blob: 03be0c104b5e7db46bd73cae1c162d0c243efd47 [file] [log] [blame]
.. _build_trusted_applications:
####################
Trusted Applications
####################
This document tells how to implement a Trusted Application for OP-TEE, using
OP-TEE's so called `TA-devkit` to both build and sign the Trusted Application
binary. In this document, a `Trusted Application` running in the OP-TEE os is
referred to as a `TA`.
TA Mandatory files
******************
The Makefile for a Trusted Application must be written to rely on OP-TEE
TA-devkit resources in order to successfully build the target application.
TA-devkit is built when one builds :ref:`optee_os`.
.. todo::
Joakim: We need to add CMake instructions also.
To build a TA, one must provide:
- **Makefile**, a make file that should set some configuration variables and
include the TA-devkit make file.
- **sub.mk**, a make file that lists the sources to build (local source
files, subdirectories to parse, source file specific build directives).
- **user_ta_header_defines.h**, a specific ANSI-C header file to define most
of the TA properties.
- A implementation of at least the TA entry points, as extern functions:
``TA_CreateEntryPoint()``, ``TA_DestroyEntryPoint()``,
``TA_OpenSessionEntryPoint()``, ``TA_CloseSessionEntryPoint()``,
``TA_InvokeCommandEntryPoint()``
TA file layout example
======================
As an example, :ref:`hello_world` looks like this:
.. code-block:: none
hello_world/
├── ...
└── ta
├── Makefile BINARY=<uuid>
├── Android.mk Android way to invoke the Makefile
├── sub.mk srcs-y += hello_world_ta.c
├── include
│   └── hello_world_ta.h Header exported to non-secure: TA commands API
├── hello_world_ta.c Implementaion of TA entry points
└── user_ta_header_defines.h TA_UUID, TA_FLAGS, TA_DATA/STACK_SIZE, ...
TA Makefile Basics
******************
Required variables
==================
The main TA-devkit make file is located in in :ref:`optee_os` at
``ta/mk/ta_dev_kit.mk``. The make file supports make targets such as ``all`` and
``clean`` to build a TA or a library and clean the built objects.
The make file expects a couple of configuration variables:
TA_DEV_KIT_DIR
Base directory of the TA-devkit. Used the TA-devkit itself to locate its tools.
BINARY and LIBNAME
These are exclusive, meaning that you cannot use both at the same time. If
building a TA, ``BINARY`` shall provide the TA filename used to load the TA.
The built and signed TA binary file will be named ``${BINARY}.ta``. In
native OP-TEE, it is the TA UUID, used by tee-supplicant to identify TAs. If
one is building a static library (that will be later linked by a TA), then
``LIBNAME`` shall provide the name of the library. The generated library
binary file will be named ``lib${LIBNAME}.a``
CROSS_COMPILE and CROSS_COMPILE32
Cross compiler for the TA or the library source files. ``CROSS_COMPILE32``
is optional. It allows to target AArch32 builds on AArch64 capable systems.
On AArch32 systems, ``CROSS_COMPILE32`` defaults to ``CROSS_COMPILE``.
Optional variables
==================
Some optional configuration variables can be supported, for example:
O
Base directory for build objects filetree. If not set, TA-devkit defaults to
**./out** from the TA source tree base directory.
Example Makefile
================
A typical Makefile for a TA looks something like this
.. code-block:: Makefile
# Append specific configuration to the C source build (here log=info)
# The UUID for the Trusted Application
BINARY=8aaaf200-2450-11e4-abe2-0002a5d5c51b
# Source the TA-devkit make file
include $(TA_DEV_KIT_DIR)/mk/ta_dev_kit.mk
.. _build_trusted_applications_submk:
sub.mk directives
=================
The make file expects that current directory contains a file ``sub.mk`` that is
the entry point for listing the source files to build and other specific build
directives. Here are a couple of examples of directives one can implement in a
sub.mk make file:
.. code-block:: Makefile
# Adds /hello_world_ta.c from current directory to the list of the source
# file to build and link.
srcs-y += hello_world_ta.c
# Includes path **./include/** from the current directory to the include
# path.
global-incdirs-y += include/
# Adds directive -Wno-strict-prototypes only to the file hello_world_ta.c
cflags-hello_world_ta.c-y += -Wno-strict-prototypes
# Removes directive -Wno-strict-prototypes from the build directives for
# hello_world_ta.c only.
cflags-remove-hello_world_ta.c-y += -Wno-strict-prototypes
# Adds the static library foo to the list of the linker directive -lfoo.
libnames += foo
# Adds the directory path to the libraries pathes list. Archive file
# libfoo.a is expectd in this directory.
libdirs += path/to/libfoo/install/directory
# Adds the static library binary to the TA build dependencies.
libdeps += path/to/greatlib/libgreatlib.a
Android Build Environment
*************************
.. todo::
Joakim: Move this to the AOSP page?
OP-TEE's TA-devkit supports building in an Android build environment. One can
write an ``Android.mk`` file for the TA (stored side by side with the Makefile).
