blob: c59e8e27f2988e2995e11bbf3924afc96a981598 [file] [log] [blame]
Edison Aic6672fd2018-02-28 15:01:47 +08001// SPDX-License-Identifier: Apache-2.0
Jens Wiklander817466c2018-05-22 13:49:31 +02002/*
3 * Elliptic curves over GF(p): generic functions
4 *
5 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
Jens Wiklander817466c2018-05-22 13:49:31 +02006 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 * This file is part of mbed TLS (https://tls.mbed.org)
20 */
21
22/*
23 * References:
24 *
25 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
26 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
27 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
28 * RFC 4492 for the related TLS structures and constants
Jens Wiklander3d3b0592019-03-20 15:30:29 +010029 * RFC 7748 for the Curve448 and Curve25519 curve definitions
Jens Wiklander817466c2018-05-22 13:49:31 +020030 *
31 * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
32 *
33 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
34 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
35 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
36 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
37 *
38 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
39 * render ECC resistant against Side Channel Attacks. IACR Cryptology
40 * ePrint Archive, 2004, vol. 2004, p. 342.
41 * <http://eprint.iacr.org/2004/342.pdf>
42 */
43
44#if !defined(MBEDTLS_CONFIG_FILE)
45#include "mbedtls/config.h"
46#else
47#include MBEDTLS_CONFIG_FILE
48#endif
49
Jens Wiklander3d3b0592019-03-20 15:30:29 +010050/**
51 * \brief Function level alternative implementation.
52 *
53 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
54 * replace certain functions in this module. The alternative implementations are
55 * typically hardware accelerators and need to activate the hardware before the
56 * computation starts and deactivate it after it finishes. The
57 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
58 * this purpose.
59 *
60 * To preserve the correct functionality the following conditions must hold:
61 *
62 * - The alternative implementation must be activated by
63 * mbedtls_internal_ecp_init() before any of the replaceable functions is
64 * called.
65 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
66 * implementation is activated.
67 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
68 * implementation is activated.
69 * - Public functions must not return while the alternative implementation is
70 * activated.
71 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
72 * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
73 * \endcode ensures that the alternative implementation supports the current
74 * group.
75 */
76#if defined(MBEDTLS_ECP_INTERNAL_ALT)
77#endif
78
Jens Wiklander817466c2018-05-22 13:49:31 +020079#if defined(MBEDTLS_ECP_C)
80
81#include "mbedtls/ecp.h"
82#include "mbedtls/threading.h"
Jens Wiklander3d3b0592019-03-20 15:30:29 +010083#include "mbedtls/platform_util.h"
Jens Wiklander817466c2018-05-22 13:49:31 +020084
85#include <string.h>
86
87#if !defined(MBEDTLS_ECP_ALT)
88
Jens Wiklander3d3b0592019-03-20 15:30:29 +010089/* Parameter validation macros based on platform_util.h */
90#define ECP_VALIDATE_RET( cond ) \
91 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
92#define ECP_VALIDATE( cond ) \
93 MBEDTLS_INTERNAL_VALIDATE( cond )
94
Jens Wiklander817466c2018-05-22 13:49:31 +020095#if defined(MBEDTLS_PLATFORM_C)
96#include "mbedtls/platform.h"
97#else
98#include <stdlib.h>
99#include <stdio.h>
100#define mbedtls_printf printf
101#define mbedtls_calloc calloc
102#define mbedtls_free free
103#endif
104
105#include "mbedtls/ecp_internal.h"
106
107#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
108 !defined(inline) && !defined(__cplusplus)
109#define inline __inline
110#endif
111
Jens Wiklander817466c2018-05-22 13:49:31 +0200112#if defined(MBEDTLS_SELF_TEST)
113/*
114 * Counts of point addition and doubling, and field multiplications.
115 * Used to test resistance of point multiplication to simple timing attacks.
116 */
117static unsigned long add_count, dbl_count, mul_count;
118#endif
119
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100120#if defined(MBEDTLS_ECP_RESTARTABLE)
121/*
122 * Maximum number of "basic operations" to be done in a row.
123 *
124 * Default value 0 means that ECC operations will not yield.
125 * Note that regardless of the value of ecp_max_ops, always at
126 * least one step is performed before yielding.
127 *
128 * Setting ecp_max_ops=1 can be suitable for testing purposes
129 * as it will interrupt computation at all possible points.
130 */
131static unsigned ecp_max_ops = 0;
132
133/*
134 * Set ecp_max_ops
135 */
136void mbedtls_ecp_set_max_ops( unsigned max_ops )
137{
138 ecp_max_ops = max_ops;
139}
140
141/*
142 * Check if restart is enabled
143 */
144int mbedtls_ecp_restart_is_enabled( void )
145{
146 return( ecp_max_ops != 0 );
147}
148
149/*
150 * Restart sub-context for ecp_mul_comb()
151 */
152struct mbedtls_ecp_restart_mul
153{
154 mbedtls_ecp_point R; /* current intermediate result */
155 size_t i; /* current index in various loops, 0 outside */
156 mbedtls_ecp_point *T; /* table for precomputed points */
157 unsigned char T_size; /* number of points in table T */
158 enum { /* what were we doing last time we returned? */
159 ecp_rsm_init = 0, /* nothing so far, dummy initial state */
160 ecp_rsm_pre_dbl, /* precompute 2^n multiples */
161 ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
162 ecp_rsm_pre_add, /* precompute remaining points by adding */
163 ecp_rsm_pre_norm_add, /* normalize all precomputed points */
164 ecp_rsm_comb_core, /* ecp_mul_comb_core() */
165 ecp_rsm_final_norm, /* do the final normalization */
166 } state;
167};
168
169/*
170 * Init restart_mul sub-context
171 */
172static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
173{
174 mbedtls_ecp_point_init( &ctx->R );
175 ctx->i = 0;
176 ctx->T = NULL;
177 ctx->T_size = 0;
178 ctx->state = ecp_rsm_init;
179}
180
181/*
182 * Free the components of a restart_mul sub-context
183 */
184static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
185{
186 unsigned char i;
187
188 if( ctx == NULL )
189 return;
190
191 mbedtls_ecp_point_free( &ctx->R );
192
193 if( ctx->T != NULL )
194 {
195 for( i = 0; i < ctx->T_size; i++ )
196 mbedtls_ecp_point_free( ctx->T + i );
197 mbedtls_free( ctx->T );
198 }
199
200 ecp_restart_rsm_init( ctx );
201}
202
203/*
204 * Restart context for ecp_muladd()
205 */
206struct mbedtls_ecp_restart_muladd
207{
208 mbedtls_ecp_point mP; /* mP value */
209 mbedtls_ecp_point R; /* R intermediate result */
210 enum { /* what should we do next? */
211 ecp_rsma_mul1 = 0, /* first multiplication */
212 ecp_rsma_mul2, /* second multiplication */
213 ecp_rsma_add, /* addition */
214 ecp_rsma_norm, /* normalization */
215 } state;
216};
217
218/*
219 * Init restart_muladd sub-context
220 */
221static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
222{
223 mbedtls_ecp_point_init( &ctx->mP );
224 mbedtls_ecp_point_init( &ctx->R );
225 ctx->state = ecp_rsma_mul1;
226}
227
228/*
229 * Free the components of a restart_muladd sub-context
230 */
231static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
232{
233 if( ctx == NULL )
234 return;
235
236 mbedtls_ecp_point_free( &ctx->mP );
237 mbedtls_ecp_point_free( &ctx->R );
238
239 ecp_restart_ma_init( ctx );
240}
241
242/*
243 * Initialize a restart context
244 */
245void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
246{
247 ECP_VALIDATE( ctx != NULL );
248 ctx->ops_done = 0;
249 ctx->depth = 0;
250 ctx->rsm = NULL;
251 ctx->ma = NULL;
252}
253
254/*
255 * Free the components of a restart context
256 */
257void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
258{
259 if( ctx == NULL )
260 return;
261
262 ecp_restart_rsm_free( ctx->rsm );
263 mbedtls_free( ctx->rsm );
264
265 ecp_restart_ma_free( ctx->ma );
266 mbedtls_free( ctx->ma );
267
268 mbedtls_ecp_restart_init( ctx );
269}
270
271/*
272 * Check if we can do the next step
273 */
274int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
275 mbedtls_ecp_restart_ctx *rs_ctx,
276 unsigned ops )
277{
278 ECP_VALIDATE_RET( grp != NULL );
279
280 if( rs_ctx != NULL && ecp_max_ops != 0 )
281 {
282 /* scale depending on curve size: the chosen reference is 256-bit,
283 * and multiplication is quadratic. Round to the closest integer. */
284 if( grp->pbits >= 512 )
285 ops *= 4;
286 else if( grp->pbits >= 384 )
287 ops *= 2;
288
289 /* Avoid infinite loops: always allow first step.
290 * Because of that, however, it's not generally true
291 * that ops_done <= ecp_max_ops, so the check
292 * ops_done > ecp_max_ops below is mandatory. */
293 if( ( rs_ctx->ops_done != 0 ) &&
294 ( rs_ctx->ops_done > ecp_max_ops ||
295 ops > ecp_max_ops - rs_ctx->ops_done ) )
296 {
297 return( MBEDTLS_ERR_ECP_IN_PROGRESS );
298 }
299
300 /* update running count */
301 rs_ctx->ops_done += ops;
302 }
303
304 return( 0 );
305}
306
307/* Call this when entering a function that needs its own sub-context */
308#define ECP_RS_ENTER( SUB ) do { \
309 /* reset ops count for this call if top-level */ \
310 if( rs_ctx != NULL && rs_ctx->depth++ == 0 ) \
311 rs_ctx->ops_done = 0; \
312 \
313 /* set up our own sub-context if needed */ \
314 if( mbedtls_ecp_restart_is_enabled() && \
315 rs_ctx != NULL && rs_ctx->SUB == NULL ) \
316 { \
317 rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) ); \
318 if( rs_ctx->SUB == NULL ) \
319 return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); \
320 \
321 ecp_restart_## SUB ##_init( rs_ctx->SUB ); \
322 } \
323} while( 0 )
324
325/* Call this when leaving a function that needs its own sub-context */
326#define ECP_RS_LEAVE( SUB ) do { \
327 /* clear our sub-context when not in progress (done or error) */ \
328 if( rs_ctx != NULL && rs_ctx->SUB != NULL && \
329 ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) \
330 { \
331 ecp_restart_## SUB ##_free( rs_ctx->SUB ); \
332 mbedtls_free( rs_ctx->SUB ); \
333 rs_ctx->SUB = NULL; \
334 } \
335 \
336 if( rs_ctx != NULL ) \
337 rs_ctx->depth--; \
338} while( 0 )
339
340#else /* MBEDTLS_ECP_RESTARTABLE */
341
342#define ECP_RS_ENTER( sub ) (void) rs_ctx;
343#define ECP_RS_LEAVE( sub ) (void) rs_ctx;
344
345#endif /* MBEDTLS_ECP_RESTARTABLE */
346
Jens Wiklander817466c2018-05-22 13:49:31 +0200347#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
348 defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
349 defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
350 defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
351 defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \
352 defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \
353 defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \
354 defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \
355 defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
356 defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
357 defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
358#define ECP_SHORTWEIERSTRASS
359#endif
360
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100361#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
362 defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
Jens Wiklander817466c2018-05-22 13:49:31 +0200363#define ECP_MONTGOMERY
364#endif
365
366/*
367 * Curve types: internal for now, might be exposed later
368 */
369typedef enum
370{
371 ECP_TYPE_NONE = 0,
372 ECP_TYPE_SHORT_WEIERSTRASS, /* y^2 = x^3 + a x + b */
373 ECP_TYPE_MONTGOMERY, /* y^2 = x^3 + a x^2 + x */
374} ecp_curve_type;
375
376/*
377 * List of supported curves:
378 * - internal ID
379 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
380 * - size in bits
381 * - readable name
382 *
383 * Curves are listed in order: largest curves first, and for a given size,
384 * fastest curves first. This provides the default order for the SSL module.
