arm Arm® TBSA-v8M
Architecture Test Scenario
Document

Version <1.1>

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1

Arm® TBSA-v8M

Arch Test Scenario Document
Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document History

Version Confidentiality
1.0 18 June 2018 Non-Confidential First version of the document.
1.1 29 June 2018 Non-Confidential Second version of the document.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of,
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is not
intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any
time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement
covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting
provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall
prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 2 of 41

http://www.arm.com/company/policies/trademarks

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.
Product Status

The information in this document is beta, that is for a product under development.

Web Address

http://www.arm.com

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 3 of 41

http://www.arm.com/

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1

Contents

N T T 8 4T T e o XL T Ty =T 8
1L REFEIEINCES ...ttt ettt et h e a bttt ea e e bt e a e et e eh e e a et eh e et e Sh e e a e e R e Sh s e ke eh £ e e e eh e e AR e eh e e At e eh e oA e e b e e R e e bt eh £ e b e eh e et e eh e e R e nbe et e bt e e et e eaeenns 8
1.2, TermS @Nd ADDIEVIATIONSoiiiiiiiiiii bbbt b e bbbt bbb h bbb bbb bbbt bbb bbbt ebs 8
R T olo T o 1 IO PP PPRSPTPPPPN 8
2 141 o T [Tt o 9
2.1, Limitations Of the TBSA-VBIM TEST SUITEerueriiitietieteit ettt ettt ettt ettt e sh e e bt ehe et e s bt e st e e bt ea s e ebees e e bt eh e et e eb e ea b e eb e e abesb e eae e bt eas e beese e b e eneebenbeenbenbeennenbeans 9
3 Correlation between architeCture and TESTS.....c.uiivuiiiiiiiiiiiiiiir s s e sae s ssas s s s as s s s s e s s e s e s s e an e e s e aab e s e ssanessesanens 11
LT T Lo TR oT=T 1 T T o T3S 17
4.1, BASE SYSTEIM SCENATIOS «.vvvteeeeiiiiritieeeeaiiitteeeessseiateeeeessasubtseeessasssbasaeeesasssseeeeesssassseseeessanssssseesssssassssseeesssassssseessssnsssssesesssnsssssseeesssssseseeessensssseeeesannns 17
4.1.1 RO10_TBSA_BASE: A Non-Trusted world operation must only access Non-Trusted WOrld @SSEtscccceeuiiieiiiieiiiieiiiee et 17
4.1.2 R020_TBSA_BASE: A Trusted world operation can access both Trusted and Non-Trusted WOrld assetsccuerverieereeeceeree e 17
4.1.3 R0O30_TBSA_BASE: The SoC must be based on an Armv8-M architecture PE with the Security Extension and MPU implemented...................... 18
I [- T A g0 ot { U Yol Y g =T o OO OO OO SO U PO PP R PP PTURUPPRPOt 18
4.2.1 RO10_TBSA_INFRA: A Trusted operation can issue Secure or NON-SeCUre tranSaCtioNscccuuiiiiiiieiiiiee e eeiee et esiae e e sae e e eaaeeeebaeesneeas 18
4.2.2 R020_TBSA_INFRA: A Non-Trusted operation must only issue NON-SECUre tranSaCTioNSc.uieeiiiieiiiiieiiiee et esiae e s e eaaeeesbaeesanees 18
4.2.3 RO30_TBSA_INFRA: A Non-secure Transaction must only access NON-SECUIE STOMAZEccuuiiiiuiiieriiiieeiiieeeiteeeeiee ettt e e e e sibe e e eaaeeesabaeesaneas 18

4.2.4 RO40_TBSA_INFRA If programmable address remapping logic is implemented in the interconnect then its configuration must only be possible
LT 00 TR d oL T W E =To IRV Y7o [S S 18

4.2.5 RO50_TBSA_INFRA A unified address map that uses target side filtering to disambiguate Non-secure and Secure transactions must only permit
all Secure or all Non-secure transactions to any one region. Secure and Non-secure aliased accesses to the same address region are not permitted.

.. 19
4.2.6 RO60_TBSA_INFRA The target transaction filters configuration space must only be accessed from the Trusted world..........cccevvvevvierieecieennen. 19
4.2.7 RO70_TBSA_INFRA Security Exception Interrupts must be wired or configured as Secure interrupt SOUMCESuevcvvereerieeeseeeieereesee e see e 20
4.2.8 R0O80_TBSA_INFRA Configuration of the on-chip interconnect that modifies routing or the memory map must only be possible from the

Trusted world unless it is not possible for such modifications to affect SEcUre tranSaCtioNscooviiiiiiiiiiiiic e e 20
4.2.9 R090_TBSA_INFRA All transactions must be constrained; it must not be possible for a transaction to bypass a constraining mechanism......... 20
4.2.10 R100_TBSA_INFRA If shared volatile storage is implemented, then the associated location or region must be scrubbed before it can be

reallocated from Trusted 10 NON-TIUSTEAcviiuiiiiiiiiiiit bbbt b et b bbb bbbt bt e b s b e et eb e et e b e e b sb e bt e b e sbne b abe s 21

4.2.11 R110_TBSA_INFRA If shared volatile storage is implemented, then the associated location must not be executable or NSC immediately after
it is reallocated from NON-TrUSEEM 10 TIUSTEAc.ieiieiieeeie et esee ettt e st e st e et e e st e sste e aeeasee e teessseesseesseeesseessseanseesseeenseeaseeanseesseeanseenseeensaennseanseessaennseanns 21

