Louis Mayencourt | 7a36f78 | 2018-09-24 14:00:57 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2019, Arm Limited. All rights reserved. |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | * |
| 6 | */ |
| 7 | |
| 8 | #include "secure_fw/core/secure_utilities.h" |
| 9 | #include "tfm_crypto_defs.h" |
| 10 | |
| 11 | #include "psa_crypto.h" |
| 12 | |
| 13 | #include "tfm_crypto_struct.h" |
| 14 | |
| 15 | #include "tfm_crypto_api.h" |
| 16 | #include "crypto_utils.h" |
| 17 | |
Jamie Fox | 82b87ca | 2018-12-11 16:41:11 +0000 | [diff] [blame] | 18 | /** |
| 19 | * \def CRYPTO_HMAC_MAX_KEY_LENGTH |
| 20 | * |
| 21 | * \brief Specifies the maximum key length supported by the |
| 22 | * HMAC operations in this implementation |
| 23 | */ |
| 24 | #ifndef CRYPTO_HMAC_MAX_KEY_LENGTH |
| 25 | #define CRYPTO_HMAC_MAX_KEY_LENGTH (32) |
| 26 | #endif |
| 27 | |
Louis Mayencourt | 7a36f78 | 2018-09-24 14:00:57 +0100 | [diff] [blame] | 28 | static void mac_zeroize(void *data, size_t size) |
| 29 | { |
| 30 | tfm_memset(data, 0, size); |
| 31 | } |
| 32 | |
| 33 | static size_t get_hash_block_size(psa_algorithm_t alg) |
| 34 | { |
| 35 | switch (alg) { |
| 36 | case PSA_ALG_MD2: |
| 37 | return 16; |
| 38 | case PSA_ALG_MD4: |
| 39 | return 64; |
| 40 | case PSA_ALG_MD5: |
| 41 | return 64; |
| 42 | case PSA_ALG_RIPEMD160: |
| 43 | return 64; |
| 44 | case PSA_ALG_SHA_1: |
| 45 | return 64; |
| 46 | case PSA_ALG_SHA_224: |
| 47 | return 64; |
| 48 | case PSA_ALG_SHA_256: |
| 49 | return 64; |
| 50 | case PSA_ALG_SHA_384: |
| 51 | return 128; |
| 52 | case PSA_ALG_SHA_512: |
| 53 | return 128; |
| 54 | default: |
| 55 | return 0; |
| 56 | } |
| 57 | } |
| 58 | |
| 59 | static enum tfm_crypto_err_t tfm_crypto_hmac_setup( |
| 60 | struct tfm_mac_operation_s *ctx, |
| 61 | psa_key_slot_t key, |
| 62 | psa_algorithm_t alg) |
| 63 | { |
| 64 | enum tfm_crypto_err_t err; |
| 65 | psa_key_type_t key_type; |
| 66 | size_t key_size; |
Jamie Fox | 82b87ca | 2018-12-11 16:41:11 +0000 | [diff] [blame] | 67 | uint8_t key_data[CRYPTO_HMAC_MAX_KEY_LENGTH]; |
Louis Mayencourt | 7a36f78 | 2018-09-24 14:00:57 +0100 | [diff] [blame] | 68 | uint8_t hashed_key[PSA_HMAC_MAX_HASH_BLOCK_SIZE]; |
| 69 | size_t block_size; |
| 70 | uint8_t ipad[PSA_HMAC_MAX_HASH_BLOCK_SIZE]; |
| 71 | uint8_t *opad = ctx->ctx.hmac.opad; |
| 72 | size_t i; |
Jamie Fox | efd8273 | 2018-11-26 10:34:32 +0000 | [diff] [blame] | 73 | psa_key_usage_t usage; |
Louis Mayencourt | 7a36f78 | 2018-09-24 14:00:57 +0100 | [diff] [blame] | 74 | |
| 75 | /* Check provided key */ |
| 76 | err = tfm_crypto_get_key_information(key, &key_type, &key_size); |
| 77 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 78 | return err; |
| 79 | } |
| 80 | |
| 81 | if (key_type != PSA_KEY_TYPE_HMAC){ |
| 82 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 83 | } |
| 84 | |
Jamie Fox | efd8273 | 2018-11-26 10:34:32 +0000 | [diff] [blame] | 85 | /* Set the key usage based on whether this is a sign or verify operation */ |
| 86 | if ((ctx->key_usage_sign == 1) && (ctx->key_usage_verify == 0)) { |
| 87 | usage = PSA_KEY_USAGE_SIGN; |
| 88 | } else if ((ctx->key_usage_sign == 0) && (ctx->key_usage_verify == 1)) { |
| 89 | usage = PSA_KEY_USAGE_VERIFY; |
| 90 | } else { |
| 91 | return TFM_CRYPTO_ERR_PSA_ERROR_BAD_STATE; |
| 92 | } |
| 93 | |
Louis Mayencourt | 7a36f78 | 2018-09-24 14:00:57 +0100 | [diff] [blame] | 94 | /* Get the key data to start the HMAC */ |
