Arm® Platform Security Architecture
APIls Test Suite

Revision: rOp0

Validation Methodology

arm

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights reserved.
101447_0000_C_en

Arm® Platform Security Architecture APIs Test Suite

Arm® Platform Security Architecture APIs Test Suite
Validation Methodology

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue |Date Confidentiality | Change

A 28 September 2018 | Non-Confidential | Alpha release

B 30 October 2018 Non-Confidential | Minor edits

C 15 January 2019 Non-Confidential | Beta release. The document number has been changed.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at Attp://www.arm.com/company/policies/

trademarks.

Copyright © 2018, 2019 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2
reserved.
Non-Confidential - Beta

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Arm® Platform Security Architecture APIs Test Suite

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is for a Beta product, that is a product under development.
Web Address

http://'www.arm.com

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 3
reserved.
Non-Confidential - Beta

http://www.arm.com

Contents

Arm® Platform Security Architecture APIs Test Suite
Validation Methodology

Preface
ADBDOUL RIS DOOK ...t et 7
FEEADACK ... 9
Chapter 1 Introduction
1.1 Scope Of the AOCUMENT ..o e 1-11
1.2 ADBDBIEVIALIONS ..ottt 1-12
1.3 Platform Security ArchiteCture APIScccoueeeeeeeeieeee et 1-13
1.4 TESE SUIT ...ttt ettt e et a e 1-15
1.5 TESt SUIE COMPONENTS ... et 1-16
1.6 DireCtory SHUCHUIEcccooiieeeee e e 1-17
1.7 Compliance SIGN-Off PIOCESSc..uveeeeeeeccieieeeeeeeeeee ettt 1-18
1.8 Feedback, contributions, and SUPPOITccceeeeeeeiiiiiiiies aeeeeeeeeeeseeeseesisnsaseenns 1-19
Chapter 2 Validation methodology
2.1 Test 1ayering AELAIISccoueeeieeeeee e e 2-21
2.2 TeSt SUItE OrganIZAtiONcccuuiiieeiiieiee et e 2-23
2.3 TESE @XECULION FIOW ..o e e e 2-25
2.4 Loading test SUItE DINAIIESouii e e 2-28
2.5 TESE AISPALICRC ... et 2-30
2.6 Analyzing teSt FUN FESUILSccoeieieieeeeee et et 2-31
101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 4
reserved.

Non-Confidential - Beta

Appendix A Revisions
A.1 REOVISIONS .o eeee ettt et e e e e e e e e e e e e e e e e e e s sss e Appx-A-34
101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 5

reserved.
Non-Confidential - Beta

Preface

This preface introduces the Arm® Platform Security Architecture APIs Test Suite Validation Methodology.

It contains the following:
* About this book on page 7.
» Feedback on page 9.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 6
reserved.
Non-Confidential - Beta

Preface
About this book

About this book

This book describes the test suite for Platform Security Architecture APIs.

Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, rl.
pn Identifies the minor revision or modification status of the product, for example, p2.

Intended audience
This book is written for engineers who are specifying, designing, or verifying an implementation of the
Arm® Platform Security Architecture Firmware Framework architecture.

Using this book
This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces the features and components of the test suite for Arm Platform Security
Architecture APIs.

Chapter 2 Validation methodology
This chapter describes the validation methodology that is used for the test suite.

Appendix A Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the 4rm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace

Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 7
reserved.
Non-Confidential - Beta

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Preface

About this book
<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:
MRC p15, ©, <Rd>, <CRn>, <CRm>, <Opcode_2>
SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock
HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

LG

High impedance to stable bus
Figure 1 Key to timing diagram conventions

Signals
The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
+ HIGH for active-HIGH signals.
+ LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

Arm publications
o Arm® Platform Security Architecture Firmware Framework specification (ARM DEN 0063).
* PSA Security model (ARM DEN 0079).
o Arm® Trusted Base System Architecture for Armv8-M (ARM DEN 0062A).
* PSA Trusted Boot and Firmware Update (ARM DEN 0072A).
* PSA Crypto API
o Armv8 Architecture Reference Manual, Armv8 for M-profile (Arm DDI 00553A)

Other publications
None.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 8
reserved.
Non-Confidential - Beta

Preface
Feedback

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.

* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

» The title Arm Platform Security Architecture APIs Test Suite Validation Methodology.
* The number 101447 0000 C en.

» If applicable, the page number(s) to which your comments refer.

* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 9
reserved.
Non-Confidential - Beta

mailto:errata@arm.com

Chapter 1

Introduction

This chapter introduces the features and components of the test suite for Arm Platform Security

Architecture APIs.

It contains the following sections:

1.1 Scope of the document on page 1-11.

1.2 Abbreviations on page 1-12.

1.3 Platform Security Architecture APIs on page 1-13.
1.4 Test suite on page 1-15.

1.5 Test suite components on page 1-16.

1.6 Directory structure on page 1-17.

1.7 Compliance sign-off process on page 1-18.

1.8 Feedback, contributions, and support on page 1-19.

101447_0000_C_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential - Beta

1 Introduction
1.1 Scope of the document

1.1 Scope of the document

The goal of this document is to describe the validation methodology for PSA APIs test suites. It focuses
on describing the framework and the methodology within which the tests are run.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 1-1
reserved.
Non-Confidential - Beta

1 Introduction
1.2 Abbreviations

1.2 Abbreviations

This section lists the abbreviations that are used in this document.

Table 1-1 Abbreviations and expansions

Abbreviation | Expansion

API Application Programming Interface

FF Firmware Framework

ITS Internal Trusted Storage

NSPE Non-Secure Processing Element

PAL Platform Abstraction Layer

PE Processing Element

PS Protected Storage

PSA Platform Security Architecture

RoT Root of Trust

SID Secure function [Dentifier

SPE Secure Processing Element

SPM Secure Partition Manager

SUT System Under Test

VAL Validation Abstraction Layer
101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 1-12

reserved.
Non-Confidential - Beta

1 Introduction
1.3 Platform Security Architecture APls

1.3 Platform Security Architecture APIs

Arm Platform Security Architecture (PSA) is a holistic set of threat models, security analysis, hardware
and firmware architecture specifications, and an open source reference implementation.

PSA provides a recipe, based on industry best practice, that allows security to be consistently designed
in, at both a hardware and firmware level. One of the goals of PSA is to make IoT security easier and
quicker. This means having reliable, consistent APIs and useful built-in security functions for device
manufacturers and the developer community. These PSA APIs provide a consistent developer
experience, hiding the underlying complexity of the security system.

Arm PSA defines the following sets of API specifications:

» PSA Firmware Framework
* PSA developer APIs

This section contains the following subsections:

» 1.3.1 PSA Firmware Framework on page 1-13.
* 1.3.2 PSA developer APIs on page 1-14.

1.3.1 PSA Firmware Framework

PSA Firmware Framework (PSA-FF) defines a standard programming environment and firmware
interfaces for implementing and accessing security services within a device’s Root of Trust (RoT).

PSA security model divides execution within the system into two domains:

* Non-Secure Processing Environment (NSPE)
» Secure Processing Environment (SPE)

NSPE contains application firmware, and OS kernel and libraries. It typically controls most /O
peripherals. SPE contains security firmware and hardware resources that must be isolated from NSPE
firmware and hardware resources. The security model requires that no NSPE firmware or hardware can
inspect or modify any SPE hardware, code, or data.

Security functionality is exposed by PSA as a collection of RoT services. Each RoT service is a set of
related security functionality. For example, there might be an RoT service for cryptography operations,
and another for secure storage.

PSA subdivides the SPE into two subdomains:

« PSARoT

* Application RoT

PSA RoT provides the fundamental RoT Services to the system and also manages the isolated execution
environment for the Application RoT Services.

The main components of PSA RoT are described in the following table.

Table 1-2 PSA RoT components

Component Description

PSA security lifecycle Identifies the production phase of the device and controls the availability of device secrets and
sensitive capabilities such as Secure debug.