4.2.12 R120_TBSA_INFRA An interrupt originating from a Trusted operation must be mapped only to a Trusted target. By default, this must be the
(o T (o] [VYT = TR VAT =T ' XY= OSSR PSRTROE 21

4.2.13 R130_TBSA_INFRA Any configuration to mask or route a Trusted interrupt must only be carried out from the Trusted world...........c............ 22

4.2.14 R140_TBSA_INFRA The interrupt network might be configured to route an interrupt originating from a Trusted operation to a Non-Trusted

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 4 of 41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1

4.2.15 R150_TBSA_INFRA Any status flags recording Trusted interrupt events must only be read from the Trusted world, unless specifically

configured by the Trusted world, to be readable by the NON-Trusted WOTId..........oooiiiiiiiiie e et e e e eb e e e s baeeesasaa e e 22
4.2.16 R160_TBSA_INFRA A TBSA-v8M system must integrate @ SECUIE RAMccii ittt ettt erer e e e s st e e e s s e s abbae e e e e s sssabareeesssnsabaaaaeesns 23
4.2.17 R170_TBSA_INFRA Secure RAM must be mapped into the Trusted WOorld ONIY.......ccuioiiiiiiiiiiiccce e 23

4.2.18 R180_TBSA_INFRA If the mapping of Secure RAM into regions is programmable, then configuration of the regions must only be possible
LT 00 TR d oV T W E =To IRV Y7o [S S 23

4.2.19 R190_TBSA_INFRA The advanced power mechanism must integrate a Trusted management function to control clocks and power. It must not
be possible to directly access clock and power functionality from the Non-trusted WOrldccieiieiiiieeieeiece e 23

4.2.20 R210_TBSA_INFRA If access to a peripheral or a subset of its operations can be dynamically switched between Trusted world and Non-
trusted world, then this must be done only under the control of the Trusted WOIIdcocieeiieiieie e 24

4.2.21 R220_TBSA_INFRA If the peripheral stores assets in local embedded storage, a Non-trusted operation must not be able to access the local
T =T a oL T W U €=Ye e o 1=Y = o 1o ISR 24

4.2.22 R230_TBSA_INFRA A Trusted operation must be able to distinguish the originating world of commands and data arriving at its interface, by
U TS Y =4 V=T e o =TSSR 24

A3, FUSE SCONATIOS. .uvvtttetesutirtetetesiituteeeessasuttteeesessseaaeeesesaassaseeesssassstseeeessasssseeeesssnsssssseeessanssssseessssssssssesessssnssssseesssanssssseeessnnssssseesesssssssseeessnnsssseeeessnnsnes 24

4.3.1 R020_TBSA_FUSE: A fuse is permitted to transition in one direction only, from its unprogrammed state to its programmed state. The reverse

OPETATION MUST DB PIrEVENTEA. ..iiitiiiiiiii ettt ettt e ettt e e sttt e e et e e e eateeeeatbeeeetbeeeeabaeeaasteeeeasseeeasseeeaasseeeasseeeeabaee e sbeeeansseeeasaeeeanseeeessseeesaseeesnsbeaeannes 24
4.3.2 R0O40_TBSA_FUSE: It must be possible to blow at least a subset of the fuses when the device has left the silicon manufacturing facility.......... 25
4.3.3 R080_TBSA_FUSE: A confidential fuse whose recipient is a hardware IP must not be readable by any software process........ccccecevvverveeveeennen. 25

4.3.4 R0O90_TBSA_FUSE: A confidential fuse whose recipient is a hardware IP must be connected to the IP using a path that is not visible to software
Lo T T a1V o1 o= ol 4 F= Ve 1YY [| SSTE 25

4.3.5 R100_TBSA_FUSE: A confidential fuse whose recipient is a software process might be readable by that process and must be readable by
oYL VE1 =T ==To o VY L USSR 26

4.3.6 R110_TBSA_FUSE: A confidential fuse whose recipient is a Trusted world software process must be protected by a hardware filtering
mechanism that can only be configured by secure software, for example an NS-bit filter.........ccoviiiiiii i 26

4.3.7 R120_TBSA_FUSE: It must be possible to fix a lockable fuse in its current state, regardless of whether it is programmed or unprogrammed... 26
4.3.8 R140_TBSA_FUSE: A bulk fuse must also be a lockable fuse to ensure that any unprogrammed bits cannot be programmed later................... 27
L Y ol= T 1= 4 (o L OO P P OPU PPN 27

4.4.1 RO10_TBSA_KEY: A key must be treated as an atomic unit. It must not be possible to use a key in a cryptographic operation before it has been
fully created, during an update operation, Or dUriNg itS AESTIUCTIONiccuiiiie ettt e st e e st e e teeesteeteeenseeseesrneenseesneeensens 27

4.4.2 R020_TBSA_KEY: Any operations on a key must be atomic. It must not be possible to interrupt the creation, update, or destruction of a key 27

4.4.3 R030_TBSA_KEY: When a key is no longer required by the system, it must be put beyond use to prevent a hack at a later time from revealing

