Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Licensed to the Apache Software Foundation (ASF) under one |
| 3 | * or more contributor license agreements. See the NOTICE file |
| 4 | * distributed with this work for additional information |
| 5 | * regarding copyright ownership. The ASF licenses this file |
| 6 | * to you under the Apache License, Version 2.0 (the |
| 7 | * "License"); you may not use this file except in compliance |
| 8 | * with the License. You may obtain a copy of the License at |
| 9 | * |
| 10 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | * |
| 12 | * Unless required by applicable law or agreed to in writing, |
| 13 | * software distributed under the License is distributed on an |
| 14 | * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 15 | * KIND, either express or implied. See the License for the |
| 16 | * specific language governing permissions and limitations |
| 17 | * under the License. |
| 18 | */ |
| 19 | |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 20 | /* |
| 21 | Original code taken from mcuboot project at: |
| 22 | https://github.com/runtimeco/mcuboot |
| 23 | Modifications are Copyright (c) 2018 Arm Limited. |
| 24 | */ |
| 25 | |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 26 | /** |
| 27 | * This file provides an interface to the boot loader. Functions defined in |
| 28 | * this file should only be called while the boot loader is running. |
| 29 | */ |
| 30 | |
| 31 | #include <assert.h> |
| 32 | #include <stddef.h> |
| 33 | #include <stdbool.h> |
| 34 | #include <inttypes.h> |
| 35 | #include <stdlib.h> |
| 36 | #include <string.h> |
| 37 | #include <hal/hal_flash.h> |
| 38 | #include <os/os_malloc.h> |
| 39 | #include "bootutil/bootutil.h" |
| 40 | #include "bootutil/image.h" |
| 41 | #include "bootutil_priv.h" |
| 42 | |
| 43 | #define BOOT_LOG_LEVEL BOOT_LOG_LEVEL_INFO |
| 44 | #include "bootutil/bootutil_log.h" |
| 45 | |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 46 | static struct boot_loader_state boot_data; |
| 47 | |
| 48 | struct boot_status_table { |
| 49 | /** |
| 50 | * For each field, a value of 0 means "any". |
| 51 | */ |
| 52 | uint8_t bst_magic_slot0; |
| 53 | uint8_t bst_magic_scratch; |
| 54 | uint8_t bst_copy_done_slot0; |
| 55 | uint8_t bst_status_source; |
| 56 | }; |
| 57 | |
| 58 | /** |
| 59 | * This set of tables maps swap state contents to boot status location. |
| 60 | * When searching for a match, these tables must be iterated in order. |
| 61 | */ |
| 62 | static const struct boot_status_table boot_status_tables[] = { |
| 63 | { |
| 64 | /* | slot-0 | scratch | |
| 65 | * ----------+------------+------------| |
| 66 | * magic | Good | Any | |
| 67 | * copy-done | 0x01 | N/A | |
| 68 | * ----------+------------+------------' |
| 69 | * source: none | |
| 70 | * ------------------------------------' |
| 71 | */ |
| 72 | .bst_magic_slot0 = BOOT_MAGIC_GOOD, |
| 73 | .bst_magic_scratch = 0, |
| 74 | .bst_copy_done_slot0 = 0x01, |
| 75 | .bst_status_source = BOOT_STATUS_SOURCE_NONE, |
| 76 | }, |
| 77 | |
| 78 | { |
| 79 | /* | slot-0 | scratch | |
| 80 | * ----------+------------+------------| |
| 81 | * magic | Good | Any | |
| 82 | * copy-done | 0xff | N/A | |
| 83 | * ----------+------------+------------' |
| 84 | * source: slot 0 | |
| 85 | * ------------------------------------' |
| 86 | */ |
| 87 | .bst_magic_slot0 = BOOT_MAGIC_GOOD, |
| 88 | .bst_magic_scratch = 0, |
| 89 | .bst_copy_done_slot0 = 0xff, |
| 90 | .bst_status_source = BOOT_STATUS_SOURCE_SLOT0, |
| 91 | }, |
| 92 | |
| 93 | { |
| 94 | /* | slot-0 | scratch | |
| 95 | * ----------+------------+------------| |
| 96 | * magic | Any | Good | |
| 97 | * copy-done | Any | N/A | |
| 98 | * ----------+------------+------------' |
| 99 | * source: scratch | |
| 100 | * ------------------------------------' |
| 101 | */ |
| 102 | .bst_magic_slot0 = 0, |
| 103 | .bst_magic_scratch = BOOT_MAGIC_GOOD, |
| 104 | .bst_copy_done_slot0 = 0, |
| 105 | .bst_status_source = BOOT_STATUS_SOURCE_SCRATCH, |
| 106 | }, |
| 107 | |
| 108 | { |
| 109 | /* | slot-0 | scratch | |
| 110 | * ----------+------------+------------| |
| 111 | * magic | Unset | Any | |
| 112 | * copy-done | 0xff | N/A | |
| 113 | * ----------+------------+------------| |
| 114 | * source: varies | |
| 115 | * ------------------------------------+------------------------------+ |
| 116 | * This represents one of two cases: | |
| 117 | * o No swaps ever (no status to read, so no harm in checking). | |
| 118 | * o Mid-revert; status in slot 0. | |
| 119 | * -------------------------------------------------------------------' |
| 120 | */ |
| 121 | .bst_magic_slot0 = BOOT_MAGIC_UNSET, |
| 122 | .bst_magic_scratch = 0, |
| 123 | .bst_copy_done_slot0 = 0xff, |
| 124 | .bst_status_source = BOOT_STATUS_SOURCE_SLOT0, |
| 125 | }, |
| 126 | }; |
| 127 | |
| 128 | #define BOOT_STATUS_TABLES_COUNT \ |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 129 | (sizeof(boot_status_tables) / sizeof(boot_status_tables[0])) |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 130 | |
| 131 | #define BOOT_LOG_SWAP_STATE(area, state) \ |
| 132 | BOOT_LOG_INF("%s: magic=%s, copy_done=0x%x, image_ok=0x%x", \ |
| 133 | (area), \ |
| 134 | ((state)->magic == BOOT_MAGIC_GOOD ? "good" : \ |
| 135 | (state)->magic == BOOT_MAGIC_UNSET ? "unset" : \ |
| 136 | "bad"), \ |
| 137 | (state)->copy_done, \ |
| 138 | (state)->image_ok) |
| 139 | |
| 140 | /** |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 141 | * Determines where in flash the most recent boot status is stored. The boot |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 142 | * status is necessary for completing a swap that was interrupted by a boot |
| 143 | * loader reset. |
