returned 0x%x\n",
nbuf, (unsigned int)res);
return res;
}
}
break;
case P_TYPE_INT:
{
uint32_t v;
res = TEE_GetPropertyAsU32(h, NULL, &v);
if (res != TEE_SUCCESS) {
EMSG(
"TEE_GetPropertyAsU32(\"%s\") returned 0x%x\n",
nbuf, (unsigned int)res);
return res;
}
}
break;
case P_TYPE_UUID:
{
TEE_UUID v;
res =
TEE_GetPropertyAsUUID(h, NULL, &v);
if (res != TEE_SUCCESS) {
EMSG(
"TEE_GetPropertyAsUUID(\"%s\") returned 0x%x\n",
nbuf, (unsigned int)res);
return res;
}
}
break;
case P_TYPE_IDENTITY:
{
TEE_Identity v;
res =
TEE_GetPropertyAsIdentity(h, NULL,
&v);
if (res != TEE_SUCCESS) {
EMSG(
"TEE_GetPropertyAsIdentity(\"%s\") returned 0x%x\n",
nbuf, (unsigned int)res);
return res;
}
}
break;
case P_TYPE_STRING:
/* Already read as string */
break;
case P_TYPE_BINARY_BLOCK:
{
char bbuf[80];
uint32_t bblen = sizeof(bbuf);
res =
TEE_GetPropertyAsBinaryBlock(h,
NULL,
bbuf,
&bblen);
if (res != TEE_SUCCESS) {
EMSG(
"TEE_GetPropertyAsBinaryBlock(\"%s\") returned 0x%x\n",
nbuf, (unsigned int)res);
return res;
}
if (my_strcmp
("myprop.binaryblock", nbuf) == 0) {
const char exp_bin_value[] =
"Hello world!";
if (bblen !=
my_strlen(exp_bin_value)
||
TEE_MemCompare
(exp_bin_value, bbuf,
bblen) != 0) {
EMSG(
"Binary buffer of \"%s\" differs from \"%s\"\n",
nbuf, exp_bin_value);
EMSG(
"Got \"%s\"\n",
bbuf);
return
TEE_ERROR_GENERIC;
}
}
}
break;
default:
EMSG("Unknown type (%d) for \"%s\"\n",
p_attrs[n].type, p_attrs[n].str);
return TEE_ERROR_GENERIC;
}
}
res = TEE_GetNextProperty(h);
if (res != TEE_SUCCESS) {
if (res == TEE_ERROR_ITEM_NOT_FOUND)
return TEE_SUCCESS;
return res;
}
}
}
static TEE_Result test_malloc(void)
{
void *p = TEE_Malloc(4, 0);
if (p == NULL) {
EMSG("TEE_Malloc failed\n");
return TEE_ERROR_OUT_OF_MEMORY;
}
TEE_Free(p);
TEE_Free(NULL);
return TEE_SUCCESS;
}
static TEE_Result test_properties(void)
{
TEE_Result res = TEE_ERROR_GENERIC;
TEE_PropSetHandle h;
struct p_attr p_attrs[] = {
{"gpd.ta.appID", P_TYPE_UUID},
{"gpd.ta.singleInstance", P_TYPE_BOOL},
{"gpd.ta.multiSession", P_TYPE_BOOL},
{"gpd.ta.instanceKeepAlive", P_TYPE_BOOL},
{"gpd.ta.dataSize", P_TYPE_INT},
{"gpd.ta.stackSize", P_TYPE_INT},
{"gpd.ta.version", P_TYPE_STRING},
{"gpd.ta.description", P_TYPE_STRING},
{"gpd.client.identity", P_TYPE_IDENTITY},
{"gpd.tee.apiversion", P_TYPE_STRING},
{"gpd.tee.description", P_TYPE_STRING},
{"gpd.tee.deviceID", P_TYPE_UUID},
{"gpd.tee.systemTime.protectionLevel", P_TYPE_INT},
{"gpd.tee.TAPersistentTime.protectionLevel", P_TYPE_INT},
{"gpd.tee.arith.maxBigIntSize", P_TYPE_INT},
{"gpd.tee.cryptography.ecc", P_TYPE_BOOL},
{"gpd.tee.trustedStorage.antiRollback.protectionLevel", P_TYPE_INT},
{"gpd.tee.trustedos.implementation.version", P_TYPE_STRING},