PO UPROP 27
4.4.4 RO70_TBSA_KEY: A static key must be stored in an immutable structure, for example a ROM or a set of Bulk-Lockable fusesc.ccccceveeenis 28
4.4.5 R140_TBSA_KEY: A Trusted hardware key must not be directly accessible by any SOftware.........cccceoiiiiiiiiiciiicce e 28
4.4.6 R160_TBSA_KEY: A TBSA-v8M device must either entirely embed a root of trust public key (ROTPK), or the information that is needed to
SECUTEIY THENTITY TT 1eiiiiiieitiie ettt ettt ettt e e ettt e ettt e e e tte e e e ts e e e sabeeeaaaaeeeassseeeatsee e sseeeesssee e nbeeeeabaeeeasseeeeasseeesbeeeaasseeessbeeeeabaeaesbseeensaeeeanbaaeansseaenes 29
4.4.7 R180_TBSA_KEY: An elliptic-curve-based ROTPK must be at [€ast 256 DIitS iN SIZE ...ccueecuierieiieecie ettt ae e eeneeeneas 29
4.4.8 R190_TBSA_KEY: An RSA-based ROTPK must be at 18ast 3072 DitS iN SIZE ...ccuieiieiieiiieeie ettt et s e et e s e e seesraeeseessaeeeeesneeenseensees 29
4.4.9 R200_TBSA_KEY: If a cryptographic hash of the ROTPK is stored in on chip non-volatile memory, rather than the key itself, it must be

e Ta a1 = o LT OSSOSO PSP OPT U UPOPROPRI 29
4.4,10 R220_TBSA_KEY: A TBSA-v8M device must embed a hardware unique root key (HUK) in Confidential-Lockable-Bulk fusesccccccvveveennen. 29
4.4.11 R240_TBSA_KEY: The HUK must only be accessible by Trusted code or Trusted hardware that acts on behalf of Trusted code..........cccuccu. 30
LT = To o) Yol T o - T oL PP POT PPN 30

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 5 of 41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1

4.5.1 R0O10_TBSA_BOOT A TBSA-M device must embed a Boot ROM with the initial code that is needed to perform a Trusted system boot. 30

4.5.2 R020_TBSA_BOOT If the device supports warm boot, a flag or register that survives warm boot must exist, to enable distinguishing between
warm and cold boots. This register or flag must be programmable only by the Trusted world and must be reset after a cold bootccccceeveeenns 30

4.5.3 R030_TBSA_BOOT On a cold boot, the primary processor must boot from the Boot ROM. It must not be possible to boot from any other

storage unless Trusted Kernel debUZ is @NaBIEMooviiiiiiii ettt e e et e e s aba e e e eab e e e e abeeeasbeeeeabeeesabbaeeasbaeeesabeeesssaeassseeeas 31
4.5.4 R090_TBSA_BOOT If a boot status register is implemented, then it must be accessible only by the Trusted worldcccccvvecievieriieciecieeee, 31
4.5.5 R100_TBSA_BOOT In an Assisted architecture, the key to decrypt the Trusted Boot Firmware image must be visible only to the acceleration

oYY 4T 0T VT USSP 31
L R] g 1= T o1= g = 1 T 1P POTROPPN 31
4.6.1 RO30_TBSA_TIME At least 0ne TruSTed tIMEr MUST EXIST ...cuuiiiuieiieeiieiiesiteestie st eseesteesteesaeesteessseesteessaeeseesseeeseessseanseessseenseeanseeseesseesnseesseeensens 31
4.6.2 R040_TBSA_TIME A Trusted timer must only be modified by a Trusted access. Examples of modifications are the timer being refreshed,

YU X< oo [T o) ol Y] SR O OSSP P PR UOPPRRUPRPN 32
4.6.3 RO50_TBSA_TIME The clock source that drives a Trusted timer must be a Trusted ClOCK SOUICE.......cccuviiiiiiiiiiiicciieccee e 32
4.6.4 RO60_TBSA_TIME At least one Trusted WatChdOg tIMEr MUSE EXIST.....cciuiiiiiiiieiiiiieeiie ettt et e et e e ste e e s siae e e sbeeesebbeeessbaeeesabeeeensaeeensseens 32

4.6.5 RO70_TBSA_TIME After a system reset, a Trusted watchdog timer must be started before the execution of immutable boot code transfers
CONEIOl 1O TNE NEXE fIIMIWAIE STAEE .. vietieiieeie et estee sttt e s e e e st e e e st ee e teeesee e seesseeesseeaseeesseesseeanse e seeeseeenseeasseesseeanseenseeasseenseeanseenseennseenseeanaeensaennseann 32

4.6.6 RO80_TBSA_TIME A Trusted watchdog timer must only be modified by a Trusted access. Examples of modifications are the timer being
LT TTo IR U o T=Y g [T JRe Yol o <] Y SR 33

4.6.7 R100_TBSA_TIME A Trusted watchdog timer must be able to trigger a reset of the SoC, after a predefined period. This value can be fixed in
hardware or ProgrammeEd DY @ TIUSTEA @CCESSeeuueiieeiuieiieeieesteeeteestesteesseesteessteasseesseessseeseeasseesseeasseanseessseenseeanseanseessseenseesseeessasanseanseesseesnseennseenses 33

4.6.8 R110_TBSA_TIME A Trusted watchdog timer must implement a flag that indicates the occurrence of a timeout event that causes a Warm

reset, to allow post-reset software to distinguish this from a powerup Cold DOOT.cciiiiieiireiece e ae e aeensaesaaeenee 33
4.6.9 R120_TBSA_TIME The clock source driving a Trusted watchdog timer must be a Trusted clock SOUICEccovviiiiiiiiiiiiiccieecee e 33
4.6.10 R130_TBSA_TIME A TRTC must be configured only by @ Trusted WOTII @CCESScccuiiiiiiiiiiiieeciie ettt et et ebe e e e ebbeaesaaaeas 33
4.6.11 R150_TBSA_TIME On initial power up and following any other outage of power to the TRTC, a validity mechanism must indicate that the