385 *
386 * Reminder: update profiles in x509_crt.c when adding a new curves!
387 */
388static const mbedtls_ecp_curve_info ecp_supported_curves[] =
389{
390#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
391 { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
392#endif
393#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
394 { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
395#endif
396#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
397 { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
398#endif
399#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
400 { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
401#endif
402#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
403 { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
404#endif
405#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
406 { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
407#endif
408#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
409 { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
410#endif
411#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
412 { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
413#endif
414#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
415 { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
416#endif
417#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
418 { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
419#endif
420#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
421 { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
422#endif
423 { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
424};
425
426#define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
427 sizeof( ecp_supported_curves[0] )
428
429static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
430
431/*
432 * List of supported curves and associated info
433 */
434const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
435{
436 return( ecp_supported_curves );
437}
438
439/*
440 * List of supported curves, group ID only
441 */
442const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
443{
444 static int init_done = 0;
445
446 if( ! init_done )
447 {
448 size_t i = 0;
449 const mbedtls_ecp_curve_info *curve_info;
450
451 for( curve_info = mbedtls_ecp_curve_list();
452 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
453 curve_info++ )
454 {
455 ecp_supported_grp_id[i++] = curve_info->grp_id;
456 }
457 ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
458
459 init_done = 1;
460 }
461
462 return( ecp_supported_grp_id );
463}
464
465/*
466 * Get the curve info for the internal identifier
467 */
468const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
469{
470 const mbedtls_ecp_curve_info *curve_info;
471
472 for( curve_info = mbedtls_ecp_curve_list();
473 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
474 curve_info++ )
475 {
476 if( curve_info->grp_id == grp_id )
477 return( curve_info );
478 }
479
480 return( NULL );
481}
482
483/*
484 * Get the curve info from the TLS identifier
485 */
486const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
487{
488 const mbedtls_ecp_curve_info *curve_info;
489
490 for( curve_info = mbedtls_ecp_curve_list();
491 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
492 curve_info++ )
493 {
494 if( curve_info->tls_id == tls_id )
495 return( curve_info );
496 }
497
498 return( NULL );
499}
500
501/*
502 * Get the curve info from the name
503 */
504const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
505{
506 const mbedtls_ecp_curve_info *curve_info;
507
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100508 if( name == NULL )
509 return( NULL );
510
Jens Wiklander817466c2018-05-22 13:49:31 +0200511 for( curve_info = mbedtls_ecp_curve_list();
512 curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
513 curve_info++ )
514 {
515 if( strcmp( curve_info->name, name ) == 0 )
516 return( curve_info );
517 }
518
519 return( NULL );
520}
521
522/*
523 * Get the type of a curve
524 */
525static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp )
526{
527 if( grp->G.X.p == NULL )
528 return( ECP_TYPE_NONE );
529
530 if( grp->G.Y.p == NULL )
531 return( ECP_TYPE_MONTGOMERY );
532 else
533 return( ECP_TYPE_SHORT_WEIERSTRASS );
534}
535
536/*
537 * Initialize (the components of) a point
538 */
539void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
540{
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100541 ECP_VALIDATE( pt != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200542
543 mbedtls_mpi_init( &pt->X );
544 mbedtls_mpi_init( &pt->Y );
545 mbedtls_mpi_init( &pt->Z );
546}
547
548/*
549 * Initialize (the components of) a group
550 */
551void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
552{
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100553 ECP_VALIDATE( grp != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200554
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100555 grp->id = MBEDTLS_ECP_DP_NONE;
556 mbedtls_mpi_init( &grp->P );
557 mbedtls_mpi_init( &grp->A );
558 mbedtls_mpi_init( &grp->B );
559 mbedtls_ecp_point_init( &grp->G );
560 mbedtls_mpi_init( &grp->N );
561 grp->pbits = 0;
562 grp->nbits = 0;
563 grp->h = 0;
564 grp->modp = NULL;
565 grp->t_pre = NULL;
566 grp->t_post = NULL;
567 grp->t_data = NULL;
568 grp->T = NULL;
569 grp->T_size = 0;
Jens Wiklander817466c2018-05-22 13:49:31 +0200570}
571
572/*
573 * Initialize (the components of) a key pair
574 */
575void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
576{
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100577 ECP_VALIDATE( key != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200578
579 mbedtls_ecp_group_init( &key->grp );
580 mbedtls_mpi_init( &key->d );
581 mbedtls_ecp_point_init( &key->Q );
582}
583
584/*
585 * Unallocate (the components of) a point
586 */
587void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
588{
589 if( pt == NULL )
590 return;
591
592 mbedtls_mpi_free( &( pt->X ) );
593 mbedtls_mpi_free( &( pt->Y ) );
594 mbedtls_mpi_free( &( pt->Z ) );
595}
596
597/*
598 * Unallocate (the components of) a group
599 */
600void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
601{
602 size_t i;
603
604 if( grp == NULL )
605 return;
606
607 if( grp->h != 1 )
608 {
609 mbedtls_mpi_free( &grp->P );
610 mbedtls_mpi_free( &grp->A );
611 mbedtls_mpi_free( &grp->B );
612 mbedtls_ecp_point_free( &grp->G );
613 mbedtls_mpi_free( &grp->N );
614 }
615
616 if( grp->T != NULL )
617 {
618 for( i = 0; i < grp->T_size; i++ )
619 mbedtls_ecp_point_free( &grp->T[i] );
620 mbedtls_free( grp->T );
621 }
622
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100623 mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
Jens Wiklander817466c2018-05-22 13:49:31 +0200624}
625
626/*
627 * Unallocate (the components of) a key pair
628 */
629void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
630{
631 if( key == NULL )
632 return;
633
634 mbedtls_ecp_group_free( &key->grp );
635 mbedtls_mpi_free( &key->d );
636 mbedtls_ecp_point_free( &key->Q );
637}
638
639/*
640 * Copy the contents of a point
641 */
642int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
643{
644 int ret;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100645 ECP_VALIDATE_RET( P != NULL );
646 ECP_VALIDATE_RET( Q != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200647
648 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
649 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
650 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
651
652cleanup:
653 return( ret );
654}
655
656/*
657 * Copy the contents of a group object
658 */
659int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
660{
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100661 ECP_VALIDATE_RET( dst != NULL );
662 ECP_VALIDATE_RET( src != NULL );
663
664 return( mbedtls_ecp_group_load( dst, src->id ) );
Jens Wiklander817466c2018-05-22 13:49:31 +0200665}
666
667/*
668 * Set point to zero
669 */
670int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
671{
672 int ret;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100673 ECP_VALIDATE_RET( pt != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200674
675 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
676 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
677 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
678
679cleanup:
680 return( ret );
681}
682
683/*
684 * Tell if a point is zero
685 */
686int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
687{
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100688 ECP_VALIDATE_RET( pt != NULL );
689
Jens Wiklander817466c2018-05-22 13:49:31 +0200690 return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
691}
692
693/*
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100694 * Compare two points lazily
Jens Wiklander817466c2018-05-22 13:49:31 +0200695 */
696int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
697 const mbedtls_ecp_point *Q )
698{
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100699 ECP_VALIDATE_RET( P != NULL );
700 ECP_VALIDATE_RET( Q != NULL );
701
Jens Wiklander817466c2018-05-22 13:49:31 +0200702 if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
703 mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
704 mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
705 {
706 return( 0 );
707 }
708
709 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
710}
711
712/*
713 * Import a non-zero point from ASCII strings
714 */
715int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
716 const char *x, const char *y )
717{
718 int ret;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100719 ECP_VALIDATE_RET( P != NULL );
720 ECP_VALIDATE_RET( x != NULL );
721 ECP_VALIDATE_RET( y != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200722
723 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
724 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
725 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
726
727cleanup:
728 return( ret );
729}
730
731/*
732 * Export a point into unsigned binary data (SEC1 2.3.3)
733 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100734int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
735 const mbedtls_ecp_point *P,
736 int format, size_t *olen,
737 unsigned char *buf, size_t buflen )
Jens Wiklander817466c2018-05-22 13:49:31 +0200738{
739 int ret = 0;
740 size_t plen;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100741 ECP_VALIDATE_RET( grp != NULL );
742 ECP_VALIDATE_RET( P != NULL );
743 ECP_VALIDATE_RET( olen != NULL );
744 ECP_VALIDATE_RET( buf != NULL );
745 ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
746 format == MBEDTLS_ECP_PF_COMPRESSED );
Jens Wiklander817466c2018-05-22 13:49:31 +0200747
748 /*
749 * Common case: P == 0
750 */
751 if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
752 {
753 if( buflen < 1 )
754 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
755
756 buf[0] = 0x00;
757 *olen = 1;
758
759 return( 0 );
760 }
761
762 plen = mbedtls_mpi_size( &grp->P );
763
764 if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
765 {
766 *olen = 2 * plen + 1;
767
768 if( buflen < *olen )
769 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
770
771 buf[0] = 0x04;
772 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
773 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
774 }
775 else if( format == MBEDTLS_ECP_PF_COMPRESSED )
776 {
777 *olen = plen + 1;
778
779 if( buflen < *olen )
780 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
781
782 buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
783 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
784 }
785
786cleanup:
787 return( ret );
788}
789
790/*
791 * Import a point from unsigned binary data (SEC1 2.3.4)
792 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100793int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
794 mbedtls_ecp_point *pt,
795 const unsigned char *buf, size_t ilen )
Jens Wiklander817466c2018-05-22 13:49:31 +0200796{
797 int ret;
798 size_t plen;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100799 ECP_VALIDATE_RET( grp != NULL );
800 ECP_VALIDATE_RET( pt != NULL );
801 ECP_VALIDATE_RET( buf != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200802
803 if( ilen < 1 )
804 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
805
806 if( buf[0] == 0x00 )
807 {
808 if( ilen == 1 )
809 return( mbedtls_ecp_set_zero( pt ) );
810 else
811 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
812 }
813
814 plen = mbedtls_mpi_size( &grp->P );
815
816 if( buf[0] != 0x04 )
817 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
818
819 if( ilen != 2 * plen + 1 )
820 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
821
822 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
823 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
824 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
825
826cleanup:
827 return( ret );
828}
829
830/*
831 * Import a point from a TLS ECPoint record (RFC 4492)
832 * struct {
833 * opaque point <1..2^8-1>;
834 * } ECPoint;
835 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100836int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
837 mbedtls_ecp_point *pt,
838 const unsigned char **buf, size_t buf_len )
Jens Wiklander817466c2018-05-22 13:49:31 +0200839{
840 unsigned char data_len;
841 const unsigned char *buf_start;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100842 ECP_VALIDATE_RET( grp != NULL );
843 ECP_VALIDATE_RET( pt != NULL );
844 ECP_VALIDATE_RET( buf != NULL );
845 ECP_VALIDATE_RET( *buf != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200846
847 /*
848 * We must have at least two bytes (1 for length, at least one for data)
849 */
850 if( buf_len < 2 )
851 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
852
853 data_len = *(*buf)++;
854 if( data_len < 1 || data_len > buf_len - 1 )
855 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
856
857 /*
858 * Save buffer start for read_binary and update buf
859 */
860 buf_start = *buf;
861 *buf += data_len;
862
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100863 return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
Jens Wiklander817466c2018-05-22 13:49:31 +0200864}
865
866/*
867 * Export a point as a TLS ECPoint record (RFC 4492)
868 * struct {
869 * opaque point <1..2^8-1>;
870 * } ECPoint;
871 */
872int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
873 int format, size_t *olen,
874 unsigned char *buf, size_t blen )
875{
876 int ret;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100877 ECP_VALIDATE_RET( grp != NULL );
878 ECP_VALIDATE_RET( pt != NULL );
879 ECP_VALIDATE_RET( olen != NULL );
880 ECP_VALIDATE_RET( buf != NULL );
881 ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
882 format == MBEDTLS_ECP_PF_COMPRESSED );
Jens Wiklander817466c2018-05-22 13:49:31 +0200883
884 /*
885 * buffer length must be at least one, for our length byte
886 */
887 if( blen < 1 )
888 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
889
890 if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
891 olen, buf + 1, blen - 1) ) != 0 )
892 return( ret );
893
894 /*
895 * write length to the first byte and update total length
896 */
897 buf[0] = (unsigned char) *olen;
898 ++*olen;
899
900 return( 0 );
901}
902
903/*
904 * Set a group from an ECParameters record (RFC 4492)
905 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100906int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
907 const unsigned char **buf, size_t len )
908{
909 int ret;
910 mbedtls_ecp_group_id grp_id;
911 ECP_VALIDATE_RET( grp != NULL );
912 ECP_VALIDATE_RET( buf != NULL );
913 ECP_VALIDATE_RET( *buf != NULL );
914
915 if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
916 return( ret );
917
918 return( mbedtls_ecp_group_load( grp, grp_id ) );
919}
920
921/*
922 * Read a group id from an ECParameters record (RFC 4492) and convert it to
923 * mbedtls_ecp_group_id.