PSA immutable RoT Hardware, and non-modifiable firmware and data installed during manufacturing.

Trusted Boot and Firmware
Update

Ensures the integrity and authenticity of the device firmware.

Secure Partition Manager

Manages isolation of the RoT services, the IPC mechanism that allows software in one domain to
make requests of another, and scheduling logic to ensure that requests are eventually serviced.

PSA RoT services

Provide essential cryptographic functionality and manage accesses to the immutable RoTs for
Application RoT services.

101447_0000_C_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 1-13
reserved.
Non-Confidential - Beta

1 Introduction
1.3 Platform Security Architecture APls

The Firmware Framework specification:

* Provides requirements for the SPM.

* Defines a standard runtime environment for developing protected RoT Services, including the
programming interfaces provided by the SPM for implementing and using RoT Services.

* Defines the standard interfaces for the PSA RoT Services.

For details on SPM and PSA RoT, refer to the specification documents mentioned in the Additional
reading section of this document.

1.3.2 PSA developer APIs

PSA developer APIs are the top-level APIs used by application developers and RTOS vendors. These
APIs have been designed for software developers who want to implement hardware security features
without necessarily being security experts themselves.

These APIs provide the top-level essential services related to crypto, secure storage, and attestation
tokens. For details, see the Developer APIs specification.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 1-14
reserved.
Non-Confidential - Beta

https://github.com/ARM-software/psa-arch-tests/blob/master/api-specs

1 Introduction
1.4 Test suite

1.4 Test suite

Architecture tests are a set of examples of the invariant behaviours that are specified by the PSA APIs
specifications. Use these tests to check that these behaviours are interpreted correctly in your system.

These tests cover or are expected to cover checks for the following categories of features, each covering
a different area of architecture.

Table 1-3 Test categories and their descriptions

API type Test category Sub category Description
PSA Firmware IPC Level of isolation Tests verifying the expected behavior of SPM
Framework involved in different levels of isolation, as defined by
the specification.
Client APIs Tests verifying the correctness of client APIs.
Secure partition APIs Tests verifying the correctness of Secure partition
APIs.
Manifest input Tests verifying manifest input parameters.
Developer APIs Crypto PSA crypto APIs Tests verifying the correctness of PSA crypto APIs.
Internal Trusted PSA ITS APIs Tests verifying the correctness of PSA ITS APIs.
Storage (ITS)
Protected Storage PSA PS APIs Tests verifying the correctness of PSA PS APIs.
(PS)
Initial Attestation PSA Initial Attestation Tests verifying the correctness of PSA Initial
APIs Attestation APIs.
The test suite contains tests that have checks embedded within the test code. To view the list of test suites
and how these different categories of features are checked for compliance, see test-list documents in the
doc/ directory.
101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 1-15

reserved.
Non-Confidential - Beta

1.5 Test suite components

1 Introduction
1.5 Test suite components

The components of the test suite are described in the following table:

Table 1-4 Test suite components

Component |Description
Test suites Contain self-checking tests that are written in C.
Substructure Test supporting layers consist of a framework and libraries setup as:
* Tools to build the compliance tests
* VAL library
* PAL library
Documentation | Suite-specific documents such as testlists, porting guide, and API specification.
101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 1-16

reserved.
Non-Confidential - Beta

1 Introduction
1.6 Directory structure

1.6 Directory structure

Components of the tests must be in a specific hierarchy for the test suite. When the release package is
downloaded from GitHub, the top-level directory contains the files that are shown in the following

figure.

api-tests/
—dev_apis
—docs
—ff
—platform
—tools

—val

—README . md

Figure 1-1 Test suite directory structure

dev_apis

docs

ff

This directory contains subsuites containing architecture tests for the developer APIs
specification. This test suite is a set of C-based directed tests, each of which verifies the
implementation against a test scenario that is described by the PSA developer APIs
specification. These tests are abstracted from the underlying hardware platform by the VAL.

This directory contains the test suite documentation.