TRTC S NOT TIUSEE ...ttt et bbbt b et b e bbbt e bbbt s bbb e e b e e b e bt e ab e eb e e a s e bt e hs e b e e b e e b e s b e et e bt e b e sb e e bt e bt e bt e b e sbe et e sbeeane et 34
4.6.12 R160_TBSA_TIME: The TRTC must be driven by @ Trusted ClIOCK SOUMCE ..uiuiieiieiie ittt e s e e te e st eenseensaeeneeesneeenneenneas 34
L R V=T £ o] W @ TU) T Yol =T 4 T= 1 o 1P OPRTOPRTN 34

(SR ST U PP PPPPPPPPPPI 34
4.7.2 R020_TBSA_COUNT An on-chip non-volatile Non-Trusted firmware version counter implementation must provide a counter range of at least 0
L0 121 O T T T PO T TP TP P PO TSP PPPTRPPPIN 35
4.7.3 R0O30_TBSA_COUNT It must only be possible to increment a version counter through a Trusted aCCeSS........cccvviiiiiiiiiiiiieeciiiecceee e 35
4.7.4 RO40_TBSA_COUNT It must only be possible to increment a version counter; it must not be possible to decrement itccccccveeeiiieeiiiieenns 35
4.7.5 R0O50_TBSA_COUNT When a version counter reaches its maximum value, it must not roll over, and no further changes must be possible 35

4.7.6 RO60_TBSA_COUNT A version counter must be non-volatile, and the stored value must survive a power down period up to the lifetime of the

Lo =2V U PSRRI 35
LT D 1= oYU < Yol <T T T LSS 36
4.8.1 R010_TBSA_DEBUG All debug functionality must be protected by a DPM so that only an authorized external entity can access the debug

functionality. There might be scenarios where all external entities can access the debug functionality..........cccoevieeiiiiiniiiiiiie e, 36
4.8.2 R020_TBSA_DEBUG A DPM must be implemented either solely in hardware or together with software running in the Trusted world............. 36
4.8.3 R030_TBSA_DEBUG There must be a DPM to permit access t0 all assets (TFUSTEA) ..ccuviiviiiiiiiieeciiecreeciee ettt et eere e re e ereesaveeeaeeeanas 36

4.8.4 R0O40_TBSA_DEBUG There must be a DPM to permit access to all Non-Trusted world assets. This mechanism must not permit access to
QI8 ES T IR Yo T o e LYY= SRS 36

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 6 of 41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1

4.8.5 R0O50_TBSA_DEBUG All DPMs must implement the following fuse-controlled states: Closed - Only an unlock operation is permitted (to
transition to Open). This is determined by a Boolean value (dpm_enable) that is stored in a Public-Open-Bitwise fuse or derived from the Device
LYoVl Ly =T IR oY =T T TN (1Y <L 37

4.8.6 R090_TBSA_DEBUG The DPM controlling Trusted world functionality must also have another fuse controlled state: Locked - The unlock
operation is disabled (no state transition is possible). This is determined by a Boolean value (dpm_lock) that is stored in a Public-Open-Bitwise fuse
or derived from the Device LIfECYCle STAate STOT@U iN FUSES.iiiiiiiiiiiie ettt ettt e e et e e e e e e ebb e e e s abaeeeeabeeesabaeessbeeesabaeessbaaeanseaeanes 37

4.8.7 R120_TBSA_DEBUG All DPMs must have the following state: Open - Debug is permitted. The Open state can only be entered from the Closed
state after @ SUCCESSTUI UNIOCK OPEIATION.uiiiiiiiiiiiie ettt e ettt e e st e e ettt e et te e e e abeeeeabeeeeabaeeasbeeeeasseeenbeeeassseeeasbeeeaabaeeesbeeesnbseeensaeeennsneeans 38

4.8.8 R150_TBSA_DEBUG The Trusted world DPM must be enabled, using the respective dpm_enable fuses, or locked, using the respective

dpm_lock fuses, before any Trusted world assets are provisioned t0 The SYSTEM.iiiiiiiiiiiiee et e st e e s tb e e e ebee e e baeaesaaeaeeas 38
4.8.9 R200_TBSA_DEBUG A password unlock token must be at least 128bits in [@NGN.........cooiiiiiiiiiiii e e 38
4.8.10 R210_TBSA_DEBUG Each debug protection mechanism must use a unique password unlock token.ccceeeereierieecieriee e 38
4.8.11 R220_TBSA_DEBUG The unique ID must be included in a certificate UnlOCK TOKEN.c.vieiiie i 39

4.8.12 R230_TBSA_DEBUG An unlock operation using a certificate unlock token must use an approved asymmetric algorithm to check the
Lol Lot < = T U1 <SSR 39

4.8.13 R240_TBSA_DEBUG An unlock operation using a certificate unlock token must have access to an asymmetric public key stored on the device.
The asymmetric public key that is used to authenticate the certificate unlock token must be immutably stored on the device or have been loaded as

a certificate during secure boot and authenticated by a chain of certificates that begins with the ROTPK........cccoviiiiieriieiieree e 39
4.8.14 R250_TBSA_DEBUG A certificate unlock token must indicate which DPM(s) it is able to unlock using an authenticated field.............c............ 40
4.8.15 R260_TBSA_DEBUG A loadable public key for certificate unlock token authentication must include an authenticated field indicating which
DPIVI(S) it IS QUENOIIZEM 10 UNIOCK ..eiuviiiiiieiieciieeciee ettt ettt et e et e et e e s taeeabeesaeeeaaeeeaseeaseesseeesseesseeaseeasseeabeeaseeesbeesseaaseessaeesseeaseesnseensaesaseenseenseas 40
4.8.16 R270_TBSA_DEBUG A certificate unlock token must only unlock a DPM that its public key is authorized to unlock........c.ccceevvviiiiiiieniinieennns 40
4.8.17 R280_TBSA_DEBUG The device must implement registers, that, when written to by software, unlock the associated hardware debug
features. Access to the secure DPM registers must be restricted to privileged Secure World SOftWarecccveveeeieereesce e 40
4.9, EXternal INterface PEriPNEral SCENAIIOS .. .cuiiiieeiieriee st eete ettt e st e st e s te e teesateesteessaeesseeaseeesteesseeanseesseeesseeasseanseessseanseenseeanseenssaanseenseessseenneeanseenseenn 41