924 */
925int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
926 const unsigned char **buf, size_t len )
Jens Wiklander817466c2018-05-22 13:49:31 +0200927{
928 uint16_t tls_id;
929 const mbedtls_ecp_curve_info *curve_info;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100930 ECP_VALIDATE_RET( grp != NULL );
931 ECP_VALIDATE_RET( buf != NULL );
932 ECP_VALIDATE_RET( *buf != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200933
934 /*
935 * We expect at least three bytes (see below)
936 */
937 if( len < 3 )
938 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
939
940 /*
941 * First byte is curve_type; only named_curve is handled
942 */
943 if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
944 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
945
946 /*
947 * Next two bytes are the namedcurve value
948 */
949 tls_id = *(*buf)++;
950 tls_id <<= 8;
951 tls_id |= *(*buf)++;
952
953 if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
954 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
955
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100956 *grp = curve_info->grp_id;
957
958 return( 0 );
Jens Wiklander817466c2018-05-22 13:49:31 +0200959}
960
961/*
962 * Write the ECParameters record corresponding to a group (RFC 4492)
963 */
964int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
965 unsigned char *buf, size_t blen )
966{
967 const mbedtls_ecp_curve_info *curve_info;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100968 ECP_VALIDATE_RET( grp != NULL );
969 ECP_VALIDATE_RET( buf != NULL );
970 ECP_VALIDATE_RET( olen != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200971
972 if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
973 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
974
975 /*
976 * We are going to write 3 bytes (see below)
977 */
978 *olen = 3;
979 if( blen < *olen )
980 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
981
982 /*
983 * First byte is curve_type, always named_curve
984 */
985 *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
986
987 /*
988 * Next two bytes are the namedcurve value
989 */
990 buf[0] = curve_info->tls_id >> 8;
991 buf[1] = curve_info->tls_id & 0xFF;
992
993 return( 0 );
994}
995
996/*
997 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
998 * See the documentation of struct mbedtls_ecp_group.
999 *
1000 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
1001 */
1002static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
1003{
1004 int ret;
1005
1006 if( grp->modp == NULL )
1007 return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
1008
1009 /* N->s < 0 is a much faster test, which fails only if N is 0 */
1010 if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
1011 mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
1012 {
1013 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1014 }
1015
1016 MBEDTLS_MPI_CHK( grp->modp( N ) );
1017
1018 /* N->s < 0 is a much faster test, which fails only if N is 0 */
1019 while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
1020 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
1021
1022 while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
1023 /* we known P, N and the result are positive */
1024 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
1025
1026cleanup:
1027 return( ret );
1028}
1029
1030/*
1031 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1032 *
1033 * In order to guarantee that, we need to ensure that operands of
1034 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1035 * bring the result back to this range.
1036 *
1037 * The following macros are shortcuts for doing that.
1038 */
1039
1040/*
1041 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1042 */
1043#if defined(MBEDTLS_SELF_TEST)
1044#define INC_MUL_COUNT mul_count++;
1045#else
1046#define INC_MUL_COUNT
1047#endif
1048
Jerome Forissier5b25c762020-04-07 11:18:49 +02001049#define MOD_MUL( N ) \
1050 do \
1051 { \
1052 MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) ); \
1053 INC_MUL_COUNT \
1054 } while( 0 )
Jens Wiklander817466c2018-05-22 13:49:31 +02001055
1056/*
1057 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1058 * N->s < 0 is a very fast test, which fails only if N is 0
1059 */
Jerome Forissier5b25c762020-04-07 11:18:49 +02001060#define MOD_SUB( N ) \
1061 while( (N).s < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 ) \
1062 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) )
Jens Wiklander817466c2018-05-22 13:49:31 +02001063
1064/*
1065 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1066 * We known P, N and the result are positive, so sub_abs is correct, and
1067 * a bit faster.
1068 */
Jerome Forissier5b25c762020-04-07 11:18:49 +02001069#define MOD_ADD( N ) \
1070 while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 ) \
1071 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) )
Jens Wiklander817466c2018-05-22 13:49:31 +02001072
1073#if defined(ECP_SHORTWEIERSTRASS)
1074/*
1075 * For curves in short Weierstrass form, we do all the internal operations in
1076 * Jacobian coordinates.
1077 *
1078 * For multiplication, we'll use a comb method with coutermeasueres against
1079 * SPA, hence timing attacks.
1080 */
1081
1082/*
1083 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
1084 * Cost: 1N := 1I + 3M + 1S
1085 */
1086static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
1087{
1088 int ret;
1089 mbedtls_mpi Zi, ZZi;
1090
1091 if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
1092 return( 0 );
1093
1094#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001095 if( mbedtls_internal_ecp_grp_capable( grp ) )
1096 return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02001097#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001098
Jens Wiklander817466c2018-05-22 13:49:31 +02001099 mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1100
1101 /*
1102 * X = X / Z^2 mod p
1103 */
1104 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
1105 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
1106 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X );
1107
1108 /*
1109 * Y = Y / Z^3 mod p
1110 */
1111 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y );
1112 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y );
1113
1114 /*
1115 * Z = 1
1116 */
1117 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
1118
1119cleanup:
1120
1121 mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1122
1123 return( ret );
1124}
1125
1126/*
1127 * Normalize jacobian coordinates of an array of (pointers to) points,
1128 * using Montgomery's trick to perform only one inversion mod P.
1129 * (See for example Cohen's "A Course in Computational Algebraic Number
1130 * Theory", Algorithm 10.3.4.)
1131 *
1132 * Warning: fails (returning an error) if one of the points is zero!
1133 * This should never happen, see choice of w in ecp_mul_comb().
1134 *
1135 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1136 */
1137static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001138 mbedtls_ecp_point *T[], size_t T_size )
Jens Wiklander817466c2018-05-22 13:49:31 +02001139{
1140 int ret;
1141 size_t i;
1142 mbedtls_mpi *c, u, Zi, ZZi;
1143
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001144 if( T_size < 2 )
Jens Wiklander817466c2018-05-22 13:49:31 +02001145 return( ecp_normalize_jac( grp, *T ) );
1146
1147#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001148 if( mbedtls_internal_ecp_grp_capable( grp ) )
1149 return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02001150#endif
1151
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001152 if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL )
Jens Wiklander817466c2018-05-22 13:49:31 +02001153 return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
1154
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001155 for( i = 0; i < T_size; i++ )
1156 mbedtls_mpi_init( &c[i] );
1157
Jens Wiklander817466c2018-05-22 13:49:31 +02001158 mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1159
1160 /*
1161 * c[i] = Z_0 * ... * Z_i
1162 */
1163 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001164 for( i = 1; i < T_size; i++ )
Jens Wiklander817466c2018-05-22 13:49:31 +02001165 {
1166 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
1167 MOD_MUL( c[i] );
1168 }
1169
1170 /*
1171 * u = 1 / (Z_0 * ... * Z_n) mod P
1172 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001173 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[T_size-1], &grp->P ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02001174
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001175 for( i = T_size - 1; ; i-- )
Jens Wiklander817466c2018-05-22 13:49:31 +02001176 {
1177 /*
1178 * Zi = 1 / Z_i mod p
1179 * u = 1 / (Z_0 * ... * Z_i) mod P
1180 */
1181 if( i == 0 ) {
1182 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
1183 }
1184 else
1185 {
1186 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
1187 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u, &u, &T[i]->Z ) ); MOD_MUL( u );
1188 }
1189
1190 /*
1191 * proceed as in normalize()
1192 */
1193 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
1194 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
1195 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
1196 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi ) ); MOD_MUL( T[i]->Y );
1197
1198 /*
1199 * Post-precessing: reclaim some memory by shrinking coordinates
1200 * - not storing Z (always 1)
1201 * - shrinking other coordinates, but still keeping the same number of
1202 * limbs as P, as otherwise it will too likely be regrown too fast.