| 144 | * |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 145 | * @return BOOT_STATUS_SOURCE_[...] code indicating where |
| 146 | * status should be read from. |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 147 | */ |
| 148 | static int |
| 149 | boot_status_source(void) |
| 150 | { |
| 151 | const struct boot_status_table *table; |
| 152 | struct boot_swap_state state_scratch; |
| 153 | struct boot_swap_state state_slot0; |
| 154 | int rc; |
| 155 | int i; |
| 156 | uint8_t source; |
| 157 | |
| 158 | rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_0, &state_slot0); |
| 159 | assert(rc == 0); |
| 160 | |
| 161 | rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SCRATCH, &state_scratch); |
| 162 | assert(rc == 0); |
| 163 | |
| 164 | BOOT_LOG_SWAP_STATE("Image 0", &state_slot0); |
| 165 | BOOT_LOG_SWAP_STATE("Scratch", &state_scratch); |
| 166 | |
| 167 | for (i = 0; i < BOOT_STATUS_TABLES_COUNT; i++) { |
| 168 | table = &boot_status_tables[i]; |
| 169 | |
| 170 | if ((table->bst_magic_slot0 == 0 || |
| 171 | table->bst_magic_slot0 == state_slot0.magic) && |
| 172 | (table->bst_magic_scratch == 0 || |
| 173 | table->bst_magic_scratch == state_scratch.magic) && |
| 174 | (table->bst_copy_done_slot0 == 0 || |
| 175 | table->bst_copy_done_slot0 == state_slot0.copy_done)) { |
| 176 | source = table->bst_status_source; |
| 177 | BOOT_LOG_INF("Boot source: %s", |
| 178 | source == BOOT_STATUS_SOURCE_NONE ? "none" : |
| 179 | source == BOOT_STATUS_SOURCE_SCRATCH ? "scratch" : |
| 180 | source == BOOT_STATUS_SOURCE_SLOT0 ? "slot 0" : |
| 181 | "BUG; can't happen"); |
| 182 | return source; |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | BOOT_LOG_INF("Boot source: none"); |
| 187 | return BOOT_STATUS_SOURCE_NONE; |
| 188 | } |
| 189 | |
| 190 | /** |
| 191 | * Calculates the type of swap that just completed. |
| 192 | * |
| 193 | * This is used when a swap is interrupted by an external event. After |
| 194 | * finishing the swap operation determines what the initial request was. |
| 195 | */ |
| 196 | static int |
| 197 | boot_previous_swap_type(void) |
| 198 | { |
| 199 | int post_swap_type; |
| 200 | |
| 201 | post_swap_type = boot_swap_type(); |
| 202 | |
| 203 | switch (post_swap_type) { |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 204 | case BOOT_SWAP_TYPE_NONE: return BOOT_SWAP_TYPE_PERM; |
| 205 | case BOOT_SWAP_TYPE_REVERT: return BOOT_SWAP_TYPE_TEST; |
| 206 | case BOOT_SWAP_TYPE_PANIC: return BOOT_SWAP_TYPE_PANIC; |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 207 | } |
| 208 | |
| 209 | return BOOT_SWAP_TYPE_FAIL; |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * Compute the total size of the given image. Includes the size of |
| 214 | * the TLVs. |
| 215 | */ |
| 216 | #ifndef MCUBOOT_OVERWRITE_ONLY |
| 217 | static int |
| 218 | boot_read_image_size(int slot, struct image_header *hdr, uint32_t *size) |
| 219 | { |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 220 | const struct flash_area *fap = NULL; |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 221 | struct image_tlv_info info; |
| 222 | int area_id; |
| 223 | int rc; |
| 224 | |
| 225 | area_id = flash_area_id_from_image_slot(slot); |
| 226 | rc = flash_area_open(area_id, &fap); |
| 227 | if (rc != 0) { |
| 228 | rc = BOOT_EFLASH; |
| 229 | goto done; |
| 230 | } |
| 231 | |
| 232 | rc = flash_area_read(fap, hdr->ih_hdr_size + hdr->ih_img_size, |
| 233 | &info, sizeof(info)); |
| 234 | if (rc != 0) { |
| 235 | rc = BOOT_EFLASH; |
| 236 | goto done; |
| 237 | } |
| 238 | if (info.it_magic != IMAGE_TLV_INFO_MAGIC) { |
| 239 | rc = BOOT_EBADIMAGE; |
| 240 | goto done; |
| 241 | } |
| 242 | *size = hdr->ih_hdr_size + hdr->ih_img_size + info.it_tlv_tot; |
| 243 | rc = 0; |
| 244 | |
| 245 | done: |
| 246 | flash_area_close(fap); |
| 247 | return rc; |
| 248 | } |
| 249 | #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| 250 | |
| 251 | static int |
| 252 | boot_read_image_header(int slot, struct image_header *out_hdr) |
| 253 | { |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 254 | const struct flash_area *fap = NULL; |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 255 | int area_id; |
| 256 | int rc; |
| 257 | |
| 258 | area_id = flash_area_id_from_image_slot(slot); |
| 259 | rc = flash_area_open(area_id, &fap); |
| 260 | if (rc != 0) { |
| 261 | rc = BOOT_EFLASH; |
| 262 | goto done; |
| 263 | } |
| 264 | |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 265 | rc = flash_area_read(fap, 0, out_hdr, sizeof(*out_hdr)); |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 266 | if (rc != 0) { |
| 267 | rc = BOOT_EFLASH; |
| 268 | goto done; |
| 269 | } |
| 270 | |
| 271 | rc = 0; |
| 272 | |
| 273 | done: |
| 274 | flash_area_close(fap); |
| 275 | return rc; |
| 276 | } |
| 277 | |
| 278 | static int |
| 279 | boot_read_image_headers(void) |
| 280 | { |
| 281 | int rc; |
| 282 | int i; |
| 283 | |
| 284 | for (i = 0; i < BOOT_NUM_SLOTS; i++) { |
| 285 | rc = boot_read_image_header(i, boot_img_hdr(&boot_data, i)); |
| 286 | if (rc != 0) { |
| 287 | /* If at least the first slot's header was read successfully, then |
| 288 | * the boot loader can attempt a boot. Failure to read any headers |
| 289 | * is a fatal error. |
| 290 | */ |
| 291 | if (i > 0) { |
| 292 | return 0; |
| 293 | } else { |
| 294 | return rc; |
| 295 | } |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | return 0; |
| 300 | } |
| 301 | |
| 302 | static uint8_t |
| 303 | boot_write_sz(void) |
| 304 | { |
| 305 | uint8_t elem_sz; |
| 306 | uint8_t align; |
| 307 | |
| 308 | /* Figure out what size to write update status update as. The size depends |
| 309 | * on what the minimum write size is for scratch area, active image slot. |