4.9.1 R020_TBSA_EIP Where an EIP can receive commands from an external device, for example PCle, then the system must enforce a policy to
check that those commands do not breach the security of the TBSA-VEM GEVICEeeveeeiierieiieeiie et eseesteesieeste e eesaeesteessaaeseessaeenseessaeeseessaeeseens 41

4.9.2 R0O40_TBSA_EIP Any sensitive user data that is stored must be stored in SECUre STOrage.ccuuiiiiiiiiiiiiie ettt e e 41

4.9.3 RO50_TBSA_EIP In cases where a sensor has modes that allow it to be used for the acquisition of assets in both the Trusted world and the
Non-Trusted world, activating features for Trusted world sensing must be under the control of the Trusted wWorldc.eovviiiiiiiiiiiieiiiee e, 41

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 7 of 41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
About this document

1 About this document

This document describes the test scenarios for Trusted Base System Architecture for Armv8-M.

1.1. References

Reference Document Author Title

1 - Arm Trusted Base System Architecture for Armv8-M Specification

1.2. Terms and Abbreviations

This document uses the following terms and abbreviations.

AES Advanced Encryption Standard
DPM Debug Protection Mechanism
12C Inter-Integrated Circuit
IDAU Implementation Defined Attribution Unit
MPC Memory Protection Controller
MPU Memory Protection Unit
NSC Non-Secure Callable
NVIC Nested Vector Interrupt Controller
NVM Non-Volatile Memory
oTP One-time Programmable
PAL Platform Abstraction Layer
PE Processing Element
PPC Peripheral Protection Controller
SAU Security Attribution Unit
SPI Serial Peripheral Interface
TBSA Trusted Base System Architecture
VAL Validation Abstraction Layer

1.3. Scope

This document describes the verification scenarios and the relationship between verification scenarios, tests, and the architecture
rules.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 841

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Introduction

2 Introduction

The TBSA-v8M test suite verifies the features of the TBSA-v8M architecture as described in the TBSA-v8M Specification. The
following are the features that are within and outside the scope of the TBSA-v8M test suite.

Features tested by TBSA-v8M test suite
The TBSA-v8M test suite verifies the scenarios that can be covered by a system level software.
Features outside the scope of the TBSA-v8M test suite

e Exhaustive testing of the complete SoC implementing TBSA-v8M architecture.
e Architecturally non-deterministic scenarios such as timing-sensitive scenarios.
e Hardware production requirements such as Entropy.

2.1. Limitations of the TBSA-v8M test suite
The following are the limitations of the TBSA-v8M test suite:

e Unless described in this document, any behavior that is defined as IMPLEMENTATION DEFINED in TBSA-v8M specification is not
verified in this suite.
e For each verification scenario described in this document, unless specified, only a sample set of possible variants are verified.

e The following rules from the TBSA-v8M specification do not have a specific scenario or a test since they cannot be tested at
system software level and therefore, waived by architects.

Rule Number Rule description

The hardware and software of a TBSA-v8M device must work together to ensure that all the
RO40_TBSA_BASE security requirements are met.

R240_TBSA_INFRA A Trusted operation that exposes a Non-secure interface must apply a
policy check to the Non-trusted commands and data before acting on them. The policy check
must be atomic and following the check, it must not be possible to modify the checked
R240_TBSA_INFRA commands or data

A non-volatile storage technology must meet the lifetime requirements of the device, either
R0O10_TBSA_FUSE through its intrinsic characteristics, or using error correction mechanisms.

A fuse must only be programmed in accordance with its specified mechanism so
R0O30_TBSA_FUSE that its reliable operation is not at risk.

All fuse values must be stable before any parts of the SoC that depend on them
RO50_TBSA_FUSE are released from reset.

Fuses that configure the security features of the device must be configured so that the
programmed state of the fuse enables the feature. That is, the programming of a security
RO60_TBSA_FUSE configuration fuse always increases security within the SoC.

Lifetime guarantee mechanisms to correct in-field failures must not indicate which fuses have
had errors detected or corrected; they just indicate that an error has been detected or
RO70_TBSA_FUSE corrected. This indicator must only be available after all fuses have been checked.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9,41

Arm® TBSA-v8M Test Scenarios

PJDOC-2042731200-3595
Version 1.1
Introduction

Rule Number Rule description

R130_TBSA_FUSE

The locking mechanism for a lockable fuse can be shared with other lockable
fuses depending on the functional requirements.

R150_TBSA_FUSE

Additional fuses that implement lifetime guarantee mechanisms must have
the same confidential and write lock characteristics as the logical fuse itself.

RO35_TBSA_KEY

A key must be used only by the cryptographic scheme for which it was created.

RO80_TBSA_KEY

To prevent the re-derivation of previously used keys only Trusted code can have

access to all of the Source Material

R0O90_TBSA_KEY

If an ephemeral key is stored in memory or in a register in clear text form, the

storage location must be scrubbed before being used for another purpose.

R100_TBSA_KEY

A key that is accessible to or generated by the Non-Trusted world must only be used for Non-
Trusted world cryptographic operations that are either implemented in Non-Trusted world
software or have both clear text and cipher text in the Non-Trusted world.