1203 */
1204 MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
1205 MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
1206 mbedtls_mpi_free( &T[i]->Z );
1207
1208 if( i == 0 )
1209 break;
1210 }
1211
1212cleanup:
1213
1214 mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001215 for( i = 0; i < T_size; i++ )
Jens Wiklander817466c2018-05-22 13:49:31 +02001216 mbedtls_mpi_free( &c[i] );
1217 mbedtls_free( c );
1218
1219 return( ret );
1220}
1221
1222/*
1223 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1224 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1225 */
1226static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
1227 mbedtls_ecp_point *Q,
1228 unsigned char inv )
1229{
1230 int ret;
1231 unsigned char nonzero;
1232 mbedtls_mpi mQY;
1233
1234 mbedtls_mpi_init( &mQY );
1235
1236 /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
1237 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
1238 nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
1239 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
1240
1241cleanup:
1242 mbedtls_mpi_free( &mQY );
1243
1244 return( ret );
1245}
1246
1247/*
1248 * Point doubling R = 2 P, Jacobian coordinates
1249 *
1250 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1251 *
1252 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1253 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1254 *
1255 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1256 *
1257 * Cost: 1D := 3M + 4S (A == 0)
1258 * 4M + 4S (A == -3)
1259 * 3M + 6S + 1a otherwise
1260 */
1261static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1262 const mbedtls_ecp_point *P )
1263{
1264 int ret;
1265 mbedtls_mpi M, S, T, U;
1266
1267#if defined(MBEDTLS_SELF_TEST)
1268 dbl_count++;
1269#endif
1270
1271#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001272 if( mbedtls_internal_ecp_grp_capable( grp ) )
1273 return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02001274#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1275
1276 mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
1277
1278 /* Special case for A = -3 */
1279 if( grp->A.p == NULL )
1280 {
1281 /* M = 3(X + Z^2)(X - Z^2) */
1282 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
1283 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &P->X, &S ) ); MOD_ADD( T );
1284 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U, &P->X, &S ) ); MOD_SUB( U );
1285 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &T, &U ) ); MOD_MUL( S );
1286 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
1287 }
1288 else
1289 {
1290 /* M = 3.X^2 */
1291 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->X, &P->X ) ); MOD_MUL( S );
1292 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
1293
1294 /* Optimize away for "koblitz" curves with A = 0 */
1295 if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
1296 {
1297 /* M += A.Z^4 */
1298 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
1299 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &S, &S ) ); MOD_MUL( T );
1300 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &T, &grp->A ) ); MOD_MUL( S );
1301 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &S ) ); MOD_ADD( M );
1302 }
1303 }
1304
1305 /* S = 4.X.Y^2 */
1306 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &P->Y, &P->Y ) ); MOD_MUL( T );
1307 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T, 1 ) ); MOD_ADD( T );
1308 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->X, &T ) ); MOD_MUL( S );
1309 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S, 1 ) ); MOD_ADD( S );
1310
1311 /* U = 8.Y^4 */
1312 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U, &T, &T ) ); MOD_MUL( U );
1313 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
1314
1315 /* T = M^2 - 2.S */
1316 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &M, &M ) ); MOD_MUL( T );
1317 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
1318 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
1319
1320 /* S = M(S - T) - U */
1321 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S, &S, &T ) ); MOD_SUB( S );
1322 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &S, &M ) ); MOD_MUL( S );
1323 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S, &S, &U ) ); MOD_SUB( S );
1324
1325 /* U = 2.Y.Z */
1326 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U, &P->Y, &P->Z ) ); MOD_MUL( U );
1327 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
1328
1329 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
1330 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
1331 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
1332
1333cleanup:
1334 mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
1335
1336 return( ret );
1337}
1338
1339/*
1340 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1341 *
1342 * The coordinates of Q must be normalized (= affine),
1343 * but those of P don't need to. R is not normalized.
1344 *
1345 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1346 * None of these cases can happen as intermediate step in ecp_mul_comb():
1347 * - at each step, P, Q and R are multiples of the base point, the factor
1348 * being less than its order, so none of them is zero;
1349 * - Q is an odd multiple of the base point, P an even multiple,
1350 * due to the choice of precomputed points in the modified comb method.
1351 * So branches for these cases do not leak secret information.
1352 *
1353 * We accept Q->Z being unset (saving memory in tables) as meaning 1.
1354 *
1355 * Cost: 1A := 8M + 3S
1356 */
1357static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1358 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
1359{
1360 int ret;
1361 mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
1362
1363#if defined(MBEDTLS_SELF_TEST)
1364 add_count++;
1365#endif
1366
1367#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001368 if( mbedtls_internal_ecp_grp_capable( grp ) )
1369 return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02001370#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1371
1372 /*
1373 * Trivial cases: P == 0 or Q == 0 (case 1)
1374 */
1375 if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
1376 return( mbedtls_ecp_copy( R, Q ) );
1377
1378 if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
1379 return( mbedtls_ecp_copy( R, P ) );
1380
1381 /*
1382 * Make sure Q coordinates are normalized
1383 */
1384 if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
1385 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1386
1387 mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
1388 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
1389
1390 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
1391 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
1392 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
1393 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
1394 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
1395 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
1396
1397 /* Special cases (2) and (3) */
1398 if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
1399 {
1400 if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
1401 {
1402 ret = ecp_double_jac( grp, R, P );
1403 goto cleanup;
1404 }
1405 else
1406 {
1407 ret = mbedtls_ecp_set_zero( R );
1408 goto cleanup;
1409 }
1410 }
1411
1412 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
1413 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
1414 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
1415 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
1416 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
1417 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
1418 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
1419 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
1420 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
1421 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
1422 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
1423 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
1424
1425 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
1426 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
1427 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
1428
1429cleanup:
1430
1431 mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
1432 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
1433
1434 return( ret );
1435}
1436
1437/*
1438 * Randomize jacobian coordinates:
1439 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1440 * This is sort of the reverse operation of ecp_normalize_jac().
1441 *
1442 * This countermeasure was first suggested in [2].
1443 */
1444static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1445 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1446{
1447 int ret;
1448 mbedtls_mpi l, ll;
1449 size_t p_size;
1450 int count = 0;
1451
1452#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001453 if( mbedtls_internal_ecp_grp_capable( grp ) )
1454 return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02001455#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1456
1457 p_size = ( grp->pbits + 7 ) / 8;
1458 mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
1459
1460 /* Generate l such that 1 < l < p */
1461 do
1462 {
1463 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
1464
1465 while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1466 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
1467
1468 if( count++ > 10 )
1469 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
1470 }
1471 while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
1472
1473 /* Z = l * Z */
1474 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z, &pt->Z, &l ) ); MOD_MUL( pt->Z );
1475
1476 /* X = l^2 * X */
1477 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll, &l, &l ) ); MOD_MUL( ll );
1478 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X, &pt->X, &ll ) ); MOD_MUL( pt->X );
1479
1480 /* Y = l^3 * Y */
1481 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll, &ll, &l ) ); MOD_MUL( ll );
1482 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &ll ) ); MOD_MUL( pt->Y );
1483
1484cleanup:
1485 mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
1486
1487 return( ret );
1488}
1489
1490/*
1491 * Check and define parameters used by the comb method (see below for details)
1492 */
1493#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1494#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1495#endif
1496
1497/* d = ceil( n / w ) */
1498#define COMB_MAX_D ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1499
1500/* number of precomputed points */
1501#define COMB_MAX_PRE ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1502
1503/*
1504 * Compute the representation of m that will be used with our comb method.
1505 *
1506 * The basic comb method is described in GECC 3.44 for example. We use a
1507 * modified version that provides resistance to SPA by avoiding zero
1508 * digits in the representation as in [3]. We modify the method further by
1509 * requiring that all K_i be odd, which has the small cost that our
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001510 * representation uses one more K_i, due to carries, but saves on the size of
1511 * the precomputed table.
Jens Wiklander817466c2018-05-22 13:49:31 +02001512 *
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001513 * Summary of the comb method and its modifications:
1514 *
1515 * - The goal is to compute m*P for some w*d-bit integer m.
1516 *
1517 * - The basic comb method splits m into the w-bit integers
1518 * x[0] .. x[d-1] where x[i] consists of the bits in m whose
1519 * index has residue i modulo d, and computes m * P as
1520 * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1521 * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1522 *
1523 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1524 * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1525 * thereby successively converting it into a form where all summands
1526 * are nonzero, at the cost of negative summands. This is the basic idea of [3].
1527 *
1528 * - More generally, even if x[i+1] != 0, we can first transform the sum as
1529 * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1530 * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1531 * Performing and iterating this procedure for those x[i] that are even
1532 * (keeping track of carry), we can transform the original sum into one of the form
1533 * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1534 * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1535 * which is why we are only computing half of it in the first place in
1536 * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1537 *
1538 * - For the sake of compactness, only the seven low-order bits of x[i]
1539 * are used to represent its absolute value (K_i in the paper), and the msb
1540 * of x[i] encodes the sign (s_i in the paper): it is set if and only if
1541 * if s_i == -1;
Jens Wiklander817466c2018-05-22 13:49:31 +02001542 *
1543 * Calling conventions:
1544 * - x is an array of size d + 1
1545 * - w is the size, ie number of teeth, of the comb, and must be between
1546 * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1547 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1548 * (the result will be incorrect if these assumptions are not satisfied)
1549 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001550static void ecp_comb_recode_core( unsigned char x[], size_t d,
1551 unsigned char w, const mbedtls_mpi *m )
Jens Wiklander817466c2018-05-22 13:49:31 +02001552{
1553 size_t i, j;
1554 unsigned char c, cc, adjust;
1555
1556 memset( x, 0, d+1 );
1557
1558 /* First get the classical comb values (except for x_d = 0) */
1559 for( i = 0; i < d; i++ )
1560 for( j = 0; j < w; j++ )
1561 x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
1562
1563 /* Now make sure x_1 .. x_d are odd */
1564 c = 0;
1565 for( i = 1; i <= d; i++ )
1566 {
1567 /* Add carry and update it */
1568 cc = x[i] & c;
1569 x[i] = x[i] ^ c;
1570 c = cc;
1571
1572 /* Adjust if needed, avoiding branches */
1573 adjust = 1 - ( x[i] & 0x01 );
1574 c |= x[i] & ( x[i-1] * adjust );
1575 x[i] = x[i] ^ ( x[i-1] * adjust );
1576 x[i-1] |= adjust << 7;
1577 }
1578}
1579
1580/*
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001581 * Precompute points for the adapted comb method
Jens Wiklander817466c2018-05-22 13:49:31 +02001582 *
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001583 * Assumption: T must be able to hold 2^{w - 1} elements.
Jens Wiklander817466c2018-05-22 13:49:31 +02001584 *
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001585 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1586 * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
Jens Wiklander817466c2018-05-22 13:49:31 +02001587 *
1588 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001589 *
1590 * Note: Even comb values (those where P would be omitted from the
1591 * sum defining T[i] above) are not needed in our adaption
1592 * the comb method. See ecp_comb_recode_core().