Jamie Fox | efd8273 | 2018-11-26 10:34:32 +0000 | [diff] [blame] | 95 | err = tfm_crypto_get_key(key, |
| 96 | usage, |
| 97 | alg, |
| 98 | key_data, |
Jamie Fox | 82b87ca | 2018-12-11 16:41:11 +0000 | [diff] [blame] | 99 | CRYPTO_HMAC_MAX_KEY_LENGTH, |
Jamie Fox | efd8273 | 2018-11-26 10:34:32 +0000 | [diff] [blame] | 100 | &key_size); |
Louis Mayencourt | 7a36f78 | 2018-09-24 14:00:57 +0100 | [diff] [blame] | 101 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 102 | return err; |
| 103 | } |
| 104 | |
| 105 | /* Bind the digest size to the MAC operation */ |
| 106 | ctx->mac_size = PSA_HASH_SIZE(PSA_ALG_HMAC_HASH(alg)); |
| 107 | |
| 108 | block_size = get_hash_block_size(PSA_ALG_HMAC_HASH(alg)); |
| 109 | |
| 110 | /* The HMAC algorithm is the standard procedure as described in |
| 111 | * RFC-2104 (https://tools.ietf.org/html/rfc2104) |
| 112 | */ |
| 113 | if (key_size > block_size) { |
| 114 | /* Hash the key to reduce it to block size */ |
| 115 | err = tfm_crypto_hash_setup(&(ctx->ctx.hmac.hash_operation), |
| 116 | PSA_ALG_HMAC_HASH(alg)); |
| 117 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 118 | return err; |
| 119 | } |
| 120 | |
| 121 | err = tfm_crypto_hash_update(&(ctx->ctx.hmac.hash_operation), |
| 122 | &key_data[0], |
| 123 | key_size); |
| 124 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 125 | tfm_crypto_hash_abort(&(ctx->ctx.hmac.hash_operation)); |
| 126 | return err; |
| 127 | } |
| 128 | |
| 129 | /* Replace the key with the hashed key */ |
| 130 | err = tfm_crypto_hash_finish(&(ctx->ctx.hmac.hash_operation), |
| 131 | hashed_key, sizeof(hashed_key), |
| 132 | &key_size); |
| 133 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 134 | tfm_crypto_hash_abort(&(ctx->ctx.hmac.hash_operation)); |
| 135 | return err; |
| 136 | } |
| 137 | } else { |
| 138 | /* Copy the key inside the hashed_key buffer */ |
| 139 | for (i=0; i<key_size; i++) { |
| 140 | hashed_key[i] = key_data[i]; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | /* Create ipad = hashed_key XOR 0x36 and opad = hashed_key XOR 0x5C */ |
| 145 | for (i=0; i<key_size; i++) { |
| 146 | ipad[i] = hashed_key[i] ^ 0x36; |
| 147 | opad[i] = hashed_key[i] ^ 0x5C; |
| 148 | } |
| 149 | /* Fill ipad and opad to match block size */ |
| 150 | for (i=key_size; i<block_size; i++) { |
| 151 | ipad[i] = 0x36; |
| 152 | opad[i] = 0x5C; |
| 153 | } |
| 154 | |
| 155 | /* Start hash1 = H(i_key_pad || message) */ |
| 156 | err = tfm_crypto_hash_setup(&(ctx->ctx.hmac.hash_operation), |
| 157 | PSA_ALG_HMAC_HASH(alg)); |
| 158 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 159 | /* Clear key information on stack */ |
| 160 | for (i=0; i<key_size; i++) { |
| 161 | hashed_key[i] = 0; |
| 162 | ipad[i] = 0; |
| 163 | } |
| 164 | return err; |
| 165 | } |
| 166 | |
| 167 | err = tfm_crypto_hash_update(&(ctx->ctx.hmac.hash_operation), |
| 168 | ipad, |
| 169 | block_size); |
| 170 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 171 | tfm_crypto_hash_abort(&(ctx->ctx.hmac.hash_operation)); |
| 172 | return err; |
| 173 | } |
| 174 | |
| 175 | return TFM_CRYPTO_ERR_PSA_SUCCESS; |
| 176 | } |
| 177 | |
| 178 | static enum tfm_crypto_err_t tfm_crypto_mac_setup(psa_mac_operation_t *operation, |
| 179 | psa_key_slot_t key, |
| 180 | psa_algorithm_t alg, |
| 181 | uint8_t sign_operation) |
| 182 | { |