R110_TBSA_KEY

A key that is accessible to or generated by the Trusted world can be used for operations in
both Non-Trusted and Trusted worlds, and also across worlds, provided that the Non-Trusted
world cannot access the key directly. The Trusted world can control the use of the key through
a policy.

R150_TBSA_KEY

The Trusted world must be able to enforce a usage policy for any Trusted hardware key which
can be used for Non-Trusted world cryptographic operations.

R230_TBSA_KEY

The HUK must have at least 128 bits of entropy.

R0O90_TBSA_TIME

Before needing a refresh, a Trusted watchdog timer must be capable of running for a time
period that is long enough for the Non-Trusted re-flashing of early boot loader code.

R140_TBSA_TIME

All components of a TRTC must be implemented within the same power domain.

RO10_TBSA_ENTROPY

The entropy source must be an integrated hardware block.

R0O20_TBSA_ENTROPY

The TRNG must produce samples of known entropy.

RO30_TBSA_ENTROPY

The TRNG must pass the NIST 800-22 test suite.

RO40_TBSA_ENTROPY

On production parts, it must not be possible to monitor the analog entropy source using an
external pin.

R290_TBSA_DEBUG

The DPM_TP and DPM_NTP must be implemented solely in hardware

RO10_TBSA_EIP

If an EIP is used to send or receive clear or unauthenticated Trusted world assets, it is
implementing a Trusted operation and must meet the requirements of a Trusted peripheral.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10,41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595

Version 1.1
Correlation between architecture and tests

3 Correlation between architecture and tests

The following table lists the correlation between the verification scenarios mentioned in this document and the features and rules of
TBSA-v8M architecture.

Test name Rule number Rule description
Base system requirements
test_b001 RO10_TBSA BASE A Non-Trusted world operation must only access Non-Trusted world assets.
A Trusted world operation can access both Trusted and Non-Trusted world
test_b001 R020_TBSA_ BASE assets.
The SoC must be based on an Armv8-M architecture PE with the Security
test_b002 RO30_TBSA_BASE Extension and MPU implemented.
Infrastructure requirements
test_b001 RO10_TBSA_INFRA A Trusted operation can issue Secure or Non-secure transactions.
test_b001 RO20_TBSA_INFRA A Non-Trusted operation must only issue Non-secure transactions.
test_b001 RO30_TBSA_INFRA A Non-secure transaction must only access Non-secure storage.
If programmable address remapping logic is implemented in the interconnect,
test_b006 R0O40_TBSA_INFRA then its configuration must be possible only from the Trusted world.
A unified address map that uses target side filtering to disambiguate Non-
secure and Secure transactions must only permit all Secure or all Non-secure
transactions to any one region. Secure and Non-secure aliased accesses to the
test_b007 RO50_TBSA_INFRA same address region is not permitted.
The target transaction filters configuration space must be accessed only from
test_b005 RO60_TBSA_INFRA the Trusted world.
Security exception interrupts must be wired or configured as Secure interrupt
test_i004 RO70_TBSA_INFRA sources.
Configuration of the on-chip interconnect that modifies routing or the memory
map must only be possible from the Trusted world unless it is not possible for
test_b005 RO80_TBSA_INFRA such modifications to affect Secure transactions.
All transactions must be constrained; it must not be possible for a transaction
TBD R0O90_TBSA_INFRA to bypass a constraining mechanism.
If shared volatile storage is implemented, then the associated location or
region must be scrubbed before it can be reallocated from Trusted to Non-
test_b003 R100_TBSA_INFRA Trusted.
If shared volatile storage is implemented, then the associated location must
not be executable or NSC immediately after it is reallocated from Non-Trusted
test_b004 R110_TBSA_INFRA to Trusted.
An interrupt originating from a Trusted operation must be mapped only to a
test_t001 R120_TBSA_INFRA Trusted target. By default, this must be the case following a system reset.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 11,41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1

Correlation between architecture and tests

Test name Rule number Rule description

Any configuration to mask or route a Trusted interrupt must be carried out only
test_i001 R130_TBSA_INFRA from the Trusted world.

The interrupt network might be configured to route an interrupt originating
test_i002 R140_TBSA_INFRA from a Trusted operation to a Non-Trusted target.

Any status flags recording Trusted interrupt events must be read only from the

Trusted world, unless specifically configured by the Trusted world to be
test_i003 R150_TBSA_INFRA readable by the Non-Trusted world.
test_mO001 R160_TBSA_INFRA A TBSA-v8M system must integrate a Secure RAM.
test_m001 R170_TBSA_INFRA Secure RAM must be mapped into the Trusted world only.

If the mapping of Secure RAM into regions is programmable, then configuration
test_ m001 R180_TBSA_INFRA of the regions must be possible only from the Trusted world.

The advanced power mechanism must integrate a Trusted management

function to control clocks and power. It must not be possible to directly access
test_p001 R190_TBSA_INFRA clock and power functionality from the Non-Trusted world.

If access to a peripheral or a subset of its operations can be dynamically

switched between Trusted world and Non-Trusted world, then this must be
test_b005 R210_TBSA_INFRA done only under the control of the Trusted world.

If the peripheral stores assets in local embedded storage, a Non-Trusted
test_b001 R220_TBSA_INFRA operation must not be able to access the local assets of a Trusted operation.

A Trusted operation must be able to distinguish the originating world of
test_b004 R230_TBSA_INFRA commands and data arriving at its interface, by using the address

Fuse requirements

A fuse is permitted to transition in one direction only - from its unprogrammed

test_c005 R020_TBSA_ FUSE state to its programmed state. The reverse operation must be prevented.