| 310 | * We need to use the bigger of those 2 values. |
| 311 | */ |
| 312 | elem_sz = hal_flash_align(boot_img_fa_device_id(&boot_data, 0)); |
| 313 | align = hal_flash_align(boot_scratch_fa_device_id(&boot_data)); |
| 314 | if (align > elem_sz) { |
| 315 | elem_sz = align; |
| 316 | } |
| 317 | |
| 318 | return elem_sz; |
| 319 | } |
| 320 | |
| 321 | static int |
| 322 | boot_slots_compatible(void) |
| 323 | { |
| 324 | size_t num_sectors_0 = boot_img_num_sectors(&boot_data, 0); |
| 325 | size_t num_sectors_1 = boot_img_num_sectors(&boot_data, 1); |
| 326 | size_t size_0, size_1; |
| 327 | size_t i; |
| 328 | |
| 329 | /* Ensure both image slots have identical sector layouts. */ |
| 330 | if (num_sectors_0 != num_sectors_1) { |
| 331 | return 0; |
| 332 | } |
| 333 | for (i = 0; i < num_sectors_0; i++) { |
| 334 | size_0 = boot_img_sector_size(&boot_data, 0, i); |
| 335 | size_1 = boot_img_sector_size(&boot_data, 1, i); |
| 336 | if (size_0 != size_1) { |
| 337 | return 0; |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | return 1; |
| 342 | } |
| 343 | |
| 344 | /** |
| 345 | * Determines the sector layout of both image slots and the scratch area. |
| 346 | * This information is necessary for calculating the number of bytes to erase |
| 347 | * and copy during an image swap. The information collected during this |
| 348 | * function is used to populate the boot_data global. |
| 349 | */ |
| 350 | static int |
| 351 | boot_read_sectors(void) |
| 352 | { |
| 353 | int rc; |
| 354 | |
| 355 | rc = boot_initialize_area(&boot_data, FLASH_AREA_IMAGE_0); |
| 356 | if (rc != 0) { |
| 357 | return BOOT_EFLASH; |
| 358 | } |
| 359 | |
| 360 | rc = boot_initialize_area(&boot_data, FLASH_AREA_IMAGE_1); |
| 361 | if (rc != 0) { |
| 362 | return BOOT_EFLASH; |
| 363 | } |
| 364 | |
| 365 | BOOT_WRITE_SZ(&boot_data) = boot_write_sz(); |
| 366 | |
| 367 | return 0; |
| 368 | } |
| 369 | |
| 370 | static uint32_t |
| 371 | boot_status_internal_off(int idx, int state, int elem_sz) |
| 372 | { |
| 373 | int idx_sz; |
| 374 | |
| 375 | idx_sz = elem_sz * BOOT_STATUS_STATE_COUNT; |
| 376 | |
| 377 | return idx * idx_sz + state * elem_sz; |
| 378 | } |
| 379 | |
| 380 | /** |
| 381 | * Reads the status of a partially-completed swap, if any. This is necessary |
| 382 | * to recover in case the boot lodaer was reset in the middle of a swap |
| 383 | * operation. |
| 384 | */ |
| 385 | static int |
| 386 | boot_read_status_bytes(const struct flash_area *fap, struct boot_status *bs) |
| 387 | { |
| 388 | uint32_t off; |
| 389 | uint8_t status; |
| 390 | int max_entries; |
| 391 | int found; |
| 392 | int rc; |
| 393 | int i; |
| 394 | |
| 395 | off = boot_status_off(fap); |
| 396 | max_entries = boot_status_entries(fap); |
| 397 | |
| 398 | found = 0; |
| 399 | for (i = 0; i < max_entries; i++) { |
| 400 | rc = flash_area_read(fap, off + i * BOOT_WRITE_SZ(&boot_data), |
| 401 | &status, 1); |
| 402 | if (rc != 0) { |
| 403 | return BOOT_EFLASH; |
| 404 | } |
| 405 | |
| 406 | if (status == 0xff) { |
| 407 | if (found) { |
| 408 | break; |
| 409 | } |
| 410 | } else if (!found) { |
| 411 | found = 1; |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | if (found) { |
| 416 | i--; |
| 417 | bs->idx = i / BOOT_STATUS_STATE_COUNT; |
| 418 | bs->state = i % BOOT_STATUS_STATE_COUNT; |
| 419 | } |
| 420 | |
| 421 | return 0; |
| 422 | } |
| 423 | |
| 424 | /** |
| 425 | * Reads the boot status from the flash. The boot status contains |
| 426 | * the current state of an interrupted image copy operation. If the boot |
| 427 | * status is not present, or it indicates that previous copy finished, |
| 428 | * there is no operation in progress. |
| 429 | */ |
| 430 | static int |
| 431 | boot_read_status(struct boot_status *bs) |
| 432 | { |
| 433 | const struct flash_area *fap; |
| 434 | int status_loc; |
| 435 | int area_id; |
| 436 | int rc; |
| 437 | |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 438 | memset(bs, 0, sizeof(*bs)); |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 439 | |
| 440 | status_loc = boot_status_source(); |
| 441 | switch (status_loc) { |
| 442 | case BOOT_STATUS_SOURCE_NONE: |
| 443 | return 0; |
| 444 | |
| 445 | case BOOT_STATUS_SOURCE_SCRATCH: |
| 446 | area_id = FLASH_AREA_IMAGE_SCRATCH; |
| 447 | break; |
| 448 | |
| 449 | case BOOT_STATUS_SOURCE_SLOT0: |
| 450 | area_id = FLASH_AREA_IMAGE_0; |
| 451 | break; |
| 452 | |
| 453 | default: |
| 454 | assert(0); |
| 455 | return BOOT_EBADARGS; |
| 456 | } |
| 457 | |
| 458 | rc = flash_area_open(area_id, &fap); |
| 459 | if (rc != 0) { |
| 460 | return BOOT_EFLASH; |
| 461 | } |
| 462 | |
| 463 | rc = boot_read_status_bytes(fap, bs); |
| 464 | |
| 465 | flash_area_close(fap); |
| 466 | return rc; |
| 467 | } |
| 468 | |
| 469 | /** |
| 470 | * Writes the supplied boot status to the flash file system. The boot status |
| 471 | * contains the current state of an in-progress image copy operation. |
| 472 | * |
| 473 | * @param bs The boot status to write. |
| 474 | * |
| 475 | * @return 0 on success; nonzero on failure. |
| 476 | */ |
| 477 | int |
| 478 | boot_write_status(struct boot_status *bs) |
| 479 | { |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 480 | const struct flash_area *fap = NULL; |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 481 | uint32_t off; |
| 482 | int area_id; |
| 483 | int rc; |
| 484 | uint8_t buf[BOOT_MAX_ALIGN]; |
| 485 | uint8_t align; |
| 486 | |
| 487 | /* NOTE: The first sector copied (that is the last sector on slot) contains |
| 488 | * the trailer. Since in the last step SLOT 0 is erased, the first |
| 489 | * two status writes go to the scratch which will be copied to SLOT 0! |
| 490 | */ |
| 491 | |