This directory contains subsuites containing architecture tests for PSA-FF specification. This
test suite is a set of C-based directed tests, each of which verifies the implementation against a
test scenario that is described by the PSA-FF specifications. These tests are abstracted from the
underlying hardware platform by the VAL.

platform

tools

val

This directory contains files to form PAL. PAL is the closest to hardware and is aware of the
underlying hardware details. Since this layer interacts with hardware, it must be ported or
tailored to specific hardware required for system components present in a platform. This layer is
also responsible for presenting a consistent interface to the VAL required for the tests.

This directory contains make files and scripts that are used to generate test binaries.

This directory contains subdirectories for the VAL libraries. This layer provides a uniform and
consistent view of the available test infrastructure to the tests in the test suite. The VAL makes
appropriate calls to the PAL to achieve this functionality. This layer is not required to be ported
when the underlying hardware changes.

README.md

README file for PSA test suite.

101447_0000_C_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 1-17
reserved.
Non-Confidential - Beta

1 Introduction
1.7 Compliance sign-off process

1.7 Compliance sign-off process

The future releases of this specification will be updated with compliance sign-off process and
expectations from partner on the process for running PSA APIs test suite.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 1-18
reserved.
Non-Confidential - Beta

1 Introduction
1.8 Feedback, contributions, and support

1.8 Feedback, contributions, and support
For feedback, use the GitHub Issue Tracker that is associated with this repository.
For support, send an email to support-psa-arch-tests@arm.com with the details.
Arm licensees can contact Arm directly through their partner managers.

Arm welcomes code contributions through GitHub pull requests. See GitHub documentation on how to
raise pull requests.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 1-19
reserved.
Non-Confidential - Beta

mailto:support-psa-arch-tests@arm.com

Chapter 2
Validation methodology

This chapter describes the validation methodology that is used for the test suite.

It contains the following sections:

o 2.1 Test layering details on page 2-21.

o 2.2 Test suite organization on page 2-23.

o 2.3 Test execution flow on page 2-25.

* 2.4 Loading test suite binaries on page 2-28.
o 2.5 Test dispatcher on page 2-30.

* 2.6 Analyzing test run results on page 2-31.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-20
reserved.
Non-Confidential - Beta

2 Validation methodology
2.1 Test layering details

21 Test layering details

PSA tests are self-checking and portable C-based tests with directed stimulus. These tests use the layered
software stack approach to enable porting across different test platforms.

The constituents of the layered stack are:
e Tests

* Secure partitions

« VAL

« PAL

NSPE SPE
Test suite boundary

Tests
(Crypto/Storage/Attestation/IPC) Tests
Partitions
(For IPC tests
NS Validation Abstraction Layer only)
(VAL_NS)

VAL S

NS Platform Abstraction Layer
(PAL_NS) PAL S

System on Chip (SoC)

. . From Arm

. Defined by Arm and to be ported by the partner
. Platform-specific Software

. Hardware

Figure 2-1 Layered software stack

The following table describes the constituents of the layered stack.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-21
reserved.
Non-Confidential - Beta

2 Validation methodology
2.1 Test layering details

Table 2-1 Layered software stack components

Layer Description
Tests A set of C-based directed tests, each of which verifies the implementation against a test scenario described by the PSA
specification.

These tests include checks related to PSA-FF and developer APIs, and are expected to be run in Non-secure. PSA-FF
tests may further use IPC calls to communicate test suite-defined secure partition to cover the appropriate test scenario.

These tests are abstracted from the underlying hardware platform by the VAL. This implies that it is not required to port
a test for a specific target platform.

Secure PSA-FF IPC tests contain the secure partitions that define secure functions required for covering IPC test scenarios.
partitions | These secure partitions must be integrated into your secure software containing SPM.

These secure partitions are valid only for IPC tests. Developer APIs tests are not required to use these partitions.

The secure partition related manifest files are available at:

+ platform/targets/<targetName>/manifests/common/ directory.

Partitions formed using this manifest provide driver related services such as UART print.
* platform/targets/<targetName>/manifests/ipc/ directory.