{"gpd.tee.trustedos.implementation.binaryversion", P_TYPE_INT},
{"gpd.tee.trustedos.manufacturer", P_TYPE_STRING},
{"gpd.tee.firmware.implementation.version", P_TYPE_STRING},
{"gpd.tee.firmware.implementation.binaryversion", P_TYPE_INT},
{"gpd.tee.firmware.manufacturer", P_TYPE_STRING},
{"myprop.true", P_TYPE_BOOL},
{"myprop.42", P_TYPE_INT},
{"myprop.123", P_TYPE_UUID},
{"myprop.1234", P_TYPE_IDENTITY},
{"myprop.hello", P_TYPE_STRING},
{"myprop.binaryblock", P_TYPE_BINARY_BLOCK},
};
const size_t num_p_attrs = sizeof(p_attrs) / sizeof(p_attrs[0]);
size_t n;
res = TEE_AllocatePropertyEnumerator(&h);
if (res != TEE_SUCCESS) {
EMSG("TEE_AllocatePropertyEnumerator: returned 0x%x\n",
(unsigned int)res);
return TEE_ERROR_GENERIC;
}
printf("Getting properties for current TA\n");
res = print_properties(h, TEE_PROPSET_CURRENT_TA, p_attrs, num_p_attrs);
if (res != TEE_SUCCESS)
goto cleanup_return;
printf("Getting properties for current client\n");
res = print_properties(h, TEE_PROPSET_CURRENT_CLIENT, p_attrs,
num_p_attrs);
if (res != TEE_SUCCESS)
goto cleanup_return;
printf("Getting properties for implementation\n");
res = print_properties(h, TEE_PROPSET_TEE_IMPLEMENTATION, p_attrs,
num_p_attrs);
if (res != TEE_SUCCESS)
goto cleanup_return;
for (n = 0; n < num_p_attrs; n++) {
if (!p_attrs[n].retrieved) {
EMSG("\"%s\" not retrieved\n", p_attrs[n].str);
res = TEE_ERROR_GENERIC;
goto cleanup_return;
}
}
cleanup_return:
TEE_FreePropertyEnumerator(h);
return res;
}
static TEE_Result test_mem_access_right(uint32_t param_types,
TEE_Param params[4])
{
static const TEE_UUID test_uuid = TA_OS_TEST_UUID;
TEE_Result res;
uint32_t ret_orig;
uint32_t l_pts;
TEE_Param l_params[4] = { { {0} } };
uint8_t buf[32];
TEE_TASessionHandle sess = TEE_HANDLE_NULL;
TEE_UUID *uuid;
if (param_types !=
TEE_PARAM_TYPES(TEE_PARAM_TYPE_MEMREF_INPUT, 0, 0, 0))
return TEE_ERROR_GENERIC;
/* test access rights on memref parameter */
res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_READ |
TEE_MEMORY_ACCESS_ANY_OWNER,
params[0].memref.buffer,
params[0].memref.size);
if (res != TEE_SUCCESS)
return res;
res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_READ,
params[0].memref.buffer,
params[0].memref.size);
if (res != TEE_ERROR_ACCESS_DENIED)
return TEE_ERROR_GENERIC;
/* test access rights on private read-only and read-write memory */
res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_READ,
(void *)&test_uuid, sizeof(test_uuid));
if (res != TEE_SUCCESS)
return res;
res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_WRITE,
(void *)&test_uuid, sizeof(test_uuid));
if (res == TEE_SUCCESS)
return TEE_ERROR_GENERIC;