| 492 | if (bs->use_scratch) { |
| 493 | /* Write to scratch. */ |
| 494 | area_id = FLASH_AREA_IMAGE_SCRATCH; |
| 495 | } else { |
| 496 | /* Write to slot 0. */ |
| 497 | area_id = FLASH_AREA_IMAGE_0; |
| 498 | } |
| 499 | |
| 500 | rc = flash_area_open(area_id, &fap); |
| 501 | if (rc != 0) { |
| 502 | rc = BOOT_EFLASH; |
| 503 | goto done; |
| 504 | } |
| 505 | |
| 506 | off = boot_status_off(fap) + |
| 507 | boot_status_internal_off(bs->idx, bs->state, |
| 508 | BOOT_WRITE_SZ(&boot_data)); |
| 509 | |
| 510 | align = hal_flash_align(fap->fa_device_id); |
| 511 | memset(buf, 0xFF, BOOT_MAX_ALIGN); |
| 512 | buf[0] = bs->state; |
| 513 | |
| 514 | rc = flash_area_write(fap, off, buf, align); |
| 515 | if (rc != 0) { |
| 516 | rc = BOOT_EFLASH; |
| 517 | goto done; |
| 518 | } |
| 519 | |
| 520 | rc = 0; |
| 521 | |
| 522 | done: |
| 523 | flash_area_close(fap); |
| 524 | return rc; |
| 525 | } |
| 526 | |
| 527 | /* |
| 528 | * Validate image hash/signature in a slot. |
| 529 | */ |
| 530 | static int |
| 531 | boot_image_check(struct image_header *hdr, const struct flash_area *fap) |
| 532 | { |
| 533 | static uint8_t tmpbuf[BOOT_TMPBUF_SZ]; |
| 534 | |
| 535 | if (bootutil_img_validate(hdr, fap, tmpbuf, BOOT_TMPBUF_SZ, |
| 536 | NULL, 0, NULL)) { |
| 537 | return BOOT_EBADIMAGE; |
| 538 | } |
| 539 | return 0; |
| 540 | } |
| 541 | |
| 542 | static int |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 543 | boot_validate_slot(int slot) |
| 544 | { |
| 545 | const struct flash_area *fap; |
| 546 | struct image_header *hdr; |
| 547 | int rc; |
| 548 | |
| 549 | hdr = boot_img_hdr(&boot_data, slot); |
| 550 | if (hdr->ih_magic == 0xffffffff || hdr->ih_flags & IMAGE_F_NON_BOOTABLE) { |
| 551 | /* No bootable image in slot; continue booting from slot 0. */ |
| 552 | return -1; |
| 553 | } |
| 554 | |
| 555 | rc = flash_area_open(flash_area_id_from_image_slot(slot), &fap); |
| 556 | if (rc != 0) { |
| 557 | return BOOT_EFLASH; |
| 558 | } |
| 559 | |
| 560 | if ((hdr->ih_magic != IMAGE_MAGIC || boot_image_check(hdr, fap) != 0)) { |
| 561 | if (slot != 0) { |
| 562 | flash_area_erase(fap, 0, fap->fa_size); |
| 563 | /* Image in slot 1 is invalid. Erase the image and |
| 564 | * continue booting from slot 0. |
| 565 | */ |
| 566 | } |
| 567 | BOOT_LOG_ERR("Image in slot %d is not valid!", slot); |
| 568 | return -1; |
| 569 | } |
| 570 | |
| 571 | flash_area_close(fap); |
| 572 | |
| 573 | /* Image in slot 1 is valid. */ |
| 574 | return 0; |
| 575 | } |
| 576 | |
| 577 | /** |
| 578 | * Determines which swap operation to perform, if any. If it is determined |
| 579 | * that a swap operation is required, the image in the second slot is checked |
| 580 | * for validity. If the image in the second slot is invalid, it is erased, and |
| 581 | * a swap type of "none" is indicated. |
| 582 | * |
| 583 | * @return The type of swap to perform (BOOT_SWAP_TYPE...) |
| 584 | */ |
| 585 | static int |
| 586 | boot_validated_swap_type(void) |
| 587 | { |
| 588 | int swap_type; |
| 589 | |
| 590 | swap_type = boot_swap_type(); |
| 591 | switch (swap_type) { |
| 592 | case BOOT_SWAP_TYPE_TEST: |
| 593 | case BOOT_SWAP_TYPE_PERM: |
| 594 | case BOOT_SWAP_TYPE_REVERT: |
| 595 | /* Boot loader wants to switch to slot 1. Ensure image is valid. */ |
| 596 | if (boot_validate_slot(1) != 0) { |
| 597 | swap_type = BOOT_SWAP_TYPE_FAIL; |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | return swap_type; |
| 602 | } |
| 603 | |
| 604 | /** |
| 605 | * Calculates the number of sectors the scratch area can contain. A "last" |
| 606 | * source sector is specified because images are copied backwards in flash |
| 607 | * (final index to index number 0). |
| 608 | * |
| 609 | * @param last_sector_idx The index of the last source sector |
| 610 | * (inclusive). |
| 611 | * @param out_first_sector_idx The index of the first source sector |
| 612 | * (inclusive) gets written here. |
| 613 | * |
| 614 | * @return The number of bytes comprised by the |
| 615 | * [first-sector, last-sector] range. |
| 616 | */ |
| 617 | #ifndef MCUBOOT_OVERWRITE_ONLY |
| 618 | static uint32_t |
| 619 | boot_copy_sz(int last_sector_idx, int *out_first_sector_idx) |
| 620 | { |
| 621 | size_t scratch_sz; |
| 622 | uint32_t new_sz; |
| 623 | uint32_t sz; |
| 624 | int i; |
| 625 | |
| 626 | sz = 0; |
| 627 | |
| 628 | scratch_sz = boot_scratch_area_size(&boot_data); |
| 629 | for (i = last_sector_idx; i >= 0; i--) { |
| 630 | new_sz = sz + boot_img_sector_size(&boot_data, 0, i); |
| 631 | if (new_sz > scratch_sz) { |
| 632 | break; |
| 633 | } |
| 634 | sz = new_sz; |
| 635 | } |
| 636 | |
| 637 | /* i currently refers to a sector that doesn't fit or it is -1 because all |
| 638 | * sectors have been processed. In both cases, exclude sector i. |
| 639 | */ |
| 640 | *out_first_sector_idx = i + 1; |
| 641 | return sz; |
| 642 | } |
| 643 | #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| 644 | |
| 645 | /** |
| 646 | * Erases a region of flash. |
| 647 | * |
| 648 | * @param flash_area_idx The ID of the flash area containing the region |
| 649 | * to erase. |
| 650 | * @param off The offset within the flash area to start the |
| 651 | * erase. |
| 652 | * @param sz The number of bytes to erase. |
| 653 | * |
| 654 | * @return 0 on success; nonzero on failure. |
| 655 | */ |
| 656 | static int |
| 657 | boot_erase_sector(int flash_area_id, uint32_t off, uint32_t sz) |
| 658 | { |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 659 | const struct flash_area *fap = NULL; |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 660 | int rc; |
| 661 | |
| 662 | rc = flash_area_open(flash_area_id, &fap); |
| 663 | if (rc != 0) { |
| 664 | rc = BOOT_EFLASH; |
| 665 | goto done; |
| 666 | } |