1593 *
1594 * This function currently works in four steps:
1595 * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
1596 * (2) [norm_dbl] Normalization of coordinates of these T[i]
1597 * (3) [add] Computation of all T[i]
1598 * (4) [norm_add] Normalization of all T[i]
1599 *
1600 * Step 1 can be interrupted but not the others; together with the final
1601 * coordinate normalization they are the largest steps done at once, depending
1602 * on the window size. Here are operation counts for P-256:
1603 *
1604 * step (2) (3) (4)
1605 * w = 5 142 165 208
1606 * w = 4 136 77 160
1607 * w = 3 130 33 136
1608 * w = 2 124 11 124
1609 *
1610 * So if ECC operations are blocking for too long even with a low max_ops
1611 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1612 * to minimize maximum blocking time.
Jens Wiklander817466c2018-05-22 13:49:31 +02001613 */
1614static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
1615 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001616 unsigned char w, size_t d,
1617 mbedtls_ecp_restart_ctx *rs_ctx )
Jens Wiklander817466c2018-05-22 13:49:31 +02001618{
1619 int ret;
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001620 unsigned char i;
1621 size_t j = 0;
1622 const unsigned char T_size = 1U << ( w - 1 );
Jens Wiklander817466c2018-05-22 13:49:31 +02001623 mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
1624
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001625#if defined(MBEDTLS_ECP_RESTARTABLE)
1626 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1627 {
1628 if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1629 goto dbl;
1630 if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl )
1631 goto norm_dbl;
1632 if( rs_ctx->rsm->state == ecp_rsm_pre_add )
1633 goto add;
1634 if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add )
1635 goto norm_add;
1636 }
1637#else
1638 (void) rs_ctx;
1639#endif
1640
1641#if defined(MBEDTLS_ECP_RESTARTABLE)
1642 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1643 {
1644 rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1645
1646 /* initial state for the loop */
1647 rs_ctx->rsm->i = 0;
1648 }
1649
1650dbl:
1651#endif
Jens Wiklander817466c2018-05-22 13:49:31 +02001652 /*
1653 * Set T[0] = P and
1654 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1655 */
1656 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
1657
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001658#if defined(MBEDTLS_ECP_RESTARTABLE)
1659 if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1660 j = rs_ctx->rsm->i;
1661 else
1662#endif
1663 j = 0;
Jens Wiklander817466c2018-05-22 13:49:31 +02001664
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001665 for( ; j < d * ( w - 1 ); j++ )
1666 {
1667 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL );
1668
1669 i = 1U << ( j / d );
1670 cur = T + i;
1671
1672 if( j % d == 0 )
1673 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
1674
1675 MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02001676 }
1677
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001678#if defined(MBEDTLS_ECP_RESTARTABLE)
1679 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1680 rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
Jens Wiklander817466c2018-05-22 13:49:31 +02001681
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001682norm_dbl:
1683#endif
1684 /*
1685 * Normalize current elements in T. As T has holes,
1686 * use an auxiliary array of pointers to elements in T.
1687 */
1688 j = 0;
1689 for( i = 1; i < T_size; i <<= 1 )
1690 TT[j++] = T + i;
1691
1692 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1693
1694 MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1695
1696#if defined(MBEDTLS_ECP_RESTARTABLE)
1697 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1698 rs_ctx->rsm->state = ecp_rsm_pre_add;
1699
1700add:
1701#endif
Jens Wiklander817466c2018-05-22 13:49:31 +02001702 /*
1703 * Compute the remaining ones using the minimal number of additions
1704 * Be careful to update T[2^l] only after using it!
1705 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001706 MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD );
1707
1708 for( i = 1; i < T_size; i <<= 1 )
Jens Wiklander817466c2018-05-22 13:49:31 +02001709 {
1710 j = i;
1711 while( j-- )
Jens Wiklander817466c2018-05-22 13:49:31 +02001712 MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02001713 }
1714
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001715#if defined(MBEDTLS_ECP_RESTARTABLE)
1716 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1717 rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1718
1719norm_add:
1720#endif
1721 /*
1722 * Normalize final elements in T. Even though there are no holes now, we
1723 * still need the auxiliary array for homogeneity with the previous
1724 * call. Also, skip T[0] which is already normalised, being a copy of P.
1725 */
1726 for( j = 0; j + 1 < T_size; j++ )
1727 TT[j] = T + j + 1;
1728
1729 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1730
1731 MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02001732
1733cleanup:
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001734#if defined(MBEDTLS_ECP_RESTARTABLE)
1735 if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1736 ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1737 {
1738 if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1739 rs_ctx->rsm->i = j;
1740 }
1741#endif
Jens Wiklander817466c2018-05-22 13:49:31 +02001742
1743 return( ret );
1744}
1745
1746/*
1747 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001748 *
1749 * See ecp_comb_recode_core() for background
Jens Wiklander817466c2018-05-22 13:49:31 +02001750 */
1751static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001752 const mbedtls_ecp_point T[], unsigned char T_size,
Jens Wiklander817466c2018-05-22 13:49:31 +02001753 unsigned char i )
1754{
1755 int ret;
1756 unsigned char ii, j;
1757
1758 /* Ignore the "sign" bit and scale down */
1759 ii = ( i & 0x7Fu ) >> 1;
1760
1761 /* Read the whole table to thwart cache-based timing attacks */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001762 for( j = 0; j < T_size; j++ )
Jens Wiklander817466c2018-05-22 13:49:31 +02001763 {
1764 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
1765 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
1766 }
1767
1768 /* Safely invert result if i is "negative" */
1769 MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
1770
1771cleanup:
1772 return( ret );
1773}
1774
1775/*
1776 * Core multiplication algorithm for the (modified) comb method.
1777 * This part is actually common with the basic comb method (GECC 3.44)
1778 *
1779 * Cost: d A + d D + 1 R
1780 */
1781static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001782 const mbedtls_ecp_point T[], unsigned char T_size,
Jens Wiklander817466c2018-05-22 13:49:31 +02001783 const unsigned char x[], size_t d,
1784 int (*f_rng)(void *, unsigned char *, size_t),
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001785 void *p_rng,
1786 mbedtls_ecp_restart_ctx *rs_ctx )
Jens Wiklander817466c2018-05-22 13:49:31 +02001787{
1788 int ret;
1789 mbedtls_ecp_point Txi;
1790 size_t i;
1791
1792 mbedtls_ecp_point_init( &Txi );
1793
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001794#if !defined(MBEDTLS_ECP_RESTARTABLE)
1795 (void) rs_ctx;
1796#endif
Jens Wiklander817466c2018-05-22 13:49:31 +02001797
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001798#if defined(MBEDTLS_ECP_RESTARTABLE)
1799 if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1800 rs_ctx->rsm->state != ecp_rsm_comb_core )
Jens Wiklander817466c2018-05-22 13:49:31 +02001801 {
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001802 rs_ctx->rsm->i = 0;
1803 rs_ctx->rsm->state = ecp_rsm_comb_core;
1804 }
1805
1806 /* new 'if' instead of nested for the sake of the 'else' branch */
1807 if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1808 {
1809 /* restore current index (R already pointing to rs_ctx->rsm->R) */
1810 i = rs_ctx->rsm->i;
1811 }
1812 else
1813#endif
1814 {
1815 /* Start with a non-zero point and randomize its coordinates */
1816 i = d;
1817 MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) );
1818 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
1819 if( f_rng != 0 )
1820 MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
1821 }
1822
1823 while( i != 0 )
1824 {
1825 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD );
1826 --i;
1827
Jens Wiklander817466c2018-05-22 13:49:31 +02001828 MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001829 MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02001830 MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
1831 }
1832
1833cleanup:
1834
1835 mbedtls_ecp_point_free( &Txi );
1836
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001837#if defined(MBEDTLS_ECP_RESTARTABLE)
1838 if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1839 ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1840 {
1841 rs_ctx->rsm->i = i;
1842 /* no need to save R, already pointing to rs_ctx->rsm->R */
1843 }
1844#endif
1845
Jens Wiklander817466c2018-05-22 13:49:31 +02001846 return( ret );
1847}
1848
1849/*
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001850 * Recode the scalar to get constant-time comb multiplication
1851 *
1852 * As the actual scalar recoding needs an odd scalar as a starting point,
1853 * this wrapper ensures that by replacing m by N - m if necessary, and
1854 * informs the caller that the result of multiplication will be negated.
1855 *
1856 * This works because we only support large prime order for Short Weierstrass
1857 * curves, so N is always odd hence either m or N - m is.
1858 *
1859 * See ecp_comb_recode_core() for background.
Jens Wiklander817466c2018-05-22 13:49:31 +02001860 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001861static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp,
1862 const mbedtls_mpi *m,
1863 unsigned char k[COMB_MAX_D + 1],
1864 size_t d,
1865 unsigned char w,
1866 unsigned char *parity_trick )
Jens Wiklander817466c2018-05-22 13:49:31 +02001867{
1868 int ret;
Jens Wiklander817466c2018-05-22 13:49:31 +02001869 mbedtls_mpi M, mm;
1870
1871 mbedtls_mpi_init( &M );
1872 mbedtls_mpi_init( &mm );
1873
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001874 /* N is always odd (see above), just make extra sure */
Jens Wiklander817466c2018-05-22 13:49:31 +02001875 if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
1876 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1877
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001878 /* do we need the parity trick? */
1879 *parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 );
1880
1881 /* execute parity fix in constant time */
1882 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
1883 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
1884 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) );
1885
1886 /* actual scalar recoding */
1887 ecp_comb_recode_core( k, d, w, &M );
1888
1889cleanup:
1890 mbedtls_mpi_free( &mm );
1891 mbedtls_mpi_free( &M );
1892
1893 return( ret );
1894}
1895
1896/*
1897 * Perform comb multiplication (for short Weierstrass curves)
1898 * once the auxiliary table has been pre-computed.
1899 *
1900 * Scalar recoding may use a parity trick that makes us compute -m * P,
1901 * if that is the case we'll need to recover m * P at the end.