This directory contains the manifests for client and server partitions. Secure functions defined in these manifests are
used by IPC tests to cover appropriate test scenarios.

VAL This layer provides a uniform and consistent view of the available test infrastructure to the tests in the test pool, by
making appropriate calls to the PAL. The VAL is designed such that it can be used both from Secure and Non-secure
sides.

This layer is not required to be ported when the underlying hardware changes.

PAL This layer is the closest to the hardware and is aware of the platform details. It is responsible for presenting the hardware
through a consistent interface to VAL. This layer must be ported to the specific hardware present in the platform. The
PAL is designed such that it can be used from both Secure and Non-secure sides.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-22
reserved.
Non-Confidential - Beta

2 Validation methodology
2.2 Test suite organization

2.2 Test suite organization

The directory structures of PSA-FF and developer APIs test suites are discussed in this section.

PSA-FF test suite

The following figure shows the contents of the directories, subdirectories, and files in the PSA-FF test

suite.

fF

—ipc
—test_i[x]

source.mk
test_entry.c
test_i[x].c
test_i[x].h
test_supp_i[x].c
L —testsuite.db

——partition
common
L driver_partition.c
ipc
client_partition.c
client_partition.h
server_partition.c
server_partition.h
L——README . md

Figure 2-2 PSA-FF test suite directory structure

Table 2-2 Directory content

Directory Content

ipc Holds IPC tests.

test_i[x] Test directory containing IPC test related files.

source.mk Helps to identify the test files that must be compiled to generate the test binaries.

test_entry.c

Holds the test entry point in NSPE and executes test functions from NSPE. For IPC tests, it can
execute the same test functions from SPE, based on the test requirement.

test_i[x].cand
test_i[x].h

Holds the client test functions. [x] is the test number.

test_supp_i[x].c

Holds server test functions. This is available only for IPC tests.

testsuite.db

A database file representing tests to be compiled and run as part of specific suite. This provides
flexibility to run specific tests individually by commenting the other tests out.

partition Contains partition files that provide different driver services to the tests and the dispatcher logic to
dispatch specific client or server test functions.
README .md This file contains information for building the PSA-FF test suite.

Developer APIs test suite

The following table shows the contents of the directories, subdirectories, and files in the developer APIs

test suite.

101447_0000_C_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-23
reserved.
Non-Confidential - Beta

2 Validation methodology
2.2 Test suite organization

dev_apis

—crypto
—test_c[x]
source.mk

test_c[x].c

test_c[x].h

L —testsuite.db

—initial_attestation
—internal_trusted_storage
——protected_storage
—README . md

test_entry.c

Figure 2-3 Developer APIs test suite directory structure

Table 2-3 Developer APls directory contents

Directory or file

Content

crypto

Holds crypto tests.

test_[x][y]

Test directory containing test related files.
[x] can be:

» ¢ for crypto tests

» a for initial attestation

* p for protected storage

» s for internal trusted storage

[y] is the test number.

source.mk

Helps to identify the test files that must be compiled to generate the test binaries.

test_[x][y].cand test_[x][y].h

Holds the actual test functions.

test_entry.c

Holds the test entry point in NSPE and executes test functions from NSPE.

testsuite.db

A database file representing tests to be compiled and run as part of specific suite. This
provides flexibility to run specific tests individually by commenting the other tests out.

initial_attestation

Holds initial attestation tests.

internal_trusted_storage

Holds internal trusted storage tests.

protected_storage

Holds protected storage tests.

README . md

This file contains information for building the developer APIs test suite.

101447_0000_C_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential - Beta

2-24

2 Validation methodology
2.3 Test execution flow

2.3 Test execution flow

This section provides details of the test execution flows for PSA-FF tests and developer APIs tests.

PSA-FF tests

The test compilation tool generates the NPSE and SPE archives for IPC tests. For details about IPC test
archives, see 2.4 Loading test suite binaries on page 2-28. You must integrate test suite SPE archives
with your Secure software stack contaning the SPM, such that it gets access to PSA-defined client APIs
and Secure partition APIs. The NSPE libraries generated by the test suite must be integrated with the
NSPE OS such that test suite NSPE code gets access to the PSA-defined client APIs.