| 667 | |
| 668 | rc = flash_area_erase(fap, off, sz); |
| 669 | if (rc != 0) { |
| 670 | rc = BOOT_EFLASH; |
| 671 | goto done; |
| 672 | } |
| 673 | |
| 674 | rc = 0; |
| 675 | |
| 676 | done: |
| 677 | flash_area_close(fap); |
| 678 | return rc; |
| 679 | } |
| 680 | |
| 681 | /** |
| 682 | * Copies the contents of one flash region to another. You must erase the |
| 683 | * destination region prior to calling this function. |
| 684 | * |
| 685 | * @param flash_area_id_src The ID of the source flash area. |
| 686 | * @param flash_area_id_dst The ID of the destination flash area. |
| 687 | * @param off_src The offset within the source flash area to |
| 688 | * copy from. |
| 689 | * @param off_dst The offset within the destination flash area to |
| 690 | * copy to. |
| 691 | * @param sz The number of bytes to copy. |
| 692 | * |
| 693 | * @return 0 on success; nonzero on failure. |
| 694 | */ |
| 695 | static int |
| 696 | boot_copy_sector(int flash_area_id_src, int flash_area_id_dst, |
| 697 | uint32_t off_src, uint32_t off_dst, uint32_t sz) |
| 698 | { |
| 699 | const struct flash_area *fap_src; |
| 700 | const struct flash_area *fap_dst; |
| 701 | uint32_t bytes_copied; |
| 702 | int chunk_sz; |
| 703 | int rc; |
| 704 | |
| 705 | static uint8_t buf[1024]; |
| 706 | |
| 707 | fap_src = NULL; |
| 708 | fap_dst = NULL; |
| 709 | |
| 710 | rc = flash_area_open(flash_area_id_src, &fap_src); |
| 711 | if (rc != 0) { |
| 712 | rc = BOOT_EFLASH; |
| 713 | goto done; |
| 714 | } |
| 715 | |
| 716 | rc = flash_area_open(flash_area_id_dst, &fap_dst); |
| 717 | if (rc != 0) { |
| 718 | rc = BOOT_EFLASH; |
| 719 | goto done; |
| 720 | } |
| 721 | |
| 722 | bytes_copied = 0; |
| 723 | while (bytes_copied < sz) { |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 724 | if (sz - bytes_copied > sizeof(buf)) { |
| 725 | chunk_sz = sizeof(buf); |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 726 | } else { |
| 727 | chunk_sz = sz - bytes_copied; |
| 728 | } |
| 729 | |
| 730 | rc = flash_area_read(fap_src, off_src + bytes_copied, buf, chunk_sz); |
| 731 | if (rc != 0) { |
| 732 | rc = BOOT_EFLASH; |
| 733 | goto done; |
| 734 | } |
| 735 | |
| 736 | rc = flash_area_write(fap_dst, off_dst + bytes_copied, buf, chunk_sz); |
| 737 | if (rc != 0) { |
| 738 | rc = BOOT_EFLASH; |
| 739 | goto done; |
| 740 | } |
| 741 | |
| 742 | bytes_copied += chunk_sz; |
| 743 | } |
| 744 | |
| 745 | rc = 0; |
| 746 | |
| 747 | done: |
| 748 | if (fap_src) { |
| 749 | flash_area_close(fap_src); |
| 750 | } |
| 751 | if (fap_dst) { |
| 752 | flash_area_close(fap_dst); |
| 753 | } |
| 754 | return rc; |
| 755 | } |
| 756 | |
| 757 | #ifndef MCUBOOT_OVERWRITE_ONLY |
| 758 | static inline int |
| 759 | boot_status_init_by_id(int flash_area_id, const struct boot_status *bs) |
| 760 | { |
| 761 | const struct flash_area *fap; |
| 762 | struct boot_swap_state swap_state; |
| 763 | int rc; |
| 764 | |
| 765 | rc = flash_area_open(flash_area_id, &fap); |
| 766 | assert(rc == 0); |
| 767 | |
| 768 | rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_1, &swap_state); |
| 769 | assert(rc == 0); |
| 770 | |
| 771 | if (swap_state.image_ok == BOOT_FLAG_SET) { |
| 772 | rc = boot_write_image_ok(fap); |
| 773 | assert(rc == 0); |
| 774 | } |
| 775 | |
| 776 | rc = boot_write_swap_size(fap, bs->swap_size); |
| 777 | assert(rc == 0); |
| 778 | |
| 779 | rc = boot_write_magic(fap); |
| 780 | assert(rc == 0); |
| 781 | |
| 782 | flash_area_close(fap); |
| 783 | |
| 784 | return 0; |
| 785 | } |
| 786 | #endif |
| 787 | |
| 788 | #ifndef MCUBOOT_OVERWRITE_ONLY |
| 789 | static int |
| 790 | boot_erase_last_sector_by_id(int flash_area_id) |
| 791 | { |
| 792 | uint8_t slot; |
| 793 | uint32_t last_sector; |
| 794 | int rc; |
| 795 | |
| 796 | switch (flash_area_id) { |
| 797 | case FLASH_AREA_IMAGE_0: |
| 798 | slot = 0; |
| 799 | break; |
| 800 | case FLASH_AREA_IMAGE_1: |
| 801 | slot = 1; |
| 802 | break; |
| 803 | default: |
| 804 | return BOOT_EFLASH; |
| 805 | } |
| 806 | |
| 807 | last_sector = boot_img_num_sectors(&boot_data, slot) - 1; |
| 808 | rc = boot_erase_sector(flash_area_id, |
| 809 | boot_img_sector_off(&boot_data, slot, last_sector), |
| 810 | boot_img_sector_size(&boot_data, slot, last_sector)); |
| 811 | assert(rc == 0); |
| 812 | |
| 813 | return rc; |
| 814 | } |
| 815 | #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| 816 | |
| 817 | /** |
| 818 | * Swaps the contents of two flash regions within the two image slots. |
| 819 | * |
| 820 | * @param idx The index of the first sector in the range of |
| 821 | * sectors being swapped. |
| 822 | * @param sz The number of bytes to swap. |
| 823 | * @param bs The current boot status. This struct gets |
| 824 | * updated according to the outcome. |
| 825 | * |
| 826 | * @return 0 on success; nonzero on failure. |
| 827 | */ |
| 828 | #ifndef MCUBOOT_OVERWRITE_ONLY |
| 829 | static void |
| 830 | boot_swap_sectors(int idx, uint32_t sz, struct boot_status *bs) |
| 831 | { |
| 832 | const struct flash_area *fap; |
| 833 | uint32_t copy_sz; |
| 834 | uint32_t trailer_sz; |
| 835 | uint32_t img_off; |
| 836 | uint32_t scratch_trailer_off; |
| 837 | struct boot_swap_state swap_state; |
| 838 | size_t last_sector; |
| 839 | int rc; |
| 840 | |
| 841 | /* Calculate offset from start of image area. */ |
| 842 | img_off = boot_img_sector_off(&boot_data, 0, idx); |
| 843 | |
| 844 | copy_sz = sz; |
| 845 | trailer_sz = boot_slots_trailer_sz(BOOT_WRITE_SZ(&boot_data)); |
| 846 | |
| 847 | /* sz in this function is always is always sized on a multiple of the |
| 848 | * sector size. The check against the start offset of the last sector |
| 849 | * is to determine if we're swapping the last sector. The last sector |