| 183 | enum tfm_crypto_err_t err; |
| 184 | |
| 185 | struct tfm_mac_operation_s *ctx = NULL; |
| 186 | |
| 187 | if (!PSA_ALG_IS_MAC(alg)) { |
| 188 | return TFM_CRYPTO_ERR_PSA_ERROR_NOT_SUPPORTED; |
| 189 | } |
| 190 | |
| 191 | /* Validate pointers */ |
| 192 | err = tfm_crypto_memory_check(operation, |
| 193 | sizeof(psa_mac_operation_t), |
| 194 | TFM_MEMORY_ACCESS_RW); |
| 195 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 196 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 197 | } |
| 198 | |
| 199 | /* Allocate the operation context in the secure world */ |
| 200 | err = tfm_crypto_operation_alloc(TFM_CRYPTO_MAC_OPERATION, |
| 201 | &(operation->handle)); |
| 202 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 203 | return err; |
| 204 | } |
| 205 | |
| 206 | /* Look up the corresponding operation context */ |
| 207 | err = tfm_crypto_operation_lookup(TFM_CRYPTO_MAC_OPERATION, |
| 208 | operation->handle, |
| 209 | (void **)&ctx); |
| 210 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 211 | /* Release the operation context */ |
| 212 | tfm_crypto_operation_release(&(operation->handle)); |
| 213 | return err; |
| 214 | } |
| 215 | |
| 216 | /* Bind the algorithm to the mac operation */ |
| 217 | ctx->alg = alg; |
| 218 | |
| 219 | /* Specify if this will be used for a sign or verify operation */ |
| 220 | if (sign_operation) { |
| 221 | ctx->key_usage_verify = 0; |
| 222 | ctx->key_usage_sign = 1; |
| 223 | } else { |
| 224 | ctx->key_usage_verify = 1; |
| 225 | ctx->key_usage_sign = 0; |
| 226 | } |
| 227 | |
| 228 | if (PSA_ALG_IS_HMAC(alg)) { |
| 229 | err = tfm_crypto_hmac_setup(ctx, key, alg); |
| 230 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 231 | /* Release the operation context */ |
| 232 | tfm_crypto_operation_release(&(operation->handle)); |
| 233 | return err; |
| 234 | } |
| 235 | |
| 236 | ctx->key_set = 1; |
| 237 | } else { |
| 238 | /* Other MAC types constructions are not supported */ |
| 239 | /* Release the operation context */ |
| 240 | tfm_crypto_operation_release(&(operation->handle)); |
| 241 | return TFM_CRYPTO_ERR_PSA_ERROR_NOT_SUPPORTED; |
| 242 | } |
| 243 | |
| 244 | return TFM_CRYPTO_ERR_PSA_SUCCESS; |
| 245 | } |
| 246 | |
| 247 | static enum tfm_crypto_err_t tfm_crypto_mac_finish( |
| 248 | struct tfm_mac_operation_s *ctx, |
| 249 | uint8_t *mac, |
| 250 | size_t mac_size, |
| 251 | size_t *mac_length) |
| 252 | { |
| 253 | enum tfm_crypto_err_t err; |
| 254 | uint8_t hash1[PSA_HASH_MAX_SIZE]; |
| 255 | size_t hash_size; |
| 256 | uint8_t *opad; |
| 257 | size_t block_size; |
| 258 | |
| 259 | /* Sanity checks */ |
| 260 | if (mac_size < ctx->mac_size) { |
| 261 | return TFM_CRYPTO_ERR_PSA_ERROR_BUFFER_TOO_SMALL; |
| 262 | } |
| 263 | |
| 264 | if (!(ctx->has_input)) { |
| 265 | return TFM_CRYPTO_ERR_PSA_ERROR_BAD_STATE; |
| 266 | } |
| 267 | |
| 268 | if (PSA_ALG_IS_HMAC(ctx->alg)) { |
| 269 | opad = ctx->ctx.hmac.opad; |
| 270 | block_size = get_hash_block_size(PSA_ALG_HMAC_HASH(ctx->alg)); |
| 271 | |
| 272 | /* finish the hash1 = H(ipad || message) */ |
| 273 | err = tfm_crypto_hash_finish(&(ctx->ctx.hmac.hash_operation), |
| 274 | hash1, |
| 275 | sizeof(hash1), |
| 276 | &hash_size); |
| 277 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 278 | return err; |
| 279 | } |
| 280 | |
| 281 | /* compute the final mac value = H(opad || hash1) */ |