Then the System Under Test (SUT) boots to an environment that enables the test functionality. This
implies that the SPM is initialized, and PSA-FF partitions are ready to accept requests.

On the Non-secure side, the SUT boot software gives control to the tests entry point (val_entry symbol)
as an application entry point in Non-secure privileged mode.

The PSA tests query the VAL layer to get the necessary information to run the tests. This information can
include memory maps, interrupt maps, and hardware controller maps.

Based on the test scenario, the test and partition communicate with each other using IPC APIs that are
defined in the specification, and report the test results using VAL print API (in turn PAL API ported to
the specific platform). Each IPC test scenario is driven using dedicated client-server tests functions. The
client functions are available in test_ix.c and are suffixed with client_test_ label. Based on test
needs, client functions are executed either in NSPE or SPE or both. Server functions are available in
test_supp_ix.c and are suffixed with server_test label. They are always executed in SPE.

Due to RAM and flash size constraints, all the tests may not be available at the same time. The
dispatcher in the VAL queries the PAL to load the next test on the completion of the present test. The
PAL may optionally communicate with the external world to load the next test. The dispatcher also
makes VAL (and in turn PAL) calls to save and reports each of the test results. For details about the
dispatcher, see 2.5 Test dispatcher on page 2-30.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-25
reserved.
Non-Confidential - Beta

2 Validation methodology
2.3 Test execution flow

Non-secure domain

Secure domain Application SW/OS boot

(" secureswios \1 |
(SPM) boat)

Launch Compliance tests
as an Application

Init Compliance tests
partitiong

Launch client test function

Report Server status to test [ra— Collect status

and jump to

next check if
passed

Lasttest 7 —

Report log

Figure 2-4 Test execution flow for PSA-FF tests

Developer APIs tests

The test compilation tool generates the NPSE archives for developer tests as decribed in the 2.4 Loading
test suite binaries on page 2-28 section.

You must integrate the test suite NSPE archives with your Non-secure software stack such that it gets
access to PSA defined developer APIs. The SUT then boots to an environment that enables the test
functionality. The SUT boot software gives control to the test entry point (val_entry symbol) as an
application entry point in the Non-secure privileged mode.

The tests query the VAL to get necessary information to run the tests. This information can include
memory maps, interrupt maps, and hardware controller maps. Based on the test scenario, the test calls
developer APIs and reports the test results using the VAL print API (in turn PAL API ported to the
specific platform).

Due to RAM and flash size constraints, all the tests may not be available at the same time. The
dispatcher in the VAL queries the PAL to load the next test on the completion of the present test. The
PAL may optionally communicate with the external world to load the next test. The dispatcher also
makes VAL, and in turn PAL calls to save and reports each of the test results. For information about the
dispatcher, see 2.5 Test dispatcher on page 2-30.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-26
reserved.
Non-Confidential - Beta

2 Validation methodology
2.3 Test execution flow

Secure domain Non-secure domain
o~

™

I/ Secure SWI0S Application SW/0S boot
\ (SPM) boot

oy

Launch test suite as an
application wal_entry();

Start test #ox

Test check

Last check ?

Report log

Figure 2-5 Test execution flow for developer APlIs tests

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-27
reserved.
Non-Confidential - Beta

2 Validation methodology
2.4 Loading test suite binaries

24 Loading test suite binaries

An SUT can have main memory (SRAM or Flash) size constraints. It is possible that all the tests do not
fit into these types of memories and may not be available at the same time. If an SUT does not have this
limitation, test binaries can be stored in main memory directly. Otherwise, they can be stored in the
secondary memory.

