arm64: versal: Add support for new Xilinx Versal ACAPs

Xilinx is introducing Versal, an adaptive compute acceleration platform
(ACAP), built on 7nm FinFET process technology. Versal ACAPs combine Scalar
Processing Engines, Adaptable Hardware Engines, and Intelligent Engines with
leading-edge memory and interfacing technologies to deliver powerful
heterogeneous acceleration for any application. The Versal AI Core series has
five devices, offering 128 to 400 AI Engines. The series includes dual-core Arm
Cortex-A72 application processors, dual-core Arm Cortex-R5 real-time
processors, 256KB of on-chip memory with ECC, more than 1,900 DSP engines
optimized for high-precision floating point with low latency.

This patch adds Virtual QEMU platform support for
this SoC "versal_virt".

Signed-off-by: Siva Durga Prasad Paladugu <siva.durga.paladugu@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
diff --git a/plat/xilinx/versal/bl31_versal_setup.c b/plat/xilinx/versal/bl31_versal_setup.c
new file mode 100644
index 0000000..9f71a1c
--- /dev/null
+++ b/plat/xilinx/versal/bl31_versal_setup.c
@@ -0,0 +1,120 @@
+/*
+ * Copyright (c) 2018, ARM Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <bl_common.h>
+#include <bl31.h>
+#include <console.h>
+#include <debug.h>
+#include <errno.h>
+#include <platform.h>
+#include <pl011.h>
+#include <xlat_tables.h>
+#include "versal_private.h"
+
+static entry_point_info_t bl32_image_ep_info;
+static entry_point_info_t bl33_image_ep_info;
+static console_pl011_t versal_runtime_console;
+
+/*
+ * Return a pointer to the 'entry_point_info' structure of the next image for
+ * the security state specified. BL33 corresponds to the non-secure image type
+ * while BL32 corresponds to the secure image type. A NULL pointer is returned
+ * if the image does not exist.
+ */
+entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
+{
+	assert(sec_state_is_valid(type));
+
+	if (type == NON_SECURE)
+		return &bl33_image_ep_info;
+
+	return &bl32_image_ep_info;
+}
+
+/*
+ * Perform any BL31 specific platform actions. Here is an opportunity to copy
+ * parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they
+ * are lost (potentially). This needs to be done before the MMU is initialized
+ * so that the memory layout can be used while creating page tables.
+ */
+void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
+				u_register_t arg2, u_register_t arg3)
+{
+
+	/* Initialize the console to provide early debug support */
+	int rc = console_pl011_register(VERSAL_UART_BASE,
+					VERSAL_UART_CLOCK,
+					VERSAL_UART_BAUDRATE,
+					&versal_runtime_console);
+	if (rc == 0)
+		panic();
+
+	console_set_scope(&versal_runtime_console.console, CONSOLE_FLAG_BOOT |
+			  CONSOLE_FLAG_RUNTIME);
+
+	/* Initialize the platform config for future decision making */
+	versal_config_setup();
+	/* There are no parameters from BL2 if BL31 is a reset vector */
+	assert(arg0 == 0U);
+	assert(arg1 == 0U);
+
+	/*
+	 * Do initial security configuration to allow DRAM/device access. On
+	 * Base VERSAL only DRAM security is programmable (via TrustZone), but
+	 * other platforms might have more programmable security devices
+	 * present.
+	 */
+
+	/* Populate common information for BL32 and BL33 */
+	SET_PARAM_HEAD(&bl32_image_ep_info, PARAM_EP, VERSION_1, 0);
+	SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
+	SET_PARAM_HEAD(&bl33_image_ep_info, PARAM_EP, VERSION_1, 0);
+	SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
+
+	/* use build time defaults in JTAG boot mode */
+	bl32_image_ep_info.pc = BL32_BASE;
+	bl32_image_ep_info.spsr = 0;
+	bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
+	bl33_image_ep_info.spsr = SPSR_64(MODE_EL2, MODE_SP_ELX,
+					  DISABLE_ALL_EXCEPTIONS);
+
+	NOTICE("BL31: Secure code at 0x%lx\n", bl32_image_ep_info.pc);
+	NOTICE("BL31: Non secure code at 0x%lx\n", bl33_image_ep_info.pc);
+}
+
+void bl31_platform_setup(void)
+{
+	/* Initialize the gic cpu and distributor interfaces */
+	plat_versal_gic_driver_init();
+	plat_versal_gic_init();
+}
+
+void bl31_plat_runtime_setup(void)
+{
+}
+
+/*
+ * Perform the very early platform specific architectural setup here.
+ */
+void bl31_plat_arch_setup(void)
+{
+	const mmap_region_t bl_regions[] = {
+		MAP_REGION_FLAT(BL31_BASE, BL31_END - BL31_BASE,
+			MT_MEMORY | MT_RW | MT_SECURE),
+		MAP_REGION_FLAT(BL_CODE_BASE, BL_CODE_END - BL_CODE_BASE,
+				MT_CODE | MT_SECURE),
+		MAP_REGION_FLAT(BL_RO_DATA_BASE, BL_RO_DATA_END - BL_RO_DATA_BASE,
+				MT_RO_DATA | MT_SECURE),
+		MAP_REGION_FLAT(BL_COHERENT_RAM_BASE,
+				BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE,
+				MT_DEVICE | MT_RW | MT_SECURE),
+		{0}
+	};
+
+	setup_page_tables(bl_regions, plat_versal_get_mmap());
+	enable_mmu_el3(0);
+}