| 282 | err = tfm_crypto_hash_setup(&(ctx->ctx.hmac.hash_operation), |
| 283 | PSA_ALG_HMAC_HASH(ctx->alg)); |
| 284 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 285 | mac_zeroize(hash1, sizeof(hash1)); |
| 286 | return err; |
| 287 | } |
| 288 | |
| 289 | err = tfm_crypto_hash_update(&(ctx->ctx.hmac.hash_operation), |
| 290 | opad, |
| 291 | block_size); |
| 292 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 293 | mac_zeroize(hash1, sizeof(hash1)); |
| 294 | return err; |
| 295 | } |
| 296 | |
| 297 | err = tfm_crypto_hash_update(&(ctx->ctx.hmac.hash_operation), |
| 298 | hash1, |
| 299 | hash_size); |
| 300 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 301 | mac_zeroize(hash1, sizeof(hash1)); |
| 302 | return err; |
| 303 | } |
| 304 | |
| 305 | err = tfm_crypto_hash_finish(&(ctx->ctx.hmac.hash_operation), |
| 306 | mac, |
| 307 | mac_size, |
| 308 | mac_length); |
| 309 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 310 | mac_zeroize(hash1, sizeof(hash1)); |
| 311 | return err; |
| 312 | } |
| 313 | |
| 314 | /* Clear intermediate hash value */ |
| 315 | mac_zeroize(hash1, sizeof(hash1)); |
| 316 | |
| 317 | } else { |
| 318 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 319 | } |
| 320 | |
| 321 | /* Clear the mac context */ |
| 322 | mac_zeroize(ctx, sizeof(struct tfm_mac_operation_s)); |
| 323 | |
| 324 | return TFM_CRYPTO_ERR_PSA_SUCCESS; |
| 325 | } |
| 326 | |
| 327 | /*! |
| 328 | * \defgroup public_psa Public functions, PSA |
| 329 | * |
| 330 | */ |
| 331 | |
| 332 | /*!@{*/ |
| 333 | enum tfm_crypto_err_t tfm_crypto_mac_sign_setup(psa_mac_operation_t *operation, |
| 334 | psa_key_slot_t key, |
| 335 | psa_algorithm_t alg) |
| 336 | { |
| 337 | return tfm_crypto_mac_setup(operation, key, alg, 1); |
| 338 | } |
| 339 | |
| 340 | enum tfm_crypto_err_t tfm_crypto_mac_verify_setup( |
| 341 | psa_mac_operation_t *operation, |
| 342 | psa_key_slot_t key, |
| 343 | psa_algorithm_t alg) |
| 344 | { |
| 345 | return tfm_crypto_mac_setup(operation, key, alg, 0); |
| 346 | } |
| 347 | |
| 348 | enum tfm_crypto_err_t tfm_crypto_mac_update(psa_mac_operation_t *operation, |
| 349 | const uint8_t *input, |
| 350 | size_t input_length) |
| 351 | { |
| 352 | enum tfm_crypto_err_t err; |
| 353 | |
| 354 | struct tfm_mac_operation_s *ctx = NULL; |
| 355 | |
| 356 | if (input_length == 0) { |
| 357 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 358 | } |
| 359 | |
| 360 | /* Validate pointers */ |
| 361 | err = tfm_crypto_memory_check(operation, |
| 362 | sizeof(psa_mac_operation_t), |
| 363 | TFM_MEMORY_ACCESS_RW); |
| 364 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 365 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 366 | } |
| 367 | |
| 368 | err = tfm_crypto_memory_check((void *)input, |
| 369 | input_length, |
| 370 | TFM_MEMORY_ACCESS_RO); |
| 371 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 372 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 373 | } |
| 374 | |
| 375 | /* Look up the corresponding operation context */ |
| 376 | err = tfm_crypto_operation_lookup(TFM_CRYPTO_MAC_OPERATION, |
| 377 | operation->handle, |
| 378 | (void **)&ctx); |
| 379 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 380 | return err; |
| 381 | } |
| 382 | |
| 383 | /* Sanity check */ |
| 384 | if (!(ctx->key_set)) { |
| 385 | return TFM_CRYPTO_ERR_PSA_ERROR_BAD_STATE; |
| 386 | } |
| 387 | |