| 850 | * needs special handling because it's where the trailer lives. If we're |
| 851 | * copying it, we need to use scratch to write the trailer temporarily. |
| 852 | * |
| 853 | * NOTE: `use_scratch` is a temporary flag (never written to flash) which |
| 854 | * controls if special handling is needed (swapping last sector). |
| 855 | */ |
| 856 | last_sector = boot_img_num_sectors(&boot_data, 0) - 1; |
| 857 | if (img_off + sz > boot_img_sector_off(&boot_data, 0, last_sector)) { |
| 858 | copy_sz -= trailer_sz; |
| 859 | } |
| 860 | |
| 861 | bs->use_scratch = (bs->idx == 0 && copy_sz != sz); |
| 862 | |
| 863 | if (bs->state == 0) { |
| 864 | rc = boot_erase_sector(FLASH_AREA_IMAGE_SCRATCH, 0, sz); |
| 865 | assert(rc == 0); |
| 866 | |
| 867 | rc = boot_copy_sector(FLASH_AREA_IMAGE_1, FLASH_AREA_IMAGE_SCRATCH, |
| 868 | img_off, 0, copy_sz); |
| 869 | assert(rc == 0); |
| 870 | |
| 871 | if (bs->idx == 0) { |
| 872 | if (bs->use_scratch) { |
| 873 | boot_status_init_by_id(FLASH_AREA_IMAGE_SCRATCH, bs); |
| 874 | } else { |
| 875 | /* Prepare the status area... here it is known that the |
| 876 | * last sector is not being used by the image data so it's |
| 877 | * safe to erase. |
| 878 | */ |
| 879 | rc = boot_erase_last_sector_by_id(FLASH_AREA_IMAGE_0); |
| 880 | assert(rc == 0); |
| 881 | |
| 882 | boot_status_init_by_id(FLASH_AREA_IMAGE_0, bs); |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | bs->state = 1; |
| 887 | rc = boot_write_status(bs); |
| 888 | assert(rc == 0); |
| 889 | } |
| 890 | |
| 891 | if (bs->state == 1) { |
| 892 | rc = boot_erase_sector(FLASH_AREA_IMAGE_1, img_off, sz); |
| 893 | assert(rc == 0); |
| 894 | |
| 895 | rc = boot_copy_sector(FLASH_AREA_IMAGE_0, FLASH_AREA_IMAGE_1, |
| 896 | img_off, img_off, copy_sz); |
| 897 | assert(rc == 0); |
| 898 | |
| 899 | if (bs->idx == 0 && !bs->use_scratch) { |
| 900 | /* If not all sectors of the slot are being swapped, |
| 901 | * guarantee here that only slot0 will have the state. |
| 902 | */ |
| 903 | rc = boot_erase_last_sector_by_id(FLASH_AREA_IMAGE_1); |
| 904 | assert(rc == 0); |
| 905 | } |
| 906 | |
| 907 | bs->state = 2; |
| 908 | rc = boot_write_status(bs); |
| 909 | assert(rc == 0); |
| 910 | } |
| 911 | |
| 912 | if (bs->state == 2) { |
| 913 | rc = boot_erase_sector(FLASH_AREA_IMAGE_0, img_off, sz); |
| 914 | assert(rc == 0); |
| 915 | |
| 916 | /* NOTE: also copy trailer from scratch (has status info) */ |
| 917 | rc = boot_copy_sector(FLASH_AREA_IMAGE_SCRATCH, FLASH_AREA_IMAGE_0, |
| 918 | 0, img_off, copy_sz); |
| 919 | assert(rc == 0); |
| 920 | |
| 921 | if (bs->use_scratch) { |
| 922 | rc = flash_area_open(FLASH_AREA_IMAGE_SCRATCH, &fap); |
| 923 | assert(rc == 0); |
| 924 | |
| 925 | scratch_trailer_off = boot_status_off(fap); |
| 926 | |
| 927 | flash_area_close(fap); |
| 928 | |
| 929 | rc = flash_area_open(FLASH_AREA_IMAGE_0, &fap); |
| 930 | assert(rc == 0); |
| 931 | |
| 932 | /* copy current status that is being maintained in scratch */ |
| 933 | rc = boot_copy_sector(FLASH_AREA_IMAGE_SCRATCH, FLASH_AREA_IMAGE_0, |
| 934 | scratch_trailer_off, |
| 935 | img_off + copy_sz, |
| 936 | BOOT_STATUS_STATE_COUNT * BOOT_WRITE_SZ(&boot_data)); |
| 937 | assert(rc == 0); |
| 938 | |
| 939 | rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SCRATCH, |
| 940 | &swap_state); |
| 941 | assert(rc == 0); |
| 942 | |
| 943 | if (swap_state.image_ok == BOOT_FLAG_SET) { |
| 944 | rc = boot_write_image_ok(fap); |
| 945 | assert(rc == 0); |
| 946 | } |
| 947 | |
| 948 | rc = boot_write_swap_size(fap, bs->swap_size); |
| 949 | assert(rc == 0); |
| 950 | |
| 951 | rc = boot_write_magic(fap); |
| 952 | assert(rc == 0); |
| 953 | |
| 954 | flash_area_close(fap); |
| 955 | } |
| 956 | |
| 957 | bs->idx++; |
| 958 | bs->state = 0; |
| 959 | bs->use_scratch = 0; |
| 960 | rc = boot_write_status(bs); |
| 961 | assert(rc == 0); |
| 962 | } |
| 963 | } |
| 964 | #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| 965 | |
| 966 | /** |
| 967 | * Swaps the two images in flash. If a prior copy operation was interrupted |
| 968 | * by a system reset, this function completes that operation. |
| 969 | * |
| 970 | * @param bs The current boot status. This function reads |
| 971 | * this struct to determine if it is resuming |
| 972 | * an interrupted swap operation. This |
| 973 | * function writes the updated status to this |
| 974 | * function on return. |
| 975 | * |
| 976 | * @return 0 on success; nonzero on failure. |
| 977 | */ |
| 978 | #ifdef MCUBOOT_OVERWRITE_ONLY |
| 979 | static int |
| 980 | boot_copy_image(struct boot_status *bs) |
| 981 | { |
| 982 | size_t sect_count; |
| 983 | size_t sect; |
| 984 | int rc; |
| 985 | size_t size = 0; |
| 986 | size_t this_size; |
| 987 | |
| 988 | BOOT_LOG_INF("Image upgrade slot1 -> slot0"); |
| 989 | BOOT_LOG_INF("Erasing slot0"); |
| 990 | |
| 991 | sect_count = boot_img_num_sectors(&boot_data, 0); |
| 992 | for (sect = 0; sect < sect_count; sect++) { |
| 993 | this_size = boot_img_sector_size(&boot_data, 0, sect); |
| 994 | rc = boot_erase_sector(FLASH_AREA_IMAGE_0, |
| 995 | size, |
| 996 | this_size); |
| 997 | assert(rc == 0); |
| 998 | |
| 999 | size += this_size; |
| 1000 | } |
| 1001 | |
| 1002 | BOOT_LOG_INF("Copying slot 1 to slot 0: 0x%lx bytes", size); |
| 1003 | rc = boot_copy_sector(FLASH_AREA_IMAGE_1, FLASH_AREA_IMAGE_0, |
| 1004 | 0, 0, size); |
| 1005 | |
| 1006 | /* Erase slot 1 so that we don't do the upgrade on every boot. |
| 1007 | * TODO: Perhaps verify slot 0's signature again? */ |
| 1008 | rc = boot_erase_sector(FLASH_AREA_IMAGE_1, |
| 1009 | 0, boot_img_sector_size(&boot_data, 1, 0)); |
| 1010 | assert(rc == 0); |
| 1011 | |
| 1012 | return 0; |
| 1013 | } |
| 1014 | #else |
| 1015 | static int |
| 1016 | boot_copy_image(struct boot_status *bs) |
| 1017 | { |
| 1018 | uint32_t sz; |
| 1019 | int first_sector_idx; |
| 1020 | int last_sector_idx; |
| 1021 | int swap_idx; |
| 1022 | struct image_header *hdr; |
| 1023 | uint32_t size; |
| 1024 | uint32_t copy_size; |
| 1025 | int rc; |
| 1026 | |
| 1027 | /* FIXME: just do this if asked by user? */ |
| 1028 | |
| 1029 | size = copy_size = 0; |
| 1030 | |
| 1031 | if (bs->idx == 0 && bs->state == 0) { |
| 1032 | /* |
| 1033 | * No swap ever happened, so need to find the largest image which |
| 1034 | * will be used to determine the amount of sectors to swap. |
| 1035 | */ |
| 1036 | hdr = boot_img_hdr(&boot_data, 0); |
| 1037 | if (hdr->ih_magic == IMAGE_MAGIC) { |
| 1038 | rc = boot_read_image_size(0, hdr, ©_size); |
| 1039 | assert(rc == 0); |
| 1040 | } |
| 1041 | |
| 1042 | hdr = boot_img_hdr(&boot_data, 1); |
| 1043 | if (hdr->ih_magic == IMAGE_MAGIC) { |
| 1044 | rc = boot_read_image_size(1, hdr, &size); |
| 1045 | assert(rc == 0); |
| 1046 | } |
| 1047 | |
| 1048 | if (size > copy_size) { |
| 1049 | copy_size = size; |
| 1050 | } |
| 1051 | |
| 1052 | bs->swap_size = copy_size; |
| 1053 | } else { |
| 1054 | /* |
| 1055 | * If a swap was under way, the swap_size should already be present |
| 1056 | * in the trailer... |
| 1057 | */ |
| 1058 | rc = boot_read_swap_size(&bs->swap_size); |
| 1059 | assert(rc == 0); |
| 1060 | |
| 1061 | copy_size = bs->swap_size; |
| 1062 | } |
| 1063 | |
| 1064 | size = 0; |
| 1065 | last_sector_idx = 0; |
| 1066 | while (1) { |
| 1067 | size += boot_img_sector_size(&boot_data, 0, last_sector_idx); |
| 1068 | if (size >= copy_size) { |
| 1069 | break; |
| 1070 | } |
| 1071 | last_sector_idx++; |
| 1072 | } |
| 1073 | |
| 1074 | swap_idx = 0; |
| 1075 | while (last_sector_idx >= 0) { |
| 1076 | sz = boot_copy_sz(last_sector_idx, &first_sector_idx); |
| 1077 | if (swap_idx >= bs->idx) { |
| 1078 | boot_swap_sectors(first_sector_idx, sz, bs); |
| 1079 | } |
| 1080 | |
| 1081 | last_sector_idx = first_sector_idx - 1; |
| 1082 | swap_idx++; |
| 1083 | } |
| 1084 | |
| 1085 | return 0; |
| 1086 | } |
| 1087 | #endif |
| 1088 | |
| 1089 | /** |
| 1090 | * Marks the image in slot 0 as fully copied. |
| 1091 | */ |
| 1092 | #ifndef MCUBOOT_OVERWRITE_ONLY |
| 1093 | static int |
| 1094 | boot_set_copy_done(void) |
| 1095 | { |
| 1096 | const struct flash_area *fap; |
| 1097 | int rc; |
| 1098 | |
| 1099 | rc = flash_area_open(FLASH_AREA_IMAGE_0, &fap); |
| 1100 | if (rc != 0) { |
| 1101 | return BOOT_EFLASH; |
| 1102 | } |
| 1103 | |
| 1104 | rc = boot_write_copy_done(fap); |
| 1105 | flash_area_close(fap); |
| 1106 | return rc; |
| 1107 | } |
| 1108 | #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| 1109 | |
| 1110 | /** |
| 1111 | * Marks a reverted image in slot 0 as confirmed. This is necessary to ensure |
| 1112 | * the status bytes from the image revert operation don't get processed on a |
| 1113 | * subsequent boot. |
| 1114 | * |
| 1115 | * NOTE: image_ok is tested before writing because if there's a valid permanent |
| 1116 | * image installed on slot0 and the new image to be upgrade to has a bad sig, |
| 1117 | * image_ok would be overwritten. |
| 1118 | */ |
| 1119 | #ifndef MCUBOOT_OVERWRITE_ONLY |
| 1120 | static int |
| 1121 | boot_set_image_ok(void) |
| 1122 | { |
| 1123 | const struct flash_area *fap; |
| 1124 | struct boot_swap_state state; |
| 1125 | int rc; |
| 1126 | |
| 1127 | rc = flash_area_open(FLASH_AREA_IMAGE_0, &fap); |
| 1128 | if (rc != 0) { |
| 1129 | return BOOT_EFLASH; |
| 1130 | } |
| 1131 | |
| 1132 | rc = boot_read_swap_state(fap, &state); |
| 1133 | if (rc != 0) { |
| 1134 | rc = BOOT_EFLASH; |
| 1135 | goto out; |
| 1136 | } |
| 1137 | |
| 1138 | if (state.image_ok == BOOT_FLAG_UNSET) { |
| 1139 | rc = boot_write_image_ok(fap); |
| 1140 | } |
| 1141 | |
| 1142 | out: |
| 1143 | flash_area_close(fap); |
| 1144 | return rc; |
| 1145 | } |
| 1146 | #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| 1147 | |
| 1148 | /** |
| 1149 | * Performs an image swap if one is required. |
| 1150 | * |
| 1151 | * @param out_swap_type On success, the type of swap performed gets |
| 1152 | * written here. |
| 1153 | * |
| 1154 | * @return 0 on success; nonzero on failure. |
| 1155 | */ |
| 1156 | static int |
| 1157 | boot_swap_if_needed(int *out_swap_type) |
| 1158 | { |
| 1159 | struct boot_status bs; |
| 1160 | int swap_type; |
| 1161 | int rc; |
| 1162 | |
| 1163 | /* Determine if we rebooted in the middle of an image swap |
| 1164 | * operation. |
| 1165 | */ |
| 1166 | rc = boot_read_status(&bs); |
| 1167 | assert(rc == 0); |
| 1168 | if (rc != 0) { |
| 1169 | return rc; |
| 1170 | } |
| 1171 | |
| 1172 | /* If a partial swap was detected, complete it. */ |
| 1173 | if (bs.idx != 0 || bs.state != 0) { |
| 1174 | rc = boot_copy_image(&bs); |
| 1175 | assert(rc == 0); |
| 1176 | |
| 1177 | /* NOTE: here we have finished a swap resume. The initial request |
| 1178 | * was either a TEST or PERM swap, which now after the completed |
| 1179 | * swap will be determined to be respectively REVERT (was TEST) |
| 1180 | * or NONE (was PERM). |
| 1181 | */ |
| 1182 | |
| 1183 | /* Extrapolate the type of the partial swap. We need this |
| 1184 | * information to know how to mark the swap complete in flash. |
| 1185 | */ |
| 1186 | swap_type = boot_previous_swap_type(); |
| 1187 | } else { |
| 1188 | swap_type = boot_validated_swap_type(); |
| 1189 | switch (swap_type) { |
| 1190 | case BOOT_SWAP_TYPE_TEST: |
| 1191 | case BOOT_SWAP_TYPE_PERM: |
| 1192 | case BOOT_SWAP_TYPE_REVERT: |
| 1193 | rc = boot_copy_image(&bs); |
| 1194 | assert(rc == 0); |
| 1195 | break; |
| 1196 | } |
| 1197 | } |
| 1198 | |
| 1199 | *out_swap_type = swap_type; |
| 1200 | return 0; |
| 1201 | } |
| 1202 | |
| 1203 | /** |
| 1204 | * Prepares the booting process. This function moves images around in flash as |
| 1205 | * appropriate, and tells you what address to boot from. |
| 1206 | * |
| 1207 | * @param rsp On success, indicates how booting should occur. |
| 1208 | * |
| 1209 | * @return 0 on success; nonzero on failure. |
| 1210 | */ |
| 1211 | int |
| 1212 | boot_go(struct boot_rsp *rsp) |
| 1213 | { |
| 1214 | int swap_type; |
| 1215 | size_t slot; |
| 1216 | int rc; |
| 1217 | int fa_id; |
| 1218 | bool reload_headers = false; |
| 1219 | |
| 1220 | /* The array of slot sectors are defined here (as opposed to file scope) so |
| 1221 | * that they don't get allocated for non-boot-loader apps. This is |
| 1222 | * necessary because the gcc option "-fdata-sections" doesn't seem to have |
| 1223 | * any effect in older gcc versions (e.g., 4.8.4). |
| 1224 | */ |
| 1225 | static boot_sector_t slot0_sectors[BOOT_MAX_IMG_SECTORS]; |
| 1226 | static boot_sector_t slot1_sectors[BOOT_MAX_IMG_SECTORS]; |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 1227 | |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 1228 | boot_data.imgs[0].sectors = slot0_sectors; |
| 1229 | boot_data.imgs[1].sectors = slot1_sectors; |
| 1230 | |
| 1231 | /* Open boot_data image areas for the duration of this call. */ |
| 1232 | for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) { |
| 1233 | fa_id = flash_area_id_from_image_slot(slot); |
| 1234 | rc = flash_area_open(fa_id, &BOOT_IMG_AREA(&boot_data, slot)); |
| 1235 | assert(rc == 0); |
| 1236 | } |
| 1237 | rc = flash_area_open(FLASH_AREA_IMAGE_SCRATCH, |
| 1238 | &BOOT_SCRATCH_AREA(&boot_data)); |
| 1239 | assert(rc == 0); |
| 1240 | |
| 1241 | /* Determine the sector layout of the image slots and scratch area. */ |
| 1242 | rc = boot_read_sectors(); |
| 1243 | if (rc != 0) { |
| 1244 | goto out; |
| 1245 | } |
| 1246 | |
| 1247 | /* Attempt to read an image header from each slot. */ |
| 1248 | rc = boot_read_image_headers(); |
| 1249 | if (rc != 0) { |
| 1250 | goto out; |
| 1251 | } |
| 1252 | |
| 1253 | /* If the image slots aren't compatible, no swap is possible. Just boot |
| 1254 | * into slot 0. |
| 1255 | */ |
| 1256 | if (boot_slots_compatible()) { |
| 1257 | rc = boot_swap_if_needed(&swap_type); |
| 1258 | assert(rc == 0); |
| 1259 | if (rc != 0) { |
| 1260 | goto out; |
| 1261 | } |
| 1262 | |
| 1263 | /* |
| 1264 | * The following states need image_ok be explicitly set after the |
| 1265 | * swap was finished to avoid a new revert. |
| 1266 | */ |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 1267 | if (swap_type == BOOT_SWAP_TYPE_REVERT || |
| 1268 | swap_type == BOOT_SWAP_TYPE_FAIL) { |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 1269 | #ifndef MCUBOOT_OVERWRITE_ONLY |
| 1270 | rc = boot_set_image_ok(); |
| 1271 | if (rc != 0) { |
| 1272 | swap_type = BOOT_SWAP_TYPE_PANIC; |
| 1273 | } |
| 1274 | #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| 1275 | } |
| 1276 | } else { |
| 1277 | swap_type = BOOT_SWAP_TYPE_NONE; |
| 1278 | } |
| 1279 | |
| 1280 | switch (swap_type) { |
| 1281 | case BOOT_SWAP_TYPE_NONE: |
| 1282 | slot = 0; |
| 1283 | break; |
| 1284 | |
| 1285 | case BOOT_SWAP_TYPE_TEST: /* fallthrough */ |
| 1286 | case BOOT_SWAP_TYPE_PERM: /* fallthrough */ |
| 1287 | case BOOT_SWAP_TYPE_REVERT: |
| 1288 | slot = 1; |
| 1289 | reload_headers = true; |
| 1290 | #ifndef MCUBOOT_OVERWRITE_ONLY |
| 1291 | rc = boot_set_copy_done(); |
| 1292 | if (rc != 0) { |
| 1293 | swap_type = BOOT_SWAP_TYPE_PANIC; |
| 1294 | } |
| 1295 | #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| 1296 | break; |
| 1297 | |
| 1298 | case BOOT_SWAP_TYPE_FAIL: |
| 1299 | /* The image in slot 1 was invalid and is now erased. Ensure we don't |
| 1300 | * try to boot into it again on the next reboot. Do this by pretending |
| 1301 | * we just reverted back to slot 0. |
| 1302 | */ |
| 1303 | slot = 0; |
| 1304 | reload_headers = true; |
| 1305 | break; |
| 1306 | |
| 1307 | default: |
| 1308 | swap_type = BOOT_SWAP_TYPE_PANIC; |
| 1309 | } |
| 1310 | |
| 1311 | if (swap_type == BOOT_SWAP_TYPE_PANIC) { |
| 1312 | BOOT_LOG_ERR("panic!"); |
| 1313 | assert(0); |
| 1314 | |
| 1315 | /* Loop forever... */ |
Tamas Ban | 581034a | 2017-12-19 19:54:37 +0000 | [diff] [blame] | 1316 | while (1) |
| 1317 | ; |
Tamas Ban | f70ef8c | 2017-12-19 15:35:09 +0000 | [diff] [blame] | 1318 | } |
| 1319 | |
| 1320 | #ifdef MCUBOOT_VALIDATE_SLOT0 |
| 1321 | if (reload_headers) { |
| 1322 | rc = boot_read_image_headers(); |
| 1323 | if (rc != 0) { |
| 1324 | goto out; |
| 1325 | } |
| 1326 | /* Since headers were reloaded, it can be assumed we just performed a |
| 1327 | * swap or overwrite. Now the header info that should be used to |
| 1328 | * provide the data for the bootstrap, which previously was at Slot 1, |
| 1329 | * was updated to Slot 0. |
| 1330 | */ |
| 1331 | slot = 0; |
| 1332 | } |
| 1333 | |
| 1334 | rc = boot_validate_slot(0); |
| 1335 | assert(rc == 0); |
| 1336 | if (rc != 0) { |
| 1337 | rc = BOOT_EBADIMAGE; |
| 1338 | goto out; |
| 1339 | } |
| 1340 | #else |
| 1341 | (void)reload_headers; |
| 1342 | #endif |
| 1343 | |
| 1344 | /* Always boot from the primary slot. */ |
| 1345 | rsp->br_flash_dev_id = boot_img_fa_device_id(&boot_data, 0); |
| 1346 | rsp->br_image_off = boot_img_slot_off(&boot_data, 0); |
| 1347 | rsp->br_hdr = boot_img_hdr(&boot_data, slot); |
| 1348 | |
| 1349 | out: |
| 1350 | flash_area_close(BOOT_SCRATCH_AREA(&boot_data)); |
| 1351 | for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) { |
| 1352 | flash_area_close(BOOT_IMG_AREA(&boot_data, BOOT_NUM_SLOTS - 1 - slot)); |
| 1353 | } |
| 1354 | return rc; |
| 1355 | } |