It must be possible to blow at least a subset of the fuses when the device has
test_c010 R040_TBSA_ FUSE left the silicon manufacturing facility.

A confidential fuse whose recipient is a hardware IP must not be readable by
test_c007 RO80_TBSA_FUSE any software process.

A confidential fuse whose recipient is a hardware IP must be connected to the
test_c007 R0O90_TBSA_FUSE IP using a path that is not visible to software or any other hardware IP.

A confidential fuse whose recipient is a software process might be readable by
test_c011 R100_TBSA_ FUSE that process and must be readable by privileged software.

A confidential fuse whose recipient is a Trusted world software process must

be protected by a hardware filtering mechanism that can only be configured by
test_b001 R110_TBSA_ FUSE secure software, for example an NS-bit filter.

It must be possible to fix a lockable fuse in its current state, regardless of
test_c009 R120_TBSA_FUSE whether it is programmed or unprogrammed.

A bulk fuse must also be a lockable fuse to ensure that any unprogrammed bits
test_c009 R140_TBSA_FUSE cannot be programmed later.

Key requirements

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 1241

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1

Correlation between architecture and tests

Test name Rule number Rule description

A key must be treated as an atomic unit. It must not be possible to use a key in

a cryptographic operation before it has been fully created, either during an
test_c001 RO10_TBSA_KEY update operation or during its destruction.

Any operations on a key must be atomic. It must not be possible to interrupt
test_c001 R020_TBSA_KEY the creation, update, or destruction of a key.

When a key is no longer required by the system, it must be put beyond use to
test_c008 RO30_TBSA_KEY prevent a hack later from revealing it.

A static key must be stored in an immutable structure, for example, a ROM or a
test_c004 RO70_TBSA_KEY set of bulk-lockable fuses.
test_c006 R140_TBSA_KEY A Trusted hardware key must not be directly accessible by any software.

A TBSA-v8M device must either entirely embed a Root of Trust Public Key
test_c002 R160_TBSA KEY (ROTPK), or the information that is needed to securely identify it.
test_c002 R180_TBSA KEY An elliptic-curve-based ROTPK must be at least 256 bits in size.
test_c002 R190_TBSA KEY An RSA-based ROTPK must be at least 3072 bits in size.

If a cryptographic hash of the ROTPK is stored in on chip non-volatile memory,
test_c002 R200_TBSA KEY rather than the key itself, it must be immutable.

A TBSA-v8M device must embed a Hardware Unique root Key (HUK) in
test_c003 R220_TBSA_KEY Confidential-Lockable-Bulk fuses.

The HUK must only be accessible by Trusted code or Trusted hardware that acts
test_c003 R240_TBSA_KEY on behalf of Trusted code.

test_s001

R0O10_TBSA_BOOT

Boot requirements

A TBSA-v8M device must embed a Boot ROM with the initial code that is
needed to perform a Trusted system boot.

test_s001

R020_TBSA_BOOT

If the device supports warm boot, a flag or register that survives warm boot
must exist to enable distinguishing between warm and cold boots. This register
or flag must be programmable only by the Trusted world and must be reset
after a cold boot.

test_s001

RO30_TBSA_BOOT

On a cold boot, the primary processor must boot from the Boot ROM. It must
not be possible to boot from any other storage unless Trusted Kernel debug is
enabled. For detailed information about Trusted Kernel debug, see section
6.10.

test_s001

RO90_TBSA_BOOT

If a boot status register is implemented, then it must be accessible only by the
Trusted world

test_c006

Timer requirements

R100_TBSA_BOOT

In an assisted architecture, the key to decrypt the Trusted Boot Firmware
image must be visible only to the acceleration peripheral.

test_t001 RO30_TBSA_TIME At least one Trusted timer must exist.

A Trusted timer must only be modified by a Trusted access. Examples of
test_t001 R0O40_TBSA_TIME modifications are the timer being refreshed, suspended, or reset.
test_t001 RO50_TBSA_TIME The clock source that drives a Trusted timer must be a Trusted clock source.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 1341

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Correlation between architecture and tests

Test name Rule number Rule description

test_t002 RO60_TBSA_TIME At least one Trusted watchdog timer must exist.

After a system reset, a Trusted watchdog timer must be started before
execution of the immutable boot code transfers control to the next firmware
test_t002 RO70_TBSA_TIME stage.

A Trusted watchdog timer must only be modified by a Trusted access. Examples
test_t002 RO80_TBSA_TIME of modifications are the timer being refreshed, suspended, or reset.

A Trusted watchdog timer must be able to trigger a reset of the SoC, after a
predefined period. This value can be fixed in hardware or programmed by a
test_t002 R100_TBSA_TIME Trusted access.

A Trusted watchdog timer must implement a flag that indicates the occurrence
of a timeout event that causes a Warm reset, to allow post-reset software to

test_t002 R110_TBSA_TIME distinguish this from a powerup cold boot.

The clock source driving a Trusted watchdog timer must be a Trusted clock
test_t002 R120_TBSA_TIME source.
test_t003 R130_TBSA_TIME A TRTC must be configured only by a Trusted world access.

On initial power-up and following any other outage of power to the TRTC, a
test_t003 R150_TBSA_TIME validity mechanism must indicate that the TRTC is not Trusted.
test_t003 R160_TBSA_TIME The TRTC must be driven by a Trusted clock source.

Version counter requirements

An on-chip non-volatile Trusted firmware version counter implementation
test_v001 RO10_TBSA_COUNT must provide a counter range of at least 0 to 63.