1902 */
1903static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp,
1904 mbedtls_ecp_point *R,
1905 const mbedtls_mpi *m,
1906 const mbedtls_ecp_point *T,
1907 unsigned char T_size,
1908 unsigned char w,
1909 size_t d,
1910 int (*f_rng)(void *, unsigned char *, size_t),
1911 void *p_rng,
1912 mbedtls_ecp_restart_ctx *rs_ctx )
1913{
1914 int ret;
1915 unsigned char parity_trick;
1916 unsigned char k[COMB_MAX_D + 1];
1917 mbedtls_ecp_point *RR = R;
1918
1919#if defined(MBEDTLS_ECP_RESTARTABLE)
1920 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1921 {
1922 RR = &rs_ctx->rsm->R;
1923
1924 if( rs_ctx->rsm->state == ecp_rsm_final_norm )
1925 goto final_norm;
1926 }
1927#endif
1928
1929 MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w,
1930 &parity_trick ) );
1931 MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d,
1932 f_rng, p_rng, rs_ctx ) );
1933 MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) );
1934
1935#if defined(MBEDTLS_ECP_RESTARTABLE)
1936 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1937 rs_ctx->rsm->state = ecp_rsm_final_norm;
1938
1939final_norm:
1940#endif
1941 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
1942 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) );
1943
1944#if defined(MBEDTLS_ECP_RESTARTABLE)
1945 if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1946 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) );
1947#endif
1948
1949cleanup:
1950 return( ret );
1951}
1952
1953/*
1954 * Pick window size based on curve size and whether we optimize for base point
1955 */
1956static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp,
1957 unsigned char p_eq_g )
1958{
1959 unsigned char w;
1960
Jens Wiklander817466c2018-05-22 13:49:31 +02001961 /*
1962 * Minimize the number of multiplications, that is minimize
1963 * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
1964 * (see costs of the various parts, with 1S = 1M)
1965 */
1966 w = grp->nbits >= 384 ? 5 : 4;
1967
1968 /*
1969 * If P == G, pre-compute a bit more, since this may be re-used later.
1970 * Just adding one avoids upping the cost of the first mul too much,
1971 * and the memory cost too.
1972 */
Jens Wiklander817466c2018-05-22 13:49:31 +02001973 if( p_eq_g )
1974 w++;
Jens Wiklander817466c2018-05-22 13:49:31 +02001975
1976 /*
1977 * Make sure w is within bounds.
1978 * (The last test is useful only for very small curves in the test suite.)
1979 */
1980 if( w > MBEDTLS_ECP_WINDOW_SIZE )
1981 w = MBEDTLS_ECP_WINDOW_SIZE;
1982 if( w >= grp->nbits )
1983 w = 2;
1984
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001985 return( w );
1986}
1987
1988/*
1989 * Multiplication using the comb method - for curves in short Weierstrass form
1990 *
1991 * This function is mainly responsible for administrative work:
1992 * - managing the restart context if enabled
1993 * - managing the table of precomputed points (passed between the below two
1994 * functions): allocation, computation, ownership tranfer, freeing.
1995 *
1996 * It delegates the actual arithmetic work to:
1997 * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
1998 *
1999 * See comments on ecp_comb_recode_core() regarding the computation strategy.
2000 */
2001static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2002 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2003 int (*f_rng)(void *, unsigned char *, size_t),
2004 void *p_rng,
2005 mbedtls_ecp_restart_ctx *rs_ctx )
2006{
2007 int ret;
2008 unsigned char w, p_eq_g, i;
2009 size_t d;
2010 unsigned char T_size, T_ok;
2011 mbedtls_ecp_point *T;
2012
2013 ECP_RS_ENTER( rsm );
2014
2015 /* Is P the base point ? */
2016#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2017 p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
2018 mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
2019#else
2020 p_eq_g = 0;
2021#endif
2022
2023 /* Pick window size and deduce related sizes */
2024 w = ecp_pick_window_size( grp, p_eq_g );
2025 T_size = 1U << ( w - 1 );
Jens Wiklander817466c2018-05-22 13:49:31 +02002026 d = ( grp->nbits + w - 1 ) / w;
2027
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002028 /* Pre-computed table: do we have it already for the base point? */
2029 if( p_eq_g && grp->T != NULL )
Jens Wiklander817466c2018-05-22 13:49:31 +02002030 {
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002031 /* second pointer to the same table, will be deleted on exit */
2032 T = grp->T;
2033 T_ok = 1;
2034 }
2035 else
2036#if defined(MBEDTLS_ECP_RESTARTABLE)
2037 /* Pre-computed table: do we have one in progress? complete? */
2038 if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL )
2039 {
2040 /* transfer ownership of T from rsm to local function */
2041 T = rs_ctx->rsm->T;
2042 rs_ctx->rsm->T = NULL;
2043 rs_ctx->rsm->T_size = 0;
2044
2045 /* This effectively jumps to the call to mul_comb_after_precomp() */
2046 T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2047 }
2048 else
2049#endif
2050 /* Allocate table if we didn't have any */
2051 {
2052 T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02002053 if( T == NULL )
2054 {
2055 ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2056 goto cleanup;
2057 }
2058
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002059 for( i = 0; i < T_size; i++ )
2060 mbedtls_ecp_point_init( &T[i] );
2061
2062 T_ok = 0;
2063 }
2064
2065 /* Compute table (or finish computing it) if not done already */
2066 if( !T_ok )
2067 {
2068 MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02002069
2070 if( p_eq_g )
2071 {
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002072 /* almost transfer ownership of T to the group, but keep a copy of
2073 * the pointer to use for calling the next function more easily */
Jens Wiklander817466c2018-05-22 13:49:31 +02002074 grp->T = T;
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002075 grp->T_size = T_size;
Jens Wiklander817466c2018-05-22 13:49:31 +02002076 }
2077 }
2078
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002079 /* Actual comb multiplication using precomputed points */
2080 MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m,
2081 T, T_size, w, d,
2082 f_rng, p_rng, rs_ctx ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02002083
2084cleanup:
2085
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002086 /* does T belong to the group? */
2087 if( T == grp->T )
2088 T = NULL;
2089
2090 /* does T belong to the restart context? */
2091#if defined(MBEDTLS_ECP_RESTARTABLE)
2092 if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL )
Jens Wiklander817466c2018-05-22 13:49:31 +02002093 {
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002094 /* transfer ownership of T from local function to rsm */
2095 rs_ctx->rsm->T_size = T_size;
2096 rs_ctx->rsm->T = T;
2097 T = NULL;
2098 }
2099#endif
2100
2101 /* did T belong to us? then let's destroy it! */
2102 if( T != NULL )
2103 {
2104 for( i = 0; i < T_size; i++ )
Jens Wiklander817466c2018-05-22 13:49:31 +02002105 mbedtls_ecp_point_free( &T[i] );
2106 mbedtls_free( T );
2107 }
2108
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002109 /* don't free R while in progress in case R == P */
2110#if defined(MBEDTLS_ECP_RESTARTABLE)
2111 if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
2112#endif
2113 /* prevent caller from using invalid value */
Jens Wiklander817466c2018-05-22 13:49:31 +02002114 if( ret != 0 )
2115 mbedtls_ecp_point_free( R );
2116
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002117 ECP_RS_LEAVE( rsm );
2118
Jens Wiklander817466c2018-05-22 13:49:31 +02002119 return( ret );
2120}
2121
2122#endif /* ECP_SHORTWEIERSTRASS */
2123
2124#if defined(ECP_MONTGOMERY)
2125/*
2126 * For Montgomery curves, we do all the internal arithmetic in projective
2127 * coordinates. Import/export of points uses only the x coordinates, which is
2128 * internaly represented as X / Z.
2129 *
2130 * For scalar multiplication, we'll use a Montgomery ladder.
2131 */
2132
2133/*
2134 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2135 * Cost: 1M + 1I
2136 */
2137static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
2138{
2139 int ret;
2140
2141#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002142 if( mbedtls_internal_ecp_grp_capable( grp ) )
2143 return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02002144#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2145
2146 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
2147 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
2148 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
2149
2150cleanup:
2151 return( ret );
2152}
2153
2154/*
2155 * Randomize projective x/z coordinates:
2156 * (X, Z) -> (l X, l Z) for random l
2157 * This is sort of the reverse operation of ecp_normalize_mxz().
2158 *
2159 * This countermeasure was first suggested in [2].
2160 * Cost: 2M
2161 */
2162static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2163 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2164{
2165 int ret;
2166 mbedtls_mpi l;
2167 size_t p_size;
2168 int count = 0;
2169
2170#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002171 if( mbedtls_internal_ecp_grp_capable( grp ) )
2172 return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng );
Jens Wiklander817466c2018-05-22 13:49:31 +02002173#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2174
2175 p_size = ( grp->pbits + 7 ) / 8;
2176 mbedtls_mpi_init( &l );
2177
2178 /* Generate l such that 1 < l < p */
2179 do
2180 {
2181 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
2182
2183 while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
2184 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
2185
2186 if( count++ > 10 )
2187 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
2188 }
2189 while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
2190
2191 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
2192 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
2193
2194cleanup:
2195 mbedtls_mpi_free( &l );
2196
2197 return( ret );
2198}
2199
2200/*
2201 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2202 * for Montgomery curves in x/z coordinates.
2203 *
2204 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2205 * with
2206 * d = X1
2207 * P = (X2, Z2)
2208 * Q = (X3, Z3)
2209 * R = (X4, Z4)
2210 * S = (X5, Z5)
2211 * and eliminating temporary variables tO, ..., t4.