The following binaries are required to be loaded into memory:

NSPE binary

Test compilation flow creates two archive files that contain code for the test framework - VAL and
PAL APIs, and test dispatcher logic that must be available in the main memory and executed as an
application in NSPE. Link these archives with NS OS library to be able to generate an NSPE binary.
— <BUILD_PATH>/BUILD/val/val_nspe.a

— <BUILD_PATH>/BUILD/platform/pal_nspe.a

Combined test binary

Test compilation flow also creates a combined test binary containing all Non-secure test binaries
together at <BUILD_PATH>/BUILD/<top_level_suite>/<suite>/test_elf_combine.bin. You can
load this binary into Non-secure main memory if the SUT has enough space. Otherwise, this can be
loaded into secondary storage. The dispatcher function within the VAL reads this binary and loads
each of test sections using PAL API to Non-secure memory one after another. The addresses of the
various sections must be provided using target.cfg.

Along with NSPE binaries and combined test binary, IPC tests require the following SPE binaries.

Test suite compilation flow generates the following Secure partition archives for IPC tests. You must
integrate these test suite partitions archives with your SPE code and load the resultant SPE binary
into Secure main memory. Note that the client test functions and server test functions of all tests are
compiled as part of client_partition and server_partition respectively. All these functions are
loaded into the Secure main memory and are available at same time.

Test suite partition libraries:

— <build_dir>/BUILD/partition/driver_partition.a
— <build_dir>/BUILD/partition/client_partition.a
— <build_dir>/BUILD/partition/server_partition.a

Note

If an SUT has main memory size constraints, you can compile and run these test functions in a bulk of
test sets, for example, 10 tests at time. To do this, remove test references other than the required test bulk
test set from the respective suite specific testsuite.db file. Repeat this process for all the test sets.

101447_0000_C_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-28
reserved.
Non-Confidential - Beta

2 Validation methodology
2.4 Loading test suite binaries

——

Test framework

VAL

Test 1 Partition #1

PAL

Non-secure SRAM Secure SRAM

Combined test binary (Non-secure SRAM or secondary memory)

Test #1

Figure 2-6 Loading test binaries

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-29
reserved.
Non-Confidential - Beta

2 Validation methodology
2.5 Test dispatcher

2.5 Test dispatcher

The dispatcher has the following responsibilities:

Each test must present the test_entry function address to the dispatcher. To this function, the dispatcher
passes a pointer to a structure containing the function pointers to all the available VAL functions. These
functions make the appropriate VAL function call.

The flow of the dispatcher is as follows:

Request VAL to load the metadata of the next test into the main memory.

Parse the metadata that is associated with the test.

Verify that the test is compatible with the SUT.

Load the test code and data sections into the appropriate locations in the main memory.
Call the test_entry function of the test and execute tests.

Wait for test completion.

Print and save the result of the test.

Repeat steps 1-6 till the end of the last test.

XN RE LD

To facilitate test reporting and management of observing aspects, the PSA-FF system contains UART for
printing the status of tests. If a display console is not available, the PAL can be updated to make the test
results available to the external world through other means.

Information about the environment in which a host test harness is running, is beyond the scope of this
document. However, it is presumed that the SUT is communicating with the host using Serial port,
JTAG, Wi-Fi, USB or any other means that allow for access to the external world.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-30
reserved.
Non-Confidential - Beta

2 Validation methodology
2.6 Analyzing test run results

2.6 Analyzing test run results
Each test follows a uniform test structure that is defined by VAL.

Performing any test initializations.
Dispatching the client-server test functions.
Waiting for test completion.

Performing the test exit.

bl ol e

The test may pass, fail, skip or be in an error state. For example, if test times out or the system hangs, it
means that something went wrong and the test framework was unable to determine what happened. In
this case, you may have to check the logs. If a test fails or skips, you may see extra print messages to
determine the cause.

The test suite summary is displayed at the end. An example snapshot of the test suite summary is shown
in the following figure.

k. POO Architecture Test Suite - Version 0,7 ks

Running,, Crypto Suite

TEST: 201 | DESCRIPTION: Testing psa_crypto_init API: Basic
TEST RESULT: PASSED

TEST: 202 | DESCRIPTIOMN: Testing crypto key management APIs
Failed at Checkpoint: 3
Actuals 1
Expected: 0

TEST RESULT: FAILED (Error Code=0x1)

seedededog

HkERRRRRRERE Chynto Suite Report ks
TOTAL TESTS
TOTAL PASSED
TOTAL SIM ERROR
TOTAL FARILED
TOTAL SKIPPED

B4 BE AE BE FE
O D D

Eﬂtering standby, .