Android's build system will parse the ``Android.mk`` file for the TA which in
turn will parse a TA-devkit Android make file to locate TA build resources. Then
the Android build will execute a ``make`` command to built the TA through its
generic Makefile file.
A typical ``Android.mk`` file for a TA looks like this (``Android.mk`` for
:ref:`hello_world` is used as an example here).
.. code-block:: Makefile
# Define base path for the TA sources filetree
LOCAL_PATH := $(call my-dir)
# Define the module name as the signed TA binary filename.
local_module := 8aaaf200-2450-11e4-abe2-0002a5d5c51b.ta
# Include the devikt Android mak script
include $(OPTEE_OS_DIR)/mk/aosp_optee.mk
TA Mandatory Entry Points
*************************
A TA must implement a couple of mandatory entry points, these are:
.. code-block:: c
TEE_Result TA_CreateEntryPoint(void)
{
/* Allocate some resources, init something, ... */
...
/* Return with a status */
return TEE_SUCCESS;
}
void TA_DestroyEntryPoint(void)
{
/* Release resources if required before TA destruction */
...
}
TEE_Result TA_OpenSessionEntryPoint(uint32_t ptype,
TEE_Param param[4],
void **session_id_ptr)
{
/* Check client identity, and alloc/init some session resources if any */
...
/* Return with a status */
return TEE_SUCCESS;
}
void TA_CloseSessionEntryPoint(void *sess_ptr)
{
/* check client and handle session resource release, if any */
...
}
TEE_Result TA_InvokeCommandEntryPoint(void *session_id,
uint32_t command_id,
uint32_t parameters_type,
TEE_Param parameters[4])
{
/* Decode the command and process execution of the target service */
...
/* Return with a status */
return TEE_SUCCESS;
}
.. _build_ta_properties:
TA Properties
*************
Trusted Application properties shall be defined in a header file named
``user_ta_header_defines.h``, which should contain:
- ``TA_UUID`` defines the TA uuid value
- ``TA_FLAGS`` define some of the TA properties
- ``TA_STACK_SIZE`` defines the RAM size to be reserved for TA stack
- ``TA_DATA_SIZE`` defines the RAM size to be reserved for TA heap (TEE_Malloc()
pool)
Refer to :ref:`ta_properties` to understand how to configure these macros.
.. _user_ta_header_defines_h:
Example of a property header file
=================================
.. code-block:: c
#ifndef USER_TA_HEADER_DEFINES_H
#define USER_TA_HEADER_DEFINES_H
#define TA_UUID
{ 0x8aaaf200, 0x2450, 0x11e4, \
{ 0xab, 0xe2, 0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b} }
#define TA_FLAGS (TA_FLAG_EXEC_DDR | \
TA_FLAG_SINGLE_INSTANCE | \
TA_FLAG_MULTI_SESSION)
#define TA_STACK_SIZE (2 * 1024)
#define TA_DATA_SIZE (32 * 1024)
#define TA_CURRENT_TA_EXT_PROPERTIES \
{ "gp.ta.description", USER_TA_PROP_TYPE_STRING, "Foo TA for some purpose." }, \
{ "gp.ta.version", USER_TA_PROP_TYPE_U32, &(const uint32_t){ 0x0100 } }
#endif /* USER_TA_HEADER_DEFINES_H */
.. note::
It is recommended to use the ``TA_CURRENT_TA_EXT_PROPERTIES`` as above to
define extra properties of the TA.
Checking TA parameters
**********************
GlobalPlatforms TEE Client APIs ``TEEC_InvokeCommand()`` and
``TEE_OpenSession()`` allow clients to invoke a TA with some invocation
parameters: values or references to memory buffers. It is mandatory that TA's
verify the parameters types before using the parameters themselves. For this a
TA can rely on the macro ``TEE_PARAM_TYPE_GET(param_type, param_index)`` to get
the type of a parameter and check its value according to the expected parameter.
For example, if a TA expects that command ID 0 comes with ``params[0]`` being a
input value, ``params[1]`` being a output value, and ``params[2]`` being a
in/out memory reference (buffer), then the TA should implemented the following
sequence:
.. code-block:: c
TEE_Result handle_command_0(void *session, uint32_t cmd_id,
uint32_t param_types, TEE_Param params[4])
{
if ((TEE_PARAM_TYPE_GET(param_types, 0) != TEE_PARAM_TYPE_VALUE_IN) ||
(TEE_PARAM_TYPE_GET(param_types, 1) != TEE_PARAM_TYPE_VALUE_OUT) ||
(TEE_PARAM_TYPE_GET(param_types, 2) != TEE_PARAM_TYPE_MEMREF_INOUT) ||
(TEE_PARAM_TYPE_GET(param_types, 3) != TEE_PARAM_TYPE_NONE)) {
return TEE_ERROR_BAD_PARAMETERS
}
/* process command */
...
}
TEE_Result TA_InvokeCommandEntryPoint(void *session, uint32_t command_id,
uint32_t param_types, TEE_Param params[4])
{
switch (command_id) {
case 0:
return handle_command_0(session, param_types, params);
default:
return TEE_ERROR_NOT_SUPPORTED;
}
}