res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_READ |
TEE_MEMORY_ACCESS_WRITE,
&ret_orig, sizeof(ret_orig));
if (res != TEE_SUCCESS)
return res;
uuid = TEE_Malloc(sizeof(*uuid), 0);
if (!uuid)
return TEE_ERROR_OUT_OF_MEMORY;
res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_READ |
TEE_MEMORY_ACCESS_WRITE,
uuid, sizeof(*uuid));
TEE_Free(uuid);
if (res != TEE_SUCCESS)
return res;
/* test access rights on invalid memory (at least lower 256kB) */
res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_READ,
NULL, 1);
if (res == TEE_SUCCESS)
return TEE_ERROR_GENERIC;
res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_READ,
(void*)(256 * 1024), 1);
if (res == TEE_SUCCESS)
return TEE_ERROR_GENERIC;
res = TEE_OpenTASession(&test_uuid, 0, 0, NULL, &sess, &ret_orig);
if (res != TEE_SUCCESS) {
EMSG("test_mem_access_right: TEE_OpenTASession failed\n");
goto cleanup_return;
}
l_pts = TEE_PARAM_TYPES(TEE_PARAM_TYPE_MEMREF_INPUT,
TEE_PARAM_TYPE_MEMREF_INPUT, 0, 0);
l_params[0].memref.buffer = buf;
l_params[0].memref.size = sizeof(buf);
l_params[1].memref.buffer = NULL;
l_params[1].memref.size = 0;
res = TEE_InvokeTACommand(sess, 0, TA_OS_TEST_CMD_PARAMS_ACCESS,
l_pts, l_params, &ret_orig);
if (res != TEE_SUCCESS) {
EMSG("test_mem_access_right: TEE_InvokeTACommand failed\n");
goto cleanup_return;
}
cleanup_return:
TEE_CloseTASession(sess);
return res;
}
static TEE_Result test_time(void)
{
TEE_Result res;
TEE_Time t;
TEE_Time sys_t;
static const TEE_Time null_time = { 0, 0 };
static const TEE_Time wrap_time = { UINT32_MAX, 999 };
TEE_GetSystemTime(&sys_t);
printf("system time %u.%03u\n", (unsigned int)sys_t.seconds,
(unsigned int)sys_t.millis);
TEE_GetREETime(&t);
printf("REE time %u.%03u\n", (unsigned int)t.seconds,
(unsigned int)t.millis);
res = TEE_GetTAPersistentTime(&t);
switch (res) {
case TEE_SUCCESS:
printf("Stored TA time %u.%03u\n", (unsigned int)t.seconds,
(unsigned int)t.millis);
break;
case TEE_ERROR_OVERFLOW:
EMSG("Stored TA time overflowed %u.%03u\n",
(unsigned int)t.seconds, (unsigned int)t.millis);
break;
case TEE_ERROR_TIME_NOT_SET:
EMSG("TA time not stored\n");
break;
case TEE_ERROR_TIME_NEEDS_RESET:
EMSG("TA time needs reset\n");
break;
default:
return res;
}
res = TEE_SetTAPersistentTime(&null_time);
if (res != TEE_SUCCESS) {
EMSG("TEE_SetTAPersistentTime: failed\n");
return res;
}
res = TEE_GetTAPersistentTime(&t);
if (res != TEE_SUCCESS) {
EMSG("TEE_GetTAPersistentTime null: failed\n");
return res;
}
printf("TA time %u.%03u\n", (unsigned int)t.seconds,
(unsigned int)t.millis);
/*
* The time between TEE_SetTAPersistentTime() and
* TEE_GetTAPersistentTime() should be much less than 1 second, in fact
* it's not even a millisecond.
*/
if (t.seconds > 1 || t.millis >= 1000) {
EMSG("Unexpected stored TA time %u.%03u\n",
(unsigned int)t.seconds, (unsigned int)t.millis);
return TEE_ERROR_BAD_STATE;
}
res = TEE_SetTAPersistentTime(&wrap_time);
if (res != TEE_SUCCESS) {
EMSG("TEE_SetTAPersistentTime wrap: failed\n");
return res;
}
res = TEE_Wait(1000);
if (res != TEE_SUCCESS)
EMSG("TEE_Wait wrap: failed\n");
res = TEE_GetTAPersistentTime(&t);
if (res != TEE_ERROR_OVERFLOW) {
EMSG("TEE_GetTAPersistentTime: failed\n");
return TEE_ERROR_BAD_STATE;
}
printf("TA time %u.%03u\n", (unsigned int)t.seconds,
(unsigned int)t.millis);
if (t.seconds > sys_t.seconds) {
EMSG("Unexpected wrapped time %u.%03u (sys_t %u.%03u)\n",
(unsigned int)t.seconds, (unsigned int)t.millis,
(unsigned int)sys_t.seconds, (unsigned int)sys_t.millis);
return TEE_ERROR_BAD_STATE;
}
return TEE_SUCCESS;
}
#ifdef CFG_TA_FLOAT_SUPPORT
static bool my_dcmpeq(double v1, double v2, double prec)
{
return v1 > (v2 - prec) && v1 < (v2 + prec);
}
static bool my_fcmpeq(float v1, float v2, float prec)
{
return v1 > (v2 - prec) && v1 < (v2 + prec);
}
static TEE_Result test_float(void)
{
#define VAL1 2.6
#define VAL1_INT 2
#define VAL2 5.3
#define DPREC 0.000000000000001
#define FPREC 0.000001
#define EXPECT(expr) do { \
if (!(expr)) { \
EMSG("Expression %s failed", #expr); \
return TEE_ERROR_GENERIC; \
} \
} while (0)
IMSG("Testing floating point operations");
EXPECT(my_dcmpeq(test_float_dadd(VAL1, VAL2), VAL1 + VAL2, DPREC));
EXPECT(my_dcmpeq(test_float_ddiv(VAL1, VAL2), VAL1 / VAL2, DPREC));
EXPECT(my_dcmpeq(test_float_dmul(VAL1, VAL2), VAL1 * VAL2, DPREC));
EXPECT(my_dcmpeq(test_float_drsub(VAL1, VAL2), VAL2 - VAL1, DPREC));
EXPECT(my_dcmpeq(test_float_dsub(VAL1, VAL2), VAL1 - VAL2, DPREC));
EXPECT(test_float_dcmpeq(VAL1, VAL1) == 1);
EXPECT(test_float_dcmplt(VAL1, VAL2) == 1);
EXPECT(test_float_dcmple(VAL1, VAL1) == 1);
EXPECT(test_float_dcmpge(VAL1, VAL1) == 1);
EXPECT(test_float_dcmpgt(VAL2, VAL1) == 1);
EXPECT(my_fcmpeq(test_float_fadd(VAL1, VAL2), VAL1 + VAL2, FPREC));
EXPECT(my_fcmpeq(test_float_fdiv(VAL1, VAL2), VAL1 / VAL2, FPREC));
EXPECT(my_fcmpeq(test_float_fmul(VAL1, VAL2), VAL1 * VAL2, FPREC));
EXPECT(my_fcmpeq(test_float_frsub(VAL1, VAL2), VAL2 - VAL1, FPREC));
EXPECT(my_fcmpeq(test_float_fsub(VAL1, VAL2), VAL1 - VAL2, FPREC));
EXPECT(test_float_fcmpeq(VAL1, VAL1) == 1);
EXPECT(test_float_fcmplt(VAL1, VAL2) == 1);
EXPECT(test_float_fcmple(VAL1, VAL1) == 1);
EXPECT(test_float_fcmpge(VAL1, VAL1) == 1);
EXPECT(test_float_fcmpgt(VAL2, VAL1) == 1);
EXPECT(test_float_d2iz(VAL1) == VAL1_INT);
EXPECT(test_float_d2uiz(VAL1) == VAL1_INT);
EXPECT(test_float_d2lz(VAL1) == VAL1_INT);
EXPECT(test_float_d2ulz(VAL1) == VAL1_INT);
EXPECT(test_float_f2iz(VAL1) == VAL1_INT);
EXPECT(test_float_f2uiz(VAL1) == VAL1_INT);
EXPECT(test_float_f2lz(VAL1) == VAL1_INT);
EXPECT(test_float_f2ulz(VAL1) == VAL1_INT);
EXPECT(my_fcmpeq(test_float_d2f(VAL1), VAL1, FPREC));
EXPECT(my_dcmpeq(test_float_f2d(VAL1), VAL1, FPREC));
EXPECT(my_dcmpeq(test_float_i2d(VAL1_INT), VAL1_INT, DPREC));
EXPECT(my_dcmpeq(test_float_ui2d(VAL1_INT), VAL1_INT, DPREC));
EXPECT(my_dcmpeq(test_float_l2d(VAL1_INT), VAL1_INT, DPREC));
EXPECT(my_dcmpeq(test_float_ul2d(VAL1_INT), VAL1_INT, DPREC));
EXPECT(my_fcmpeq(test_float_i2f(VAL1_INT), VAL1_INT, FPREC));
EXPECT(my_fcmpeq(test_float_ui2f(VAL1_INT), VAL1_INT, FPREC));
EXPECT(my_fcmpeq(test_float_l2f(VAL1_INT), VAL1_INT, FPREC));
EXPECT(my_fcmpeq(test_float_ul2f(VAL1_INT), VAL1_INT, FPREC));
return TEE_SUCCESS;
}
#else /*CFG_TA_FLOAT_SUPPORT*/
static TEE_Result test_float(void)
{
IMSG("Floating point disabled");
return TEE_SUCCESS;
}
#endif /*CFG_TA_FLOAT_SUPPORT*/
static __noinline void call_longjmp(jmp_buf env)
{
DMSG("Calling longjmp");
longjmp(env, 1);
EMSG("error: longjmp returned to calling function");
}
static TEE_Result test_setjmp(void)
{
jmp_buf env;
if (setjmp(env)) {
IMSG("Returned via longjmp");
return TEE_SUCCESS;
} else {
call_longjmp(env);
return TEE_ERROR_GENERIC;
}
}
TEE_Result ta_entry_basic(uint32_t param_types, TEE_Param params[4])
{
TEE_Result res = TEE_ERROR_GENERIC;
printf("ta_entry_basic: enter\n");
res = test_malloc();
if (res != TEE_SUCCESS)
return res;
res = test_properties();
if (res != TEE_SUCCESS)
return res;
res = test_mem_access_right(param_types, params);
if (res != TEE_SUCCESS)
return res;
res = test_time();
if (res != TEE_SUCCESS)
return res;
res = test_float();
if (res != TEE_SUCCESS)
return res;
res = test_setjmp();
if (res != TEE_SUCCESS)
return res;
/* mpa lib test bench, panics TA on failure */
tb_main();
return TEE_SUCCESS;
}
TEE_Result ta_entry_panic(uint32_t param_types, TEE_Param params[4])
{
volatile bool mytrue = true;
(void)param_types;
(void)params;
printf("ta_entry_panic: enter\n");
/*
* Somewhat clumsy way of avoiding compile errors if TEE_Panic() has
* the __noreturn attribute.
*/
if (mytrue)
TEE_Panic(0xbeef);
/*
* Should not be reached, but if it is the testsuite can detect that
* TEE_Panic() returned instead of panicking the TA.
*/
return TEE_SUCCESS;
}
TEE_Result ta_entry_client_with_timeout(uint32_t param_types,
TEE_Param params[4])
{
static const TEE_UUID os_test_uuid = TA_OS_TEST_UUID;
TEE_Result res;
TEE_TASessionHandle sess;
uint32_t ret_orig;
if (param_types != TEE_PARAM_TYPES(TEE_PARAM_TYPE_VALUE_INPUT,
TEE_PARAM_TYPE_NONE,
TEE_PARAM_TYPE_NONE,
TEE_PARAM_TYPE_NONE)) {
EMSG("ta_entry_client_with_timeout: bad parameters\n");
return TEE_ERROR_BAD_PARAMETERS;
}
res = TEE_OpenTASession(&os_test_uuid, 0, 0, NULL, &sess, &ret_orig);
if (res != TEE_SUCCESS) {
EMSG(
"ta_entry_client_with_timeout: TEE_OpenTASession failed\n");
return res;
}
res =
TEE_InvokeTACommand(sess, params[0].value.a / 2,
TA_OS_TEST_CMD_WAIT, param_types, params,
&ret_orig);
if (ret_orig != TEE_ORIGIN_TRUSTED_APP || res != TEE_ERROR_CANCEL) {
EMSG("ta_entry_client_with_timeout: TEE_InvokeTACommand: "
"res 0x%x ret_orig 0x%x\n", (unsigned int)res,
(unsigned int)ret_orig);
res = TEE_ERROR_GENERIC;
} else
res = TEE_SUCCESS;
TEE_CloseTASession(sess);
return res;
}
TEE_Result ta_entry_client(uint32_t param_types, TEE_Param params[4])
{
static const TEE_UUID crypt_uuid = TA_CRYPT_UUID;
TEE_Result res;
uint32_t l_pts;
TEE_Param l_params[4] = { { {0} } };
TEE_TASessionHandle sess;
uint32_t ret_orig;
static const uint8_t sha256_in[] = { 'a', 'b', 'c' };
static const uint8_t sha256_out[] = {
0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad
};
uint8_t out[32] = { 0 };
void *in = NULL;
(void)param_types;
(void)params;
printf("ta_entry_client: enter\n");
in = TEE_Malloc(sizeof(sha256_in), 0);
if (in == NULL)
return TEE_ERROR_OUT_OF_MEMORY;
TEE_MemMove(in, sha256_in, sizeof(sha256_in));
res = TEE_OpenTASession(&crypt_uuid, 0, 0, NULL, &sess, &ret_orig);
if (res != TEE_SUCCESS) {
EMSG("ta_entry_client: TEE_OpenTASession failed\n");
goto cleanup_return;
}
l_pts = TEE_PARAM_TYPES(TEE_PARAM_TYPE_MEMREF_INPUT,
TEE_PARAM_TYPE_MEMREF_OUTPUT, 0, 0);
l_params[0].memref.buffer = in;
l_params[0].memref.size = sizeof(sha256_in);
l_params[1].memref.buffer = out;
l_params[1].memref.size = sizeof(out);
res = TEE_InvokeTACommand(sess, 0, TA_CRYPT_CMD_SHA256, l_pts, l_params,
&ret_orig);
if (res != TEE_SUCCESS) {
EMSG("ta_entry_client: TEE_InvokeTACommand failed\n");
goto cleanup_return;
}
if (TEE_MemCompare(sha256_out, out, sizeof(sha256_out)) != 0) {
EMSG("ta_entry_client: out parameter failed\n");
res = TEE_ERROR_GENERIC;
goto cleanup_return;
}
cleanup_return:
TEE_Free(in);
TEE_CloseTASession(sess);
return res;
}
TEE_Result ta_entry_params_access_rights(uint32_t param_types, TEE_Param params[4])
{
TEE_Result res;
if (param_types !=
TEE_PARAM_TYPES(TEE_PARAM_TYPE_MEMREF_INPUT,
TEE_PARAM_TYPE_MEMREF_INPUT, 0, 0))
return TEE_ERROR_GENERIC;
res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_READ |
TEE_MEMORY_ACCESS_ANY_OWNER,
params[0].memref.buffer,
params[0].memref.size);
if (res != TEE_SUCCESS)
return res;
res = TEE_CheckMemoryAccessRights(TEE_MEMORY_ACCESS_READ,
params[0].memref.buffer,
params[0].memref.size);
if (res != TEE_ERROR_ACCESS_DENIED)
return TEE_ERROR_GENERIC;
if (params[1].memref.buffer || params[1].memref.size)
return TEE_ERROR_BAD_PARAMETERS;
return TEE_SUCCESS;
}
TEE_Result ta_entry_wait(uint32_t param_types, TEE_Param params[4])
{
TEE_Result res = TEE_SUCCESS;
(void)param_types;
printf("ta_entry_wait: waiting %d\n", (unsigned int)params[0].value.a);
/* Wait */
res = TEE_Wait(params[0].value.a);
return res;
}
static void undef_instr(void)
{
#if defined(ARM64)
__asm__(".word 0x0");
#elif defined(ARM32)
__asm__(".word 0xe7ffffff");
#else
#error "Unsupported architecture"
#endif
}
TEE_Result ta_entry_bad_mem_access(uint32_t param_types, TEE_Param params[4])
{
long stack;
long stack_addr = (long)&stack;
if (param_types != TEE_PARAM_TYPES(TEE_PARAM_TYPE_VALUE_INPUT, 0, 0, 0))
return TEE_ERROR_GENERIC;
switch (params[0].value.a) {
case 1:
*((uint32_t *) 0) = 0;
break;
case 2:
*((uint32_t *)(stack_addr + 0x40000000)) = 0;
break;
case 3:
((void (*)(void))0) ();
break;
case 4:
((void (*)(void))(stack_addr + 0x40000000)) ();
break;
case 5:
undef_instr();
break;
default:
break;
}
return TEE_SUCCESS;
}
static void incr_values(size_t bufsize, uint8_t *a, uint8_t *b, uint8_t *c)
{
size_t i;
for (i = 0; i < bufsize; i++) {
a[i]++; b[i]++; c[i]++;
}
}
TEE_Result ta_entry_ta2ta_memref(uint32_t param_types, TEE_Param params[4])
{
static const TEE_UUID test_uuid = TA_OS_TEST_UUID;
TEE_TASessionHandle sess = TEE_HANDLE_NULL;
TEE_Param l_params[4] = { { {0} } };
size_t bufsize = 2 * 1024;
uint8_t in[bufsize];
uint8_t inout[bufsize];
uint8_t out[bufsize];
TEE_Result res;
uint32_t ret_orig;
uint32_t l_pts;
size_t i;
(void)params;
if (param_types != TEE_PARAM_TYPES(0, 0, 0, 0))
return TEE_ERROR_GENERIC;
res = TEE_OpenTASession(&test_uuid, 0, 0, NULL, &sess, &ret_orig);
if (res != TEE_SUCCESS) {
EMSG("TEE_OpenTASession failed");
goto cleanup_return;
}
l_pts = TEE_PARAM_TYPES(TEE_PARAM_TYPE_MEMREF_INPUT,
TEE_PARAM_TYPE_MEMREF_INOUT,
TEE_PARAM_TYPE_MEMREF_OUTPUT, 0);
l_params[0].memref.buffer = in;
l_params[0].memref.size = bufsize;
l_params[1].memref.buffer = inout;
l_params[1].memref.size = bufsize;
l_params[2].memref.buffer = out;
l_params[2].memref.size = bufsize;
/* Initialize buffers */
for (i = 0; i < bufsize; i++) {
in[i] = 5;
inout[i] = 10;
out[i] = 0;
}
/*
* TA will compute: out = ++inout + in
* Expected values after this step: in: 5, inout: 11, out: 16
*/
res = TEE_InvokeTACommand(sess, 0, TA_OS_TEST_CMD_TA2TA_MEMREF_MIX,
l_pts, l_params, &ret_orig);
if (res != TEE_SUCCESS) {
EMSG("TEE_InvokeTACommand failed");
goto cleanup_return;
}
/*
* Increment all values by one.
* Expected values after this step: in: 6, inout: 12, out: 17
*/
incr_values(bufsize, in, inout, out);
/*
* TA will compute: out = ++inout + in
* Expected values after this step: in: 6, inout: 13, out: 19
*/
res = TEE_InvokeTACommand(sess, 0, TA_OS_TEST_CMD_TA2TA_MEMREF_MIX,
l_pts, l_params, &ret_orig);
if (res != TEE_SUCCESS) {
EMSG("TEE_InvokeTACommand failed");
goto cleanup_return;
}
/* Check the actual values */
for (i = 0; i < bufsize; i++) {
if (in[i] != 6 || inout[i] != 13 || out[i] != 19) {
EMSG("Unexpected value in buffer(s)");
DHEXDUMP(in, bufsize);
DHEXDUMP(inout, bufsize);
DHEXDUMP(out, bufsize);
return TEE_ERROR_GENERIC;
}
}
cleanup_return:
TEE_CloseTASession(sess);
return res;
}
TEE_Result ta_entry_ta2ta_memref_mix(uint32_t param_types, TEE_Param params[4])
{
uint8_t *in;
uint8_t *inout;
uint8_t *out;
size_t bufsize;
size_t i;
if (param_types != TEE_PARAM_TYPES(TEE_PARAM_TYPE_MEMREF_INPUT,
TEE_PARAM_TYPE_MEMREF_INOUT,
TEE_PARAM_TYPE_MEMREF_OUTPUT, 0))
return TEE_ERROR_GENERIC;
bufsize = params[0].memref.size;
if (params[1].memref.size != bufsize ||
params[2].memref.size != bufsize)
return TEE_ERROR_GENERIC;
in = params[0].memref.buffer;
inout = params[1].memref.buffer;
out = params[2].memref.buffer;
for (i = 0; i < bufsize; i++)
out[i] = ++inout[i] + in[i];
return TEE_SUCCESS;
}