Figure 2-7 Test suite summary

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-31
reserved.
Non-Confidential - Beta

2 Validation methodology
2.6 Analyzing test run results

Debugging of a failing test

Since each test is organized with a logical set of self-checking code, in the event of a failure,
searching for the relevant self-checking point is a useful point to start debugging.

Consider the above snippet of a failing test on the display console.

Here are some debugging points to consider.

If the default prints do not give enough information, you can recompile and rerun the test
binaries with high print verbosity level . See - -verbose switch in the setup. sh script to
understand how test verbosity can be changed.

In the above example, test 2 is failing. This test is located at dev_apis/crypto/test_c002/

Since the failure message is shown as checkpoint 3, go to this print point in the test source

code and debug the failing cause. The checkpoints are reserved in the test suite as shown

below:

— Checkpoints 1-100 are reserved for developer APIs tests. Checkpoints print messages
with numbers which can come from test_[x][y].c file. Here, [x] is reserved for
developer API tests and [y] is the test number.

— Checkpoints 101-200 are reserved for client test functions of IPC tests and prints related
to these numbers can come from test_i[y].c

— Checkpoints 201-300 are reserved for server test functions of IPC tests and prints related
to these numbers can come from test_supp_i[y].c

Status of the failure code (0x1 in this example) is mapped with a structure val_status_t

that is available at val/common/val.h. Look for enum dedicated to this number to see status

in verbatim form.

101447_0000_C_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2-32
reserved.
Non-Confidential - Beta

Appendix A
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
* A.l Revisions on page Appx-A-34.

101447_0000_C_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights Appx-A-33
reserved.
Non-Confidential - Beta

A1 Revisions

A Revisions
A.1 Revisions

Table A-1 Issue A

Change Location

Affects

This is the first revision of the document.

All revisions

Table A-2 Differences between Issue A

and Issue B

Change

Location

Affects

Updated the path to secure manifest files.

See 2.1 Test layering details on page 2-21

All revisions

Updated the test execution flow and SPE binary information.

See the following sections:
o 2.3 Test execution flow on page 2-25
* 2.4 Loading test suite binaries on page 2-28

All revisions

Table A-3 Differences between Issue B

and Issue C

Change

Location

Affects

Added information about developer APIs.

See the following sections:

» 1.3 Platform Security Architecture APIs on page 1-13
* [.4 Test suite on page 1-15

* 1.6 Directory structure on page 1-17

o 2.2 Test suite organization on page 2-23

o 2.3 Test execution flow on page 2-25

All revisions

Added ITS and PS information.

See the following sections:
* 1.2 Abbreviations on page 1-12
e 1.4 Test suite on page 1-15

All revisions

Moved information about the test dispatcher to a new
section.

See 2.5 Test dispatcher on page 2-30

All revisions

Updated the test suite summary and debugging details.

See 2.6 Analyzing test run results on page 2-31

All revisions

101447_0000_C_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential - Beta

Appx-A-34

	Arm® Platform Security Architecture APIs Test Suite Validation Methodology
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : Scope of the document
	1.2 : Abbreviations
	1.3 : Platform Security Architecture APIs
	1.3.1 : PSA Firmware Framework
	1.3.2 : PSA developer APIs

	1.4 : Test suite
	1.5 : Test suite components
	1.6 : Directory structure
	1.7 : Compliance sign-off process
	1.8 : Feedback, contributions, and support

	2 : Validation methodology
	2.1 : Test layering details
	2.2 : Test suite organization
	2.3 : Test execution flow
	2.4 : Loading test suite binaries
	2.5 : Test dispatcher
	2.6 : Analyzing test run results

	A : Revisions
	A.1 : Revisions