An on-chip non-volatile Non-Trusted firmware version counter implementation
test_v001 RO20_TBSA_COUNT must provide a counter range of at least 0 to 255.

It must only be possible to increment a version counter through a Trusted
test_v001 RO30_TBSA_COUNT access.

It must only be possible to increment a version counter; it must not be possible
test_v001 RO40_TBSA_COUNT to decrement it.

When a version counter reaches its maximum value, it must not roll over and
test_v001 RO50_TBSA_COUNT no further changes must be possible.

A version counter must be non-volatile, and the stored value must survive a
test_v001 RO60_TBSA_COUNT power down period up to the lifetime of the device.

Entropy source requirements

Debug requirements

All debug functionality must be protected by a DPM so that only an authorized
external entity can access the debug functionality. There might be scenarios

test_d001 R010_TBSA_DEBUG where all external entities can access the debug functionality.

A DPM must be implemented either solely in hardware or together with
Test_d008 R020_TBSA_DEBUG software running in the Trusted World.
test_d001 RO30_TBSA_DEBUG There must be a DPM to permit access to all assets (Trusted).

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 1441

Arm® TBSA-v8M Test Scenarios

Test name

test_d002

Rule number

R040_TBSA_DEBUG

PJDOC-2042731200-3595
Version 1.1
Correlation between architecture and tests

Rule description

There must be a DPM to permit access to all Non-Trusted world assets. This
mechanism must not permit access to Trusted world assets.

test_d003

RO50_TBSA_DEBUG

All DPMs must implement the following fuse-controlled states:

Closed - Only an unlock operation is permitted (to transition to Open).

This is determined by a Boolean value (dpm_enable) that is stored in a Public-
Open-Bitwise fuse or derived from the Device Lifecycle state stored in fuses.

test_d004

R090_TBSA_DEBUG

The DPM controlling Trusted world functionality must also have another fuse
controlled state:

Locked - The unlock operation is disabled (no state transition is possible).
This is determined by a Boolean value (dpm_lock) that is stored in a Public-
Open-Bitwise fuse or derived from the Device Lifecycle state stored in fuses.

test_d001

R120_TBSA_DEBUG

All DPMs must have the following state:

Open - Debug is permitted.

The Open state can only be entered from the Closed state after a successful
unlock operation.

test_d005

R150_TBSA_DEBUG

The Trusted world DPM must be enabled using the respective dpm_enable
fuses, or locked, using the respective dpm_lock fuses before any Trusted world
assets are provisioned to the system.

test_d006

R200_TBSA_DEBUG

A password unlock token must be at least 128bits in length.

test_d006

R210_TBSA_DEBUG

Each debug protection mechanism must use a unique password unlock token.

test_d007

R220_TBSA_DEBUG

The unique ID must be included in a certificate unlock token.

test_d007

R230_TBSA_DEBUG

An unlock operation using a certificate unlock token must use an approved
asymmetric algorithm to check the certificate signature.

test_d007

R240_TBSA_DEBUG

An unlock operation using a certificate unlock token must have access to an
asymmetric public key stored on the device. The asymmetric public key that is
used to authenticate the certificate unlock token must be immutably stored on
the device or have been loaded as a certificate during secure boot and
authenticated by a chain of certificates that begins with the ROTPK.

test_d007

R250_TBSA_DEBUG

A certificate unlock token must indicate which DPM(s) it is able to unlock using

an authenticated field.

test_d007

R260_TBSA_DEBUG

A loadable public key for certificate unlock token authentication must include

an authenticated field indicating which DPM(s) it is authorized to unlock

test_d007

R270_TBSA_DEBUG

A certificate unlock token must only unlock a DPM that its public key is

authorized to unlock.

test_d008

External interface

TBD

R280_TBSA_DEBUG

peripherals requirements

R020_TBSA_EIP

The device must implement registers, that, when written to by software,
unlock the associated hardware debug features. Access to the secure DPM
registers must be restricted to privileged Secure world software

Where an EIP can receive commands from an external device, for example
PCle, then the system must enforce a policy to check that those commands do
not breach the security of the TBSA-v8M device.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 15.41

Arm® TBSA-v8M Test Scenarios

PJDOC-2042731200-3595

Version 1.1

Correlation between architecture and tests

Test name Rule number Rule description
test_b001 RO40_TBSA_EIP Any sensitive user data that is stored must be stored in Secure storage.
In cases where a sensor has modes that allow it to be used for the acquisition
of assets in both the Trusted world and the Non-Trusted world, activating
features for Trusted world sensing must be under the control of the Trusted
TBD RO50_TBSA_EIP world.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 1641

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4 Verification scenarios

This section describes the verification scenarios associated with Trusted Base System Architecture of Armv8-M.
4.1. Base system scenarios

4.1.1 R0O10_TBSA_BASE: A Non-Trusted world operation must only access Non-Trusted world
assets

Check that any Non-Trusted world access can only access Non-Trusted world asset (like memory, peripherals). If a Non-Trusted
world operation accesses the trusted world asset (like memory, peripherals), it will result in Secure fault or Hard fault.

#test_b001:
Secure.c

e Install Fault handler.
e Get the memory and peripheral details from targetConfig.cfg.
e Perform a read and write operation to confirm the trusted accesses can access the trusted and non-trusted assets.

Non_Secure.c

e Get the memory and peripheral details from targetConfig.cfg.
e Perform a read and write operation to confirm the non-trusted accesses to trusted asset will result in fault.

4.1.2 R020_TBSA_BASE: A Trusted world operation can access both Trusted and Non-Trusted
world assets

Check that Trusted world access can access both Trusted and Non-Trusted world asset (like memory, peripherals). