blob: df5ac3eea510ac447e0f9e5cea2e6a2bf4106dc8 [file] [log] [blame]
Jens Wiklander817466c2018-05-22 13:49:31 +02001/*
2 * Elliptic curves over GF(p): curve-specific data and functions
3 *
4 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 * This file is part of mbed TLS (https://tls.mbed.org)
20 */
21
22#if !defined(MBEDTLS_CONFIG_FILE)
23#include "mbedtls/config.h"
24#else
25#include MBEDTLS_CONFIG_FILE
26#endif
27
28#if defined(MBEDTLS_ECP_C)
29
30#include "mbedtls/ecp.h"
31
32#include <string.h>
33
34#if !defined(MBEDTLS_ECP_ALT)
35
36#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
37 !defined(inline) && !defined(__cplusplus)
38#define inline __inline
39#endif
40
41/*
42 * Conversion macros for embedded constants:
43 * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
44 */
45#if defined(MBEDTLS_HAVE_INT32)
46
47#define BYTES_TO_T_UINT_4( a, b, c, d ) \
48 ( (mbedtls_mpi_uint) a << 0 ) | \
49 ( (mbedtls_mpi_uint) b << 8 ) | \
50 ( (mbedtls_mpi_uint) c << 16 ) | \
51 ( (mbedtls_mpi_uint) d << 24 )
52
53#define BYTES_TO_T_UINT_2( a, b ) \
54 BYTES_TO_T_UINT_4( a, b, 0, 0 )
55
56#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
57 BYTES_TO_T_UINT_4( a, b, c, d ), \
58 BYTES_TO_T_UINT_4( e, f, g, h )
59
60#else /* 64-bits */
61
62#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
63 ( (mbedtls_mpi_uint) a << 0 ) | \
64 ( (mbedtls_mpi_uint) b << 8 ) | \
65 ( (mbedtls_mpi_uint) c << 16 ) | \
66 ( (mbedtls_mpi_uint) d << 24 ) | \
67 ( (mbedtls_mpi_uint) e << 32 ) | \
68 ( (mbedtls_mpi_uint) f << 40 ) | \
69 ( (mbedtls_mpi_uint) g << 48 ) | \
70 ( (mbedtls_mpi_uint) h << 56 )
71
72#define BYTES_TO_T_UINT_4( a, b, c, d ) \
73 BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
74
75#define BYTES_TO_T_UINT_2( a, b ) \
76 BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
77
78#endif /* bits in mbedtls_mpi_uint */
79
80/*
81 * Note: the constants are in little-endian order
82 * to be directly usable in MPIs
83 */
84
85/*
86 * Domain parameters for secp192r1
87 */
88#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
89static const mbedtls_mpi_uint secp192r1_p[] = {
90 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
91 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
92 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
93};
94static const mbedtls_mpi_uint secp192r1_b[] = {
95 BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
96 BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
97 BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
98};
99static const mbedtls_mpi_uint secp192r1_gx[] = {
100 BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
101 BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
102 BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
103};
104static const mbedtls_mpi_uint secp192r1_gy[] = {
105 BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
106 BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
107 BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
108};
109static const mbedtls_mpi_uint secp192r1_n[] = {
110 BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
111 BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
112 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
113};
114#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
115
116/*
117 * Domain parameters for secp224r1
118 */
119#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
120static const mbedtls_mpi_uint secp224r1_p[] = {
121 BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
122 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
123 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
124 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
125};
126static const mbedtls_mpi_uint secp224r1_b[] = {
127 BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
128 BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
129 BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
130 BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
131};
132static const mbedtls_mpi_uint secp224r1_gx[] = {
133 BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
134 BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
135 BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
136 BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
137};
138static const mbedtls_mpi_uint secp224r1_gy[] = {
139 BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
140 BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
141 BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
142 BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
143};
144static const mbedtls_mpi_uint secp224r1_n[] = {
145 BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
146 BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
147 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
148 BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
149};
150#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
151
152/*
153 * Domain parameters for secp256r1
154 */
155#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
156static const mbedtls_mpi_uint secp256r1_p[] = {
157 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
158 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
159 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
160 BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
161};
162static const mbedtls_mpi_uint secp256r1_b[] = {
163 BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
164 BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
165 BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
166 BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
167};
168static const mbedtls_mpi_uint secp256r1_gx[] = {
169 BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
170 BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
171 BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
172 BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
173};
174static const mbedtls_mpi_uint secp256r1_gy[] = {
175 BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
176 BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
177 BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
178 BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
179};
180static const mbedtls_mpi_uint secp256r1_n[] = {
181 BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
182 BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
183 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
184 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
185};
186#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
187
188/*
189 * Domain parameters for secp384r1
190 */
191#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
192static const mbedtls_mpi_uint secp384r1_p[] = {
193 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
194 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
195 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
196 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
197 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
198 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
199};
200static const mbedtls_mpi_uint secp384r1_b[] = {
201 BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
202 BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
203 BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
204 BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
205 BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
206 BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
207};
208static const mbedtls_mpi_uint secp384r1_gx[] = {
209 BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
210 BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
211 BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
212 BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
213 BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
214 BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
215};
216static const mbedtls_mpi_uint secp384r1_gy[] = {
217 BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
218 BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
219 BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
220 BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
221 BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
222 BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
223};
224static const mbedtls_mpi_uint secp384r1_n[] = {
225 BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
226 BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
227 BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
228 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
229 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
230 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
231};
232#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
233
234/*
235 * Domain parameters for secp521r1
236 */
237#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
238static const mbedtls_mpi_uint secp521r1_p[] = {
239 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
240 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
241 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
242 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
243 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
244 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
245 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
246 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
247 BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
248};
249static const mbedtls_mpi_uint secp521r1_b[] = {
250 BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
251 BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
252 BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
253 BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
254 BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
255 BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
256 BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
257 BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
258 BYTES_TO_T_UINT_2( 0x51, 0x00 ),
259};
260static const mbedtls_mpi_uint secp521r1_gx[] = {
261 BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
262 BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
263 BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
264 BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
265 BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
266 BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
267 BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
268 BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
269 BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
270};
271static const mbedtls_mpi_uint secp521r1_gy[] = {
272 BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
273 BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
274 BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
275 BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
276 BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
277 BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
278 BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
279 BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
280 BYTES_TO_T_UINT_2( 0x18, 0x01 ),
281};
282static const mbedtls_mpi_uint secp521r1_n[] = {
283 BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
284 BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
285 BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
286 BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
287 BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
288 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
289 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
290 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
291 BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
292};
293#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
294
295#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
296static const mbedtls_mpi_uint secp192k1_p[] = {
297 BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
298 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
299 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
300};
301static const mbedtls_mpi_uint secp192k1_a[] = {
302 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
303};
304static const mbedtls_mpi_uint secp192k1_b[] = {
305 BYTES_TO_T_UINT_2( 0x03, 0x00 ),
306};
307static const mbedtls_mpi_uint secp192k1_gx[] = {
308 BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
309 BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
310 BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
311};
312static const mbedtls_mpi_uint secp192k1_gy[] = {
313 BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
314 BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
315 BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
316};
317static const mbedtls_mpi_uint secp192k1_n[] = {
318 BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
319 BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
320 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
321};
322#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
323
324#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
325static const mbedtls_mpi_uint secp224k1_p[] = {
326 BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
327 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
328 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
329 BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
330};
331static const mbedtls_mpi_uint secp224k1_a[] = {
332 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
333};
334static const mbedtls_mpi_uint secp224k1_b[] = {
335 BYTES_TO_T_UINT_2( 0x05, 0x00 ),
336};
337static const mbedtls_mpi_uint secp224k1_gx[] = {
338 BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
339 BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
340 BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
341 BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
342};
343static const mbedtls_mpi_uint secp224k1_gy[] = {
344 BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
345 BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
346 BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
347 BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
348};
349static const mbedtls_mpi_uint secp224k1_n[] = {
350 BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
351 BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
352 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
353 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
354};
355#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
356
357#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
358static const mbedtls_mpi_uint secp256k1_p[] = {
359 BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
360 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
361 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
362 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
363};
364static const mbedtls_mpi_uint secp256k1_a[] = {
365 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
366};
367static const mbedtls_mpi_uint secp256k1_b[] = {
368 BYTES_TO_T_UINT_2( 0x07, 0x00 ),
369};
370static const mbedtls_mpi_uint secp256k1_gx[] = {
371 BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
372 BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
373 BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
374 BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
375};
376static const mbedtls_mpi_uint secp256k1_gy[] = {
377 BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
378 BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
379 BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
380 BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
381};
382static const mbedtls_mpi_uint secp256k1_n[] = {
383 BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
384 BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
385 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
386 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
387};
388#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
389
390/*
391 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
392 */
393#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
394static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
395 BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
396 BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
397 BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
398 BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
399};
400static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
401 BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
402 BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
403 BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
404 BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
405};
406static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
407 BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
408 BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
409 BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
410 BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
411};
412static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
413 BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
414 BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
415 BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
416 BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
417};
418static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
419 BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
420 BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
421 BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
422 BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
423};
424static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
425 BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
426 BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
427 BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
428 BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
429};
430#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
431
432/*
433 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
434 */
435#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
436static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
437 BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
438 BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
439 BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
440 BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
441 BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
442 BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
443};
444static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
445 BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
446 BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
447 BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
448 BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
449 BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
450 BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
451};
452static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
453 BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
454 BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
455 BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
456 BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
457 BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
458 BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
459};
460static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
461 BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
462 BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
463 BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
464 BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
465 BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
466 BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
467};
468static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
469 BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
470 BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
471 BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
472 BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
473 BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
474 BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
475};
476static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
477 BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
478 BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
479 BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
480 BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
481 BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
482 BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
483};
484#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
485
486/*
487 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
488 */
489#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
490static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
491 BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
492 BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
493 BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
494 BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
495 BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
496 BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
497 BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
498 BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
499};
500static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
501 BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
502 BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
503 BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
504 BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
505 BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
506 BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
507 BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
508 BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
509};
510static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
511 BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
512 BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
513 BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
514 BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
515 BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
516 BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
517 BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
518 BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
519};
520static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
521 BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
522 BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
523 BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
524 BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
525 BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
526 BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
527 BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
528 BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
529};
530static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
531 BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
532 BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
533 BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
534 BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
535 BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
536 BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
537 BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
538 BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
539};
540static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
541 BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
542 BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
543 BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
544 BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
545 BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
546 BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
547 BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
548 BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
549};
550#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
551
552/*
553 * Create an MPI from embedded constants
554 * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
555 */
556static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
557{
558 X->s = 1;
559 X->n = len / sizeof( mbedtls_mpi_uint );
560 X->p = (mbedtls_mpi_uint *) p;
561}
562
563/*
564 * Set an MPI to static value 1
565 */
566static inline void ecp_mpi_set1( mbedtls_mpi *X )
567{
568 static mbedtls_mpi_uint one[] = { 1 };
569 X->s = 1;
570 X->n = 1;
571 X->p = one;
572}
573
574/*
575 * Make group available from embedded constants
576 */
577static int ecp_group_load( mbedtls_ecp_group *grp,
578 const mbedtls_mpi_uint *p, size_t plen,
579 const mbedtls_mpi_uint *a, size_t alen,
580 const mbedtls_mpi_uint *b, size_t blen,
581 const mbedtls_mpi_uint *gx, size_t gxlen,
582 const mbedtls_mpi_uint *gy, size_t gylen,
583 const mbedtls_mpi_uint *n, size_t nlen)
584{
585 ecp_mpi_load( &grp->P, p, plen );
586 if( a != NULL )
587 ecp_mpi_load( &grp->A, a, alen );
588 ecp_mpi_load( &grp->B, b, blen );
589 ecp_mpi_load( &grp->N, n, nlen );
590
591 ecp_mpi_load( &grp->G.X, gx, gxlen );
592 ecp_mpi_load( &grp->G.Y, gy, gylen );
593 ecp_mpi_set1( &grp->G.Z );
594
595 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
596 grp->nbits = mbedtls_mpi_bitlen( &grp->N );
597
598 grp->h = 1;
599
600 return( 0 );
601}
602
603#if defined(MBEDTLS_ECP_NIST_OPTIM)
604/* Forward declarations */
605#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
606static int ecp_mod_p192( mbedtls_mpi * );
607#endif
608#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
609static int ecp_mod_p224( mbedtls_mpi * );
610#endif
611#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
612static int ecp_mod_p256( mbedtls_mpi * );
613#endif
614#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
615static int ecp_mod_p384( mbedtls_mpi * );
616#endif
617#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
618static int ecp_mod_p521( mbedtls_mpi * );
619#endif
620
621#define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
622#else
623#define NIST_MODP( P )
624#endif /* MBEDTLS_ECP_NIST_OPTIM */
625
626/* Additional forward declarations */
627#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
628static int ecp_mod_p255( mbedtls_mpi * );
629#endif
630#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
631static int ecp_mod_p192k1( mbedtls_mpi * );
632#endif
633#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
634static int ecp_mod_p224k1( mbedtls_mpi * );
635#endif
636#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
637static int ecp_mod_p256k1( mbedtls_mpi * );
638#endif
639
640#define LOAD_GROUP_A( G ) ecp_group_load( grp, \
641 G ## _p, sizeof( G ## _p ), \
642 G ## _a, sizeof( G ## _a ), \
643 G ## _b, sizeof( G ## _b ), \
644 G ## _gx, sizeof( G ## _gx ), \
645 G ## _gy, sizeof( G ## _gy ), \
646 G ## _n, sizeof( G ## _n ) )
647
648#define LOAD_GROUP( G ) ecp_group_load( grp, \
649 G ## _p, sizeof( G ## _p ), \
650 NULL, 0, \
651 G ## _b, sizeof( G ## _b ), \
652 G ## _gx, sizeof( G ## _gx ), \
653 G ## _gy, sizeof( G ## _gy ), \
654 G ## _n, sizeof( G ## _n ) )
655
656#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
657/*
658 * Specialized function for creating the Curve25519 group
659 */
660static int ecp_use_curve25519( mbedtls_ecp_group *grp )
661{
662 int ret;
663
664 /* Actually ( A + 2 ) / 4 */
665 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
666
667 /* P = 2^255 - 19 */
668 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
669 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
670 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
671 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
672
673 /* Y intentionaly not set, since we use x/z coordinates.
674 * This is used as a marker to identify Montgomery curves! */
675 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
676 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
677 mbedtls_mpi_free( &grp->G.Y );
678
679 /* Actually, the required msb for private keys */
680 grp->nbits = 254;
681
682cleanup:
683 if( ret != 0 )
684 mbedtls_ecp_group_free( grp );
685
686 return( ret );
687}
688#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
689
690/*
691 * Set a group using well-known domain parameters
692 */
693int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
694{
695 mbedtls_ecp_group_free( grp );
696
697 grp->id = id;
698
699 switch( id )
700 {
701#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
702 case MBEDTLS_ECP_DP_SECP192R1:
703 NIST_MODP( p192 );
704 return( LOAD_GROUP( secp192r1 ) );
705#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
706
707#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
708 case MBEDTLS_ECP_DP_SECP224R1:
709 NIST_MODP( p224 );
710 return( LOAD_GROUP( secp224r1 ) );
711#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
712
713#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
714 case MBEDTLS_ECP_DP_SECP256R1:
715 NIST_MODP( p256 );
716 return( LOAD_GROUP( secp256r1 ) );
717#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
718
719#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
720 case MBEDTLS_ECP_DP_SECP384R1:
721 NIST_MODP( p384 );
722 return( LOAD_GROUP( secp384r1 ) );
723#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
724
725#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
726 case MBEDTLS_ECP_DP_SECP521R1:
727 NIST_MODP( p521 );
728 return( LOAD_GROUP( secp521r1 ) );
729#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
730
731#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
732 case MBEDTLS_ECP_DP_SECP192K1:
733 grp->modp = ecp_mod_p192k1;
734 return( LOAD_GROUP_A( secp192k1 ) );
735#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
736
737#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
738 case MBEDTLS_ECP_DP_SECP224K1:
739 grp->modp = ecp_mod_p224k1;
740 return( LOAD_GROUP_A( secp224k1 ) );
741#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
742
743#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
744 case MBEDTLS_ECP_DP_SECP256K1:
745 grp->modp = ecp_mod_p256k1;
746 return( LOAD_GROUP_A( secp256k1 ) );
747#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
748
749#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
750 case MBEDTLS_ECP_DP_BP256R1:
751 return( LOAD_GROUP_A( brainpoolP256r1 ) );
752#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
753
754#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
755 case MBEDTLS_ECP_DP_BP384R1:
756 return( LOAD_GROUP_A( brainpoolP384r1 ) );
757#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
758
759#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
760 case MBEDTLS_ECP_DP_BP512R1:
761 return( LOAD_GROUP_A( brainpoolP512r1 ) );
762#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
763
764#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
765 case MBEDTLS_ECP_DP_CURVE25519:
766 grp->modp = ecp_mod_p255;
767 return( ecp_use_curve25519( grp ) );
768#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
769
770 default:
771 mbedtls_ecp_group_free( grp );
772 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
773 }
774}
775
776#if defined(MBEDTLS_ECP_NIST_OPTIM)
777/*
778 * Fast reduction modulo the primes used by the NIST curves.
779 *
780 * These functions are critical for speed, but not needed for correct
781 * operations. So, we make the choice to heavily rely on the internals of our
782 * bignum library, which creates a tight coupling between these functions and
783 * our MPI implementation. However, the coupling between the ECP module and
784 * MPI remains loose, since these functions can be deactivated at will.
785 */
786
787#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
788/*
789 * Compared to the way things are presented in FIPS 186-3 D.2,
790 * we proceed in columns, from right (least significant chunk) to left,
791 * adding chunks to N in place, and keeping a carry for the next chunk.
792 * This avoids moving things around in memory, and uselessly adding zeros,
793 * compared to the more straightforward, line-oriented approach.
794 *
795 * For this prime we need to handle data in chunks of 64 bits.
796 * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
797 * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
798 */
799
800/* Add 64-bit chunks (dst += src) and update carry */
801static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
802{
803 unsigned char i;
804 mbedtls_mpi_uint c = 0;
805 for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
806 {
807 *dst += c; c = ( *dst < c );
808 *dst += *src; c += ( *dst < *src );
809 }
810 *carry += c;
811}
812
813/* Add carry to a 64-bit chunk and update carry */
814static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
815{
816 unsigned char i;
817 for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
818 {
819 *dst += *carry;
820 *carry = ( *dst < *carry );
821 }
822}
823
824#define WIDTH 8 / sizeof( mbedtls_mpi_uint )
825#define A( i ) N->p + i * WIDTH
826#define ADD( i ) add64( p, A( i ), &c )
827#define NEXT p += WIDTH; carry64( p, &c )
828#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
829
830/*
831 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
832 */
833static int ecp_mod_p192( mbedtls_mpi *N )
834{
835 int ret;
836 mbedtls_mpi_uint c = 0;
837 mbedtls_mpi_uint *p, *end;
838
839 /* Make sure we have enough blocks so that A(5) is legal */
840 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
841
842 p = N->p;
843 end = p + N->n;
844
845 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
846 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
847 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
848
849cleanup:
850 return( ret );
851}
852
853#undef WIDTH
854#undef A
855#undef ADD
856#undef NEXT
857#undef LAST
858#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
859
860#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
861 defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
862 defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
863/*
864 * The reader is advised to first understand ecp_mod_p192() since the same
865 * general structure is used here, but with additional complications:
866 * (1) chunks of 32 bits, and (2) subtractions.
867 */
868
869/*
870 * For these primes, we need to handle data in chunks of 32 bits.
871 * This makes it more complicated if we use 64 bits limbs in MPI,
872 * which prevents us from using a uniform access method as for p192.
873 *
874 * So, we define a mini abstraction layer to access 32 bit chunks,
875 * load them in 'cur' for work, and store them back from 'cur' when done.
876 *
877 * While at it, also define the size of N in terms of 32-bit chunks.
878 */
879#define LOAD32 cur = A( i );
880
881#if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
882
883#define MAX32 N->n
884#define A( j ) N->p[j]
885#define STORE32 N->p[i] = cur;
886
887#else /* 64-bit */
888
889#define MAX32 N->n * 2
890#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
891#define STORE32 \
892 if( i % 2 ) { \
893 N->p[i/2] &= 0x00000000FFFFFFFF; \
894 N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
895 } else { \
896 N->p[i/2] &= 0xFFFFFFFF00000000; \
897 N->p[i/2] |= (mbedtls_mpi_uint) cur; \
898 }
899
900#endif /* sizeof( mbedtls_mpi_uint ) */
901
902/*
903 * Helpers for addition and subtraction of chunks, with signed carry.
904 */
905static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
906{
907 *dst += src;
908 *carry += ( *dst < src );
909}
910
911static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
912{
913 *carry -= ( *dst < src );
914 *dst -= src;
915}
916
917#define ADD( j ) add32( &cur, A( j ), &c );
918#define SUB( j ) sub32( &cur, A( j ), &c );
919
920/*
921 * Helpers for the main 'loop'
922 * (see fix_negative for the motivation of C)
923 */
924#define INIT( b ) \
925 int ret; \
926 signed char c = 0, cc; \
927 uint32_t cur; \
928 size_t i = 0, bits = b; \
929 mbedtls_mpi C; \
930 mbedtls_mpi_uint Cp[ b / 8 / sizeof( mbedtls_mpi_uint) + 1 ]; \
931 \
932 C.s = 1; \
933 C.n = b / 8 / sizeof( mbedtls_mpi_uint) + 1; \
934 C.p = Cp; \
935 memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) ); \
936 \
937 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, b * 2 / 8 / sizeof( mbedtls_mpi_uint ) ) ); \
938 LOAD32;
939
940#define NEXT \
941 STORE32; i++; LOAD32; \
942 cc = c; c = 0; \
943 if( cc < 0 ) \
944 sub32( &cur, -cc, &c ); \
945 else \
946 add32( &cur, cc, &c ); \
947
948#define LAST \
949 STORE32; i++; \
950 cur = c > 0 ? c : 0; STORE32; \
951 cur = 0; while( ++i < MAX32 ) { STORE32; } \
952 if( c < 0 ) fix_negative( N, c, &C, bits );
953
954/*
955 * If the result is negative, we get it in the form
956 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
957 */
958static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
959{
960 int ret;
961
962 /* C = - c * 2^(bits + 32) */
963#if !defined(MBEDTLS_HAVE_INT64)
964 ((void) bits);
965#else
966 if( bits == 224 )
967 C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
968 else
969#endif
970 C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
971
972 /* N = - ( C - N ) */
973 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
974 N->s = -1;
975
976cleanup:
977
978 return( ret );
979}
980
981#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
982/*
983 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
984 */
985static int ecp_mod_p224( mbedtls_mpi *N )
986{
987 INIT( 224 );
988
989 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
990 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
991 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
992 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
993 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
994 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
995 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
996
997cleanup:
998 return( ret );
999}
1000#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1001
1002#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1003/*
1004 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1005 */
1006static int ecp_mod_p256( mbedtls_mpi *N )
1007{
1008 INIT( 256 );
1009
1010 ADD( 8 ); ADD( 9 );
1011 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
1012
1013 ADD( 9 ); ADD( 10 );
1014 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
1015
1016 ADD( 10 ); ADD( 11 );
1017 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
1018
1019 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1020 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
1021
1022 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1023 SUB( 9 ); SUB( 10 ); NEXT; // A4
1024
1025 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1026 SUB( 10 ); SUB( 11 ); NEXT; // A5
1027
1028 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1029 SUB( 8 ); SUB( 9 ); NEXT; // A6
1030
1031 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1032 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
1033
1034cleanup:
1035 return( ret );
1036}
1037#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1038
1039#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1040/*
1041 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1042 */
1043static int ecp_mod_p384( mbedtls_mpi *N )
1044{
1045 INIT( 384 );
1046
1047 ADD( 12 ); ADD( 21 ); ADD( 20 );
1048 SUB( 23 ); NEXT; // A0
1049
1050 ADD( 13 ); ADD( 22 ); ADD( 23 );
1051 SUB( 12 ); SUB( 20 ); NEXT; // A2
1052
1053 ADD( 14 ); ADD( 23 );
1054 SUB( 13 ); SUB( 21 ); NEXT; // A2
1055
1056 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1057 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
1058
1059 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1060 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
1061
1062 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1063 SUB( 16 ); NEXT; // A5
1064
1065 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1066 SUB( 17 ); NEXT; // A6
1067
1068 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1069 SUB( 18 ); NEXT; // A7
1070
1071 ADD( 20 ); ADD( 17 ); ADD( 16 );
1072 SUB( 19 ); NEXT; // A8
1073
1074 ADD( 21 ); ADD( 18 ); ADD( 17 );
1075 SUB( 20 ); NEXT; // A9
1076
1077 ADD( 22 ); ADD( 19 ); ADD( 18 );
1078 SUB( 21 ); NEXT; // A10
1079
1080 ADD( 23 ); ADD( 20 ); ADD( 19 );
1081 SUB( 22 ); LAST; // A11
1082
1083cleanup:
1084 return( ret );
1085}
1086#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1087
1088#undef A
1089#undef LOAD32
1090#undef STORE32
1091#undef MAX32
1092#undef INIT
1093#undef NEXT
1094#undef LAST
1095
1096#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1097 MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1098 MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1099
1100#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1101/*
1102 * Here we have an actual Mersenne prime, so things are more straightforward.
1103 * However, chunks are aligned on a 'weird' boundary (521 bits).
1104 */
1105
1106/* Size of p521 in terms of mbedtls_mpi_uint */
1107#define P521_WIDTH ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1108
1109/* Bits to keep in the most significant mbedtls_mpi_uint */
1110#define P521_MASK 0x01FF
1111
1112/*
1113 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1114 * Write N as A1 + 2^521 A0, return A0 + A1
1115 */
1116static int ecp_mod_p521( mbedtls_mpi *N )
1117{
1118 int ret;
1119 size_t i;
1120 mbedtls_mpi M;
1121 mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1122 /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1123 * we need to hold bits 513 to 1056, which is 34 limbs, that is
1124 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1125
1126 if( N->n < P521_WIDTH )
1127 return( 0 );
1128
1129 /* M = A1 */
1130 M.s = 1;
1131 M.n = N->n - ( P521_WIDTH - 1 );
1132 if( M.n > P521_WIDTH + 1 )
1133 M.n = P521_WIDTH + 1;
1134 M.p = Mp;
1135 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1136 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1137
1138 /* N = A0 */
1139 N->p[P521_WIDTH - 1] &= P521_MASK;
1140 for( i = P521_WIDTH; i < N->n; i++ )
1141 N->p[i] = 0;
1142
1143 /* N = A0 + A1 */
1144 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1145
1146cleanup:
1147 return( ret );
1148}
1149
1150#undef P521_WIDTH
1151#undef P521_MASK
1152#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1153
1154#endif /* MBEDTLS_ECP_NIST_OPTIM */
1155
1156#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1157
1158/* Size of p255 in terms of mbedtls_mpi_uint */
1159#define P255_WIDTH ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1160
1161/*
1162 * Fast quasi-reduction modulo p255 = 2^255 - 19
1163 * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1164 */
1165static int ecp_mod_p255( mbedtls_mpi *N )
1166{
1167 int ret;
1168 size_t i;
1169 mbedtls_mpi M;
1170 mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1171
1172 if( N->n < P255_WIDTH )
1173 return( 0 );
1174
1175 /* M = A1 */
1176 M.s = 1;
1177 M.n = N->n - ( P255_WIDTH - 1 );
1178 if( M.n > P255_WIDTH + 1 )
1179 M.n = P255_WIDTH + 1;
1180 M.p = Mp;
1181 memset( Mp, 0, sizeof Mp );
1182 memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1183 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1184 M.n++; /* Make room for multiplication by 19 */
1185
1186 /* N = A0 */
1187 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1188 for( i = P255_WIDTH; i < N->n; i++ )
1189 N->p[i] = 0;
1190
1191 /* N = A0 + 19 * A1 */
1192 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1193 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1194
1195cleanup:
1196 return( ret );
1197}
1198#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1199
1200#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
1201 defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
1202 defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1203/*
1204 * Fast quasi-reduction modulo P = 2^s - R,
1205 * with R about 33 bits, used by the Koblitz curves.
1206 *
1207 * Write N as A0 + 2^224 A1, return A0 + R * A1.
1208 * Actually do two passes, since R is big.
1209 */
1210#define P_KOBLITZ_MAX ( 256 / 8 / sizeof( mbedtls_mpi_uint ) ) // Max limbs in P
1211#define P_KOBLITZ_R ( 8 / sizeof( mbedtls_mpi_uint ) ) // Limbs in R
1212static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1213 size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1214{
1215 int ret;
1216 size_t i;
1217 mbedtls_mpi M, R;
1218 mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1219
1220 if( N->n < p_limbs )
1221 return( 0 );
1222
1223 /* Init R */
1224 R.s = 1;
1225 R.p = Rp;
1226 R.n = P_KOBLITZ_R;
1227
1228 /* Common setup for M */
1229 M.s = 1;
1230 M.p = Mp;
1231
1232 /* M = A1 */
1233 M.n = N->n - ( p_limbs - adjust );
1234 if( M.n > p_limbs + adjust )
1235 M.n = p_limbs + adjust;
1236 memset( Mp, 0, sizeof Mp );
1237 memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1238 if( shift != 0 )
1239 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1240 M.n += R.n; /* Make room for multiplication by R */
1241
1242 /* N = A0 */
1243 if( mask != 0 )
1244 N->p[p_limbs - 1] &= mask;
1245 for( i = p_limbs; i < N->n; i++ )
1246 N->p[i] = 0;
1247
1248 /* N = A0 + R * A1 */
1249 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1250 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1251
1252 /* Second pass */
1253
1254 /* M = A1 */
1255 M.n = N->n - ( p_limbs - adjust );
1256 if( M.n > p_limbs + adjust )
1257 M.n = p_limbs + adjust;
1258 memset( Mp, 0, sizeof Mp );
1259 memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1260 if( shift != 0 )
1261 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1262 M.n += R.n; /* Make room for multiplication by R */
1263
1264 /* N = A0 */
1265 if( mask != 0 )
1266 N->p[p_limbs - 1] &= mask;
1267 for( i = p_limbs; i < N->n; i++ )
1268 N->p[i] = 0;
1269
1270 /* N = A0 + R * A1 */
1271 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1272 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1273
1274cleanup:
1275 return( ret );
1276}
1277#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1278 MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1279 MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1280
1281#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1282/*
1283 * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1284 * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1285 */
1286static int ecp_mod_p192k1( mbedtls_mpi *N )
1287{
1288 static mbedtls_mpi_uint Rp[] = {
1289 BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1290
1291 return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1292}
1293#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1294
1295#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1296/*
1297 * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1298 * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1299 */
1300static int ecp_mod_p224k1( mbedtls_mpi *N )
1301{
1302 static mbedtls_mpi_uint Rp[] = {
1303 BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1304
1305#if defined(MBEDTLS_HAVE_INT64)
1306 return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1307#else
1308 return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1309#endif
1310}
1311
1312#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1313
1314#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1315/*
1316 * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1317 * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1318 */
1319static int ecp_mod_p256k1( mbedtls_mpi *N )
1320{
1321 static mbedtls_mpi_uint Rp[] = {
1322 BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1323 return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1324}
1325#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1326
1327#endif /* !MBEDTLS_ECP_ALT */
1328
1329#endif /* MBEDTLS_ECP_C */