| 388 | /* Process the input chunk */ |
| 389 | if (PSA_ALG_IS_HMAC(ctx->alg)) { |
| 390 | err = tfm_crypto_hash_update(&(ctx->ctx.hmac.hash_operation), |
| 391 | input, |
| 392 | input_length); |
| 393 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 394 | return err; |
| 395 | } |
| 396 | |
| 397 | /* Set this flag to avoid HMAC without data */ |
| 398 | ctx->has_input = 1; |
| 399 | } else { |
| 400 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 401 | } |
| 402 | |
| 403 | return TFM_CRYPTO_ERR_PSA_SUCCESS; |
| 404 | } |
| 405 | |
| 406 | enum tfm_crypto_err_t tfm_crypto_mac_sign_finish(psa_mac_operation_t *operation, |
| 407 | uint8_t *mac, |
| 408 | size_t mac_size, |
| 409 | size_t *mac_length) |
| 410 | { |
| 411 | enum tfm_crypto_err_t err; |
| 412 | struct tfm_mac_operation_s *ctx = NULL; |
| 413 | |
| 414 | if (mac_size == 0) { |
| 415 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 416 | } |
| 417 | |
| 418 | /* Validate pointers */ |
| 419 | err = tfm_crypto_memory_check(operation, |
| 420 | sizeof(psa_mac_operation_t), |
| 421 | TFM_MEMORY_ACCESS_RW); |
| 422 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 423 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 424 | } |
| 425 | |
| 426 | err = tfm_crypto_memory_check((void *)mac, |
| 427 | mac_size, |
| 428 | TFM_MEMORY_ACCESS_RW); |
| 429 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 430 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 431 | } |
| 432 | |
| 433 | err = tfm_crypto_memory_check(mac_length, |
| 434 | sizeof(size_t), |
| 435 | TFM_MEMORY_ACCESS_RW); |
| 436 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 437 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 438 | } |
| 439 | |
| 440 | /* Look up the corresponding operation context */ |
| 441 | err = tfm_crypto_operation_lookup(TFM_CRYPTO_MAC_OPERATION, |
| 442 | operation->handle, |
| 443 | (void **)&ctx); |
| 444 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 445 | return err; |
| 446 | } |
| 447 | |
| 448 | if ((ctx->key_usage_sign == 1) && (ctx->key_usage_verify == 0)) { |
| 449 | /* Finalise the mac operation */ |
| 450 | err = tfm_crypto_mac_finish(ctx, mac, mac_size, mac_length); |
| 451 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 452 | return err; |
| 453 | } |
| 454 | /* Release the operation context */ |
| 455 | err = tfm_crypto_operation_release(&(operation->handle)); |
| 456 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 457 | return err; |
| 458 | } |
| 459 | } else { |
| 460 | return TFM_CRYPTO_ERR_PSA_ERROR_BAD_STATE; |
| 461 | } |
| 462 | |
| 463 | return TFM_CRYPTO_ERR_PSA_SUCCESS; |
| 464 | } |
| 465 | |
| 466 | enum tfm_crypto_err_t tfm_crypto_mac_verify_finish( |
| 467 | psa_mac_operation_t *operation, |
| 468 | const uint8_t *mac, |
| 469 | size_t mac_length) |
| 470 | { |
| 471 | enum tfm_crypto_err_t err; |
| 472 | struct tfm_mac_operation_s *ctx = NULL; |
| 473 | uint8_t computed_mac[PSA_HMAC_MAX_HASH_BLOCK_SIZE]; |
| 474 | size_t computed_mac_length; |
| 475 | size_t i; |
| 476 | uint32_t comp_mismatch = 0; |
| 477 | |
| 478 | if (mac_length == 0) { |
| 479 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 480 | } |
| 481 | |
| 482 | /* Validate pointers */ |
| 483 | err = tfm_crypto_memory_check(operation, |
| 484 | sizeof(psa_mac_operation_t), |
| 485 | TFM_MEMORY_ACCESS_RW); |
| 486 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 487 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 488 | } |
| 489 | |
| 490 | err = tfm_crypto_memory_check((void *)mac, |
| 491 | mac_length, |
| 492 | TFM_MEMORY_ACCESS_RO); |
| 493 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 494 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 495 | } |
| 496 | |
| 497 | /* Look up the corresponding operation context */ |
| 498 | err = tfm_crypto_operation_lookup(TFM_CRYPTO_MAC_OPERATION, |
| 499 | operation->handle, |
| 500 | (void **)&ctx); |
| 501 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 502 | return err; |
| 503 | } |
| 504 | |
| 505 | if ((ctx->key_usage_sign == 0) && (ctx->key_usage_verify == 1)) { |
| 506 | /* Finalise the mac operation */ |
| 507 | err = tfm_crypto_mac_finish(ctx, |
| 508 | computed_mac, |
| 509 | sizeof(computed_mac), |
| 510 | &computed_mac_length); |
| 511 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 512 | return err; |
| 513 | } |
| 514 | /* Release the operation context */ |
| 515 | err = tfm_crypto_operation_release(&(operation->handle)); |
| 516 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 517 | return err; |
| 518 | } |
| 519 | |
| 520 | /* Check that the computed mac match the expected one */ |
| 521 | if (computed_mac_length != mac_length) { |
| 522 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_SIGNATURE; |
| 523 | } |
| 524 | |
| 525 | for (i=0; i<computed_mac_length ; i++) { |
| 526 | if (computed_mac[i] != mac[i]) { |
| 527 | comp_mismatch = 1; |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | if (comp_mismatch == 1) { |
| 532 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_SIGNATURE; |
| 533 | } |
| 534 | } else { |
| 535 | return TFM_CRYPTO_ERR_PSA_ERROR_BAD_STATE; |
| 536 | } |
| 537 | |
| 538 | return TFM_CRYPTO_ERR_PSA_SUCCESS; |
| 539 | } |
| 540 | |
| 541 | enum tfm_crypto_err_t tfm_crypto_mac_abort(psa_mac_operation_t *operation) |
| 542 | { |
| 543 | enum tfm_crypto_err_t err; |
| 544 | struct tfm_mac_operation_s *ctx = NULL; |
| 545 | |
| 546 | /* Validate pointers */ |
| 547 | err = tfm_crypto_memory_check(operation, |
| 548 | sizeof(psa_mac_operation_t), |
| 549 | TFM_MEMORY_ACCESS_RW); |
| 550 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 551 | return TFM_CRYPTO_ERR_PSA_ERROR_INVALID_ARGUMENT; |
| 552 | } |
| 553 | |
| 554 | /* Look up the corresponding operation context */ |
| 555 | err = tfm_crypto_operation_lookup(TFM_CRYPTO_MAC_OPERATION, |
| 556 | operation->handle, |
| 557 | (void **)&ctx); |
| 558 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 559 | return err; |
| 560 | } |
| 561 | |
| 562 | if (PSA_ALG_IS_HMAC(ctx->alg)){ |
| 563 | /* Check if the HMAC internal context needs to be deallocated */ |
| 564 | if (ctx->ctx.hmac.hash_operation.handle != TFM_CRYPTO_INVALID_HANDLE) { |
| 565 | /* Clear hash context */ |
| 566 | err = tfm_crypto_hash_abort(&(ctx->ctx.hmac.hash_operation)); |
| 567 | if (err != TFM_CRYPTO_ERR_PSA_SUCCESS) { |
| 568 | return err; |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | /* Release the operation context */ |
| 573 | tfm_crypto_operation_release(&(operation->handle)); |
| 574 | } else { |
| 575 | /* MACs other than HMACs not currently supported */ |
| 576 | return TFM_CRYPTO_ERR_PSA_ERROR_NOT_SUPPORTED; |
| 577 | } |
| 578 | |
| 579 | return TFM_CRYPTO_ERR_PSA_SUCCESS; |
| 580 | } |
| 581 | /*!@}*/ |