2212 *
2213 * Cost: 5M + 4S
2214 */
2215static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
2216 mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2217 const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2218 const mbedtls_mpi *d )
2219{
2220 int ret;
2221 mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
2222
2223#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002224 if( mbedtls_internal_ecp_grp_capable( grp ) )
2225 return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02002226#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2227
2228 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
2229 mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
2230 mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
2231
2232 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A, &P->X, &P->Z ) ); MOD_ADD( A );
2233 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA, &A, &A ) ); MOD_MUL( AA );
2234 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B, &P->X, &P->Z ) ); MOD_SUB( B );
2235 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB, &B, &B ) ); MOD_MUL( BB );
2236 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E, &AA, &BB ) ); MOD_SUB( E );
2237 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C, &Q->X, &Q->Z ) ); MOD_ADD( C );
2238 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D, &Q->X, &Q->Z ) ); MOD_SUB( D );
2239 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA, &D, &A ) ); MOD_MUL( DA );
2240 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB, &C, &B ) ); MOD_MUL( CB );
2241 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA, &CB ) ); MOD_MUL( S->X );
2242 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X, &S->X ) ); MOD_MUL( S->X );
2243 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA, &CB ) ); MOD_SUB( S->Z );
2244 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z, &S->Z ) ); MOD_MUL( S->Z );
2245 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d, &S->Z ) ); MOD_MUL( S->Z );
2246 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA, &BB ) ); MOD_MUL( R->X );
2247 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E ) ); MOD_MUL( R->Z );
2248 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB, &R->Z ) ); MOD_ADD( R->Z );
2249 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E, &R->Z ) ); MOD_MUL( R->Z );
2250
2251cleanup:
2252 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
2253 mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
2254 mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
2255
2256 return( ret );
2257}
2258
2259/*
2260 * Multiplication with Montgomery ladder in x/z coordinates,
2261 * for curves in Montgomery form
2262 */
2263static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2264 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2265 int (*f_rng)(void *, unsigned char *, size_t),
2266 void *p_rng )
2267{
2268 int ret;
2269 size_t i;
2270 unsigned char b;
2271 mbedtls_ecp_point RP;
2272 mbedtls_mpi PX;
2273
2274 mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
2275
2276 /* Save PX and read from P before writing to R, in case P == R */
2277 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
2278 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
2279
2280 /* Set R to zero in modified x/z coordinates */
2281 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
2282 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
2283 mbedtls_mpi_free( &R->Y );
2284
2285 /* RP.X might be sligtly larger than P, so reduce it */
2286 MOD_ADD( RP.X );
2287
2288 /* Randomize coordinates of the starting point */
2289 if( f_rng != NULL )
2290 MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
2291
2292 /* Loop invariant: R = result so far, RP = R + P */
2293 i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
2294 while( i-- > 0 )
2295 {
2296 b = mbedtls_mpi_get_bit( m, i );
2297 /*
2298 * if (b) R = 2R + P else R = 2R,
2299 * which is:
2300 * if (b) double_add( RP, R, RP, R )
2301 * else double_add( R, RP, R, RP )
2302 * but using safe conditional swaps to avoid leaks
2303 */
2304 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2305 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2306 MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
2307 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2308 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2309 }
2310
2311 MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
2312
2313cleanup:
2314 mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
2315
2316 return( ret );
2317}
2318
2319#endif /* ECP_MONTGOMERY */
2320
2321/*
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002322 * Restartable multiplication R = m * P
2323 */
2324int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2325 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2326 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2327 mbedtls_ecp_restart_ctx *rs_ctx )
2328{
2329 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2330#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2331 char is_grp_capable = 0;
2332#endif
2333 ECP_VALIDATE_RET( grp != NULL );
2334 ECP_VALIDATE_RET( R != NULL );
2335 ECP_VALIDATE_RET( m != NULL );
2336 ECP_VALIDATE_RET( P != NULL );
2337
2338#if defined(MBEDTLS_ECP_RESTARTABLE)
2339 /* reset ops count for this call if top-level */
2340 if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
2341 rs_ctx->ops_done = 0;
2342#endif
2343
2344#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2345 if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2346 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2347#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2348
2349#if defined(MBEDTLS_ECP_RESTARTABLE)
2350 /* skip argument check when restarting */
2351 if( rs_ctx == NULL || rs_ctx->rsm == NULL )
2352#endif
2353 {
2354 /* check_privkey is free */
2355 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );
2356
2357 /* Common sanity checks */
2358 MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
2359 MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
2360 }
2361
2362 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2363#if defined(ECP_MONTGOMERY)
2364 if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2365 MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
2366#endif
2367#if defined(ECP_SHORTWEIERSTRASS)
2368 if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2369 MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
2370#endif
2371
2372cleanup:
2373
2374#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2375 if( is_grp_capable )
2376 mbedtls_internal_ecp_free( grp );
2377#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2378
2379#if defined(MBEDTLS_ECP_RESTARTABLE)
2380 if( rs_ctx != NULL )
2381 rs_ctx->depth--;
2382#endif
2383
2384 return( ret );
2385}
2386
2387/*
Jens Wiklander817466c2018-05-22 13:49:31 +02002388 * Multiplication R = m * P
2389 */
2390int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2391 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2392 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2393{
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002394 ECP_VALIDATE_RET( grp != NULL );
2395 ECP_VALIDATE_RET( R != NULL );
2396 ECP_VALIDATE_RET( m != NULL );
2397 ECP_VALIDATE_RET( P != NULL );
2398 return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02002399}
2400
2401#if defined(ECP_SHORTWEIERSTRASS)
2402/*
2403 * Check that an affine point is valid as a public key,
2404 * short weierstrass curves (SEC1 3.2.3.1)
2405 */
2406static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2407{
2408 int ret;
2409 mbedtls_mpi YY, RHS;
2410
2411 /* pt coordinates must be normalized for our checks */
2412 if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
2413 mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
2414 mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
2415 mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
2416 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2417
2418 mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
2419
2420 /*
2421 * YY = Y^2
2422 * RHS = X (X^2 + A) + B = X^3 + A X + B
2423 */
2424 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY, &pt->Y, &pt->Y ) ); MOD_MUL( YY );
2425 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X, &pt->X ) ); MOD_MUL( RHS );
2426
2427 /* Special case for A = -3 */
2428 if( grp->A.p == NULL )
2429 {
2430 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3 ) ); MOD_SUB( RHS );
2431 }
2432 else
2433 {
2434 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) ); MOD_ADD( RHS );
2435 }
2436
2437 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS, &pt->X ) ); MOD_MUL( RHS );
2438 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->B ) ); MOD_ADD( RHS );
2439
2440 if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
2441 ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2442
2443cleanup:
2444
2445 mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
2446
2447 return( ret );
2448}
2449#endif /* ECP_SHORTWEIERSTRASS */
2450
2451/*
2452 * R = m * P with shortcuts for m == 1 and m == -1
2453 * NOT constant-time - ONLY for short Weierstrass!
2454 */
2455static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
2456 mbedtls_ecp_point *R,
2457 const mbedtls_mpi *m,
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002458 const mbedtls_ecp_point *P,
2459 mbedtls_ecp_restart_ctx *rs_ctx )
Jens Wiklander817466c2018-05-22 13:49:31 +02002460{
2461 int ret;
2462
2463 if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
2464 {
2465 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2466 }
2467 else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
2468 {
2469 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2470 if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
2471 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
2472 }
2473 else
2474 {
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002475 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, R, m, P,
2476 NULL, NULL, rs_ctx ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02002477 }
2478
2479cleanup:
2480 return( ret );
2481}
2482
2483/*
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002484 * Restartable linear combination
2485 * NOT constant-time
2486 */
2487int mbedtls_ecp_muladd_restartable(
2488 mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2489 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2490 const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2491 mbedtls_ecp_restart_ctx *rs_ctx )
2492{
2493 int ret;
2494 mbedtls_ecp_point mP;
2495 mbedtls_ecp_point *pmP = &mP;
2496 mbedtls_ecp_point *pR = R;
2497#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2498 char is_grp_capable = 0;
2499#endif
2500 ECP_VALIDATE_RET( grp != NULL );
2501 ECP_VALIDATE_RET( R != NULL );
2502 ECP_VALIDATE_RET( m != NULL );
2503 ECP_VALIDATE_RET( P != NULL );
2504 ECP_VALIDATE_RET( n != NULL );
2505 ECP_VALIDATE_RET( Q != NULL );
2506
2507 if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
2508 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2509
2510 mbedtls_ecp_point_init( &mP );
2511
2512 ECP_RS_ENTER( ma );
2513
2514#if defined(MBEDTLS_ECP_RESTARTABLE)
2515 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2516 {
2517 /* redirect intermediate results to restart context */
2518 pmP = &rs_ctx->ma->mP;
2519 pR = &rs_ctx->ma->R;
2520
2521 /* jump to next operation */
2522 if( rs_ctx->ma->state == ecp_rsma_mul2 )
2523 goto mul2;
2524 if( rs_ctx->ma->state == ecp_rsma_add )
2525 goto add;
2526 if( rs_ctx->ma->state == ecp_rsma_norm )
2527 goto norm;
2528 }
2529#endif /* MBEDTLS_ECP_RESTARTABLE */
2530
2531 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
2532#if defined(MBEDTLS_ECP_RESTARTABLE)
2533 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2534 rs_ctx->ma->state = ecp_rsma_mul2;
2535
2536mul2:
2537#endif
2538 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR, n, Q, rs_ctx ) );
2539
2540#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2541 if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2542 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2543#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2544
2545#if defined(MBEDTLS_ECP_RESTARTABLE)
2546 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2547 rs_ctx->ma->state = ecp_rsma_add;
2548
2549add:
2550#endif
2551 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
2552 MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) );
2553#if defined(MBEDTLS_ECP_RESTARTABLE)
2554 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2555 rs_ctx->ma->state = ecp_rsma_norm;
2556
2557norm:
2558#endif
2559 MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2560 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );
2561
2562#if defined(MBEDTLS_ECP_RESTARTABLE)
2563 if( rs_ctx != NULL && rs_ctx->ma != NULL )
2564 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
2565#endif
2566
2567cleanup:
2568#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2569 if( is_grp_capable )
2570 mbedtls_internal_ecp_free( grp );
2571#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2572
2573 mbedtls_ecp_point_free( &mP );
2574
2575 ECP_RS_LEAVE( ma );
2576
2577 return( ret );
2578}
2579
2580/*
Jens Wiklander817466c2018-05-22 13:49:31 +02002581 * Linear combination
2582 * NOT constant-time
2583 */
2584int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2585 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2586 const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
2587{
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002588 ECP_VALIDATE_RET( grp != NULL );
2589 ECP_VALIDATE_RET( R != NULL );
2590 ECP_VALIDATE_RET( m != NULL );
2591 ECP_VALIDATE_RET( P != NULL );
2592 ECP_VALIDATE_RET( n != NULL );
2593 ECP_VALIDATE_RET( Q != NULL );
2594 return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02002595}
2596
Jens Wiklander817466c2018-05-22 13:49:31 +02002597#if defined(ECP_MONTGOMERY)
2598/*
2599 * Check validity of a public key for Montgomery curves with x-only schemes
2600 */
2601static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2602{
2603 /* [Curve25519 p. 5] Just check X is the correct number of bytes */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002604 /* Allow any public value, if it's too big then we'll just reduce it mod p
2605 * (RFC 7748 sec. 5 para. 3). */
Jens Wiklander817466c2018-05-22 13:49:31 +02002606 if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
2607 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2608
2609 return( 0 );
2610}
2611#endif /* ECP_MONTGOMERY */
2612
2613/*
2614 * Check that a point is valid as a public key
2615 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002616int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
2617 const mbedtls_ecp_point *pt )
Jens Wiklander817466c2018-05-22 13:49:31 +02002618{
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002619 ECP_VALIDATE_RET( grp != NULL );
2620 ECP_VALIDATE_RET( pt != NULL );
2621
Jens Wiklander817466c2018-05-22 13:49:31 +02002622 /* Must use affine coordinates */
2623 if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
2624 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2625
2626#if defined(ECP_MONTGOMERY)
2627 if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2628 return( ecp_check_pubkey_mx( grp, pt ) );
2629#endif
2630#if defined(ECP_SHORTWEIERSTRASS)
2631 if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2632 return( ecp_check_pubkey_sw( grp, pt ) );
2633#endif
2634 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2635}
2636
2637/*
2638 * Check that an mbedtls_mpi is valid as a private key
2639 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002640int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
2641 const mbedtls_mpi *d )
Jens Wiklander817466c2018-05-22 13:49:31 +02002642{
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002643 ECP_VALIDATE_RET( grp != NULL );
2644 ECP_VALIDATE_RET( d != NULL );
2645
Jens Wiklander817466c2018-05-22 13:49:31 +02002646#if defined(ECP_MONTGOMERY)
2647 if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2648 {
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002649 /* see RFC 7748 sec. 5 para. 5 */
Jens Wiklander817466c2018-05-22 13:49:31 +02002650 if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
2651 mbedtls_mpi_get_bit( d, 1 ) != 0 ||
Jens Wiklander817466c2018-05-22 13:49:31 +02002652 mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
2653 return( MBEDTLS_ERR_ECP_INVALID_KEY );
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002654
2655 /* see [Curve25519] page 5 */
2656 if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
2657 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2658
2659 return( 0 );
Jens Wiklander817466c2018-05-22 13:49:31 +02002660 }
2661#endif /* ECP_MONTGOMERY */
2662#if defined(ECP_SHORTWEIERSTRASS)
2663 if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2664 {
2665 /* see SEC1 3.2 */
2666 if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
2667 mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
2668 return( MBEDTLS_ERR_ECP_INVALID_KEY );
2669 else
2670 return( 0 );
2671 }
2672#endif /* ECP_SHORTWEIERSTRASS */
2673
2674 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2675}
2676
2677/*
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002678 * Generate a private key
Jens Wiklander817466c2018-05-22 13:49:31 +02002679 */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002680int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
2681 mbedtls_mpi *d,
Jens Wiklander817466c2018-05-22 13:49:31 +02002682 int (*f_rng)(void *, unsigned char *, size_t),
2683 void *p_rng )
2684{
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002685 int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2686 size_t n_size;
2687
2688 ECP_VALIDATE_RET( grp != NULL );
2689 ECP_VALIDATE_RET( d != NULL );
2690 ECP_VALIDATE_RET( f_rng != NULL );
2691
2692 n_size = ( grp->nbits + 7 ) / 8;
Jens Wiklander817466c2018-05-22 13:49:31 +02002693
2694#if defined(ECP_MONTGOMERY)
2695 if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
2696 {
2697 /* [M225] page 5 */
2698 size_t b;
2699
2700 do {
2701 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
2702 } while( mbedtls_mpi_bitlen( d ) == 0);
2703
2704 /* Make sure the most significant bit is nbits */
2705 b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
2706 if( b > grp->nbits )
2707 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );
2708 else
2709 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );
2710
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002711 /* Make sure the last two bits are unset for Curve448, three bits for
2712 Curve25519 */
Jens Wiklander817466c2018-05-22 13:49:31 +02002713 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
2714 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002715 if( grp->nbits == 254 )
2716 {
2717 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
2718 }
Jens Wiklander817466c2018-05-22 13:49:31 +02002719 }
Jens Wiklander817466c2018-05-22 13:49:31 +02002720#endif /* ECP_MONTGOMERY */
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002721
Jens Wiklander817466c2018-05-22 13:49:31 +02002722#if defined(ECP_SHORTWEIERSTRASS)
2723 if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
2724 {
2725 /* SEC1 3.2.1: Generate d such that 1 <= n < N */
2726 int count = 0;
Jerome Forissier5b25c762020-04-07 11:18:49 +02002727 unsigned cmp = 0;
Jens Wiklander817466c2018-05-22 13:49:31 +02002728
2729 /*
2730 * Match the procedure given in RFC 6979 (deterministic ECDSA):
2731 * - use the same byte ordering;
2732 * - keep the leftmost nbits bits of the generated octet string;
2733 * - try until result is in the desired range.
2734 * This also avoids any biais, which is especially important for ECDSA.
2735 */
2736 do
2737 {
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002738 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
Jens Wiklander817466c2018-05-22 13:49:31 +02002739 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );
2740
2741 /*
2742 * Each try has at worst a probability 1/2 of failing (the msb has
2743 * a probability 1/2 of being 0, and then the result will be < N),
2744 * so after 30 tries failure probability is a most 2**(-30).
2745 *
2746 * For most curves, 1 try is enough with overwhelming probability,
2747 * since N starts with a lot of 1s in binary, but some curves
2748 * such as secp224k1 are actually very close to the worst case.
2749 */
2750 if( ++count > 30 )
2751 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
Jerome Forissier5b25c762020-04-07 11:18:49 +02002752
2753 ret = mbedtls_mpi_lt_mpi_ct( d, &grp->N, &cmp );
2754 if( ret != 0 )
2755 {
2756 goto cleanup;
2757 }
Jens Wiklander817466c2018-05-22 13:49:31 +02002758 }
Jerome Forissier5b25c762020-04-07 11:18:49 +02002759 while( mbedtls_mpi_cmp_int( d, 1 ) < 0 || cmp != 1 );
Jens Wiklander817466c2018-05-22 13:49:31 +02002760 }
Jens Wiklander817466c2018-05-22 13:49:31 +02002761#endif /* ECP_SHORTWEIERSTRASS */
Jens Wiklander817466c2018-05-22 13:49:31 +02002762
2763cleanup:
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002764 return( ret );
2765}
Jens Wiklander817466c2018-05-22 13:49:31 +02002766
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002767/*
2768 * Generate a keypair with configurable base point
2769 */
2770int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
2771 const mbedtls_ecp_point *G,
2772 mbedtls_mpi *d, mbedtls_ecp_point *Q,
2773 int (*f_rng)(void *, unsigned char *, size_t),
2774 void *p_rng )
2775{
2776 int ret;
2777 ECP_VALIDATE_RET( grp != NULL );
2778 ECP_VALIDATE_RET( d != NULL );
2779 ECP_VALIDATE_RET( G != NULL );
2780 ECP_VALIDATE_RET( Q != NULL );
2781 ECP_VALIDATE_RET( f_rng != NULL );
2782
2783 MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
2784 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
2785
2786cleanup:
2787 return( ret );
Jens Wiklander817466c2018-05-22 13:49:31 +02002788}
2789
2790/*
2791 * Generate key pair, wrapper for conventional base point
2792 */
2793int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
2794 mbedtls_mpi *d, mbedtls_ecp_point *Q,
2795 int (*f_rng)(void *, unsigned char *, size_t),
2796 void *p_rng )
2797{
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002798 ECP_VALIDATE_RET( grp != NULL );
2799 ECP_VALIDATE_RET( d != NULL );
2800 ECP_VALIDATE_RET( Q != NULL );
2801 ECP_VALIDATE_RET( f_rng != NULL );
2802
Jens Wiklander817466c2018-05-22 13:49:31 +02002803 return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
2804}
2805
2806/*
2807 * Generate a keypair, prettier wrapper
2808 */
2809int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
2810 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2811{
2812 int ret;
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002813 ECP_VALIDATE_RET( key != NULL );
2814 ECP_VALIDATE_RET( f_rng != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +02002815
2816 if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
2817 return( ret );
2818
2819 return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
2820}
2821
2822/*
2823 * Check a public-private key pair
2824 */
2825int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
2826{
2827 int ret;
2828 mbedtls_ecp_point Q;
2829 mbedtls_ecp_group grp;
Jens Wiklander3d3b0592019-03-20 15:30:29 +01002830 ECP_VALIDATE_RET( pub != NULL );
2831 ECP_VALIDATE_RET( prv != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +02002832
2833 if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
2834 pub->grp.id != prv->grp.id ||
2835 mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
2836 mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
2837 mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
2838 {
2839 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2840 }
2841
2842 mbedtls_ecp_point_init( &Q );
2843 mbedtls_ecp_group_init( &grp );
2844
2845 /* mbedtls_ecp_mul() needs a non-const group... */
2846 mbedtls_ecp_group_copy( &grp, &prv->grp );
2847
2848 /* Also checks d is valid */
2849 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );
2850
2851 if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
2852 mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
2853 mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
2854 {
2855 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2856 goto cleanup;
2857 }
2858
2859cleanup:
2860 mbedtls_ecp_point_free( &Q );
2861 mbedtls_ecp_group_free( &grp );
2862
2863 return( ret );
2864}
2865
2866#if defined(MBEDTLS_SELF_TEST)
2867
2868/*
2869 * Checkup routine
2870 */
2871int mbedtls_ecp_self_test( int verbose )
2872{
2873 int ret;
2874 size_t i;
2875 mbedtls_ecp_group grp;
2876 mbedtls_ecp_point R, P;
2877 mbedtls_mpi m;
2878 unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
2879 /* exponents especially adapted for secp192r1 */
2880 const char *exponents[] =
2881 {
2882 "000000000000000000000000000000000000000000000001", /* one */
2883 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
2884 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
2885 "400000000000000000000000000000000000000000000000", /* one and zeros */
2886 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
2887 "555555555555555555555555555555555555555555555555", /* 101010... */
2888 };
2889
2890 mbedtls_ecp_group_init( &grp );
2891 mbedtls_ecp_point_init( &R );
2892 mbedtls_ecp_point_init( &P );
2893 mbedtls_mpi_init( &m );
2894
2895 /* Use secp192r1 if available, or any available curve */
2896#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
2897 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
2898#else
2899 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
2900#endif
2901
2902 if( verbose != 0 )
2903 mbedtls_printf( " ECP test #1 (constant op_count, base point G): " );
2904
2905 /* Do a dummy multiplication first to trigger precomputation */
2906 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
2907 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
2908
2909 add_count = 0;
2910 dbl_count = 0;
2911 mul_count = 0;
2912 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2913 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2914
2915 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2916 {
2917 add_c_prev = add_count;
2918 dbl_c_prev = dbl_count;
2919 mul_c_prev = mul_count;
2920 add_count = 0;
2921 dbl_count = 0;
2922 mul_count = 0;
2923
2924 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2925 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2926
2927 if( add_count != add_c_prev ||
2928 dbl_count != dbl_c_prev ||
2929 mul_count != mul_c_prev )
2930 {
2931 if( verbose != 0 )
2932 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2933
2934 ret = 1;
2935 goto cleanup;
2936 }
2937 }
2938
2939 if( verbose != 0 )
2940 mbedtls_printf( "passed\n" );
2941
2942 if( verbose != 0 )
2943 mbedtls_printf( " ECP test #2 (constant op_count, other point): " );
2944 /* We computed P = 2G last time, use it */
2945
2946 add_count = 0;
2947 dbl_count = 0;
2948 mul_count = 0;
2949 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2950 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2951
2952 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2953 {
2954 add_c_prev = add_count;
2955 dbl_c_prev = dbl_count;
2956 mul_c_prev = mul_count;
2957 add_count = 0;
2958 dbl_count = 0;
2959 mul_count = 0;
2960
2961 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2962 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2963
2964 if( add_count != add_c_prev ||
2965 dbl_count != dbl_c_prev ||
2966 mul_count != mul_c_prev )
2967 {
2968 if( verbose != 0 )
2969 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2970
2971 ret = 1;
2972 goto cleanup;
2973 }
2974 }
2975
2976 if( verbose != 0 )
2977 mbedtls_printf( "passed\n" );
2978
2979cleanup:
2980
2981 if( ret < 0 && verbose != 0 )
2982 mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
2983
2984 mbedtls_ecp_group_free( &grp );
2985 mbedtls_ecp_point_free( &R );
2986 mbedtls_ecp_point_free( &P );
2987 mbedtls_mpi_free( &m );
2988
2989 if( verbose != 0 )
2990 mbedtls_printf( "\n" );
2991
2992 return( ret );
2993}
2994
2995#endif /* MBEDTLS_SELF_TEST */
2996
2997#endif /* !MBEDTLS_ECP_ALT */
2998
2999#endif /* MBEDTLS_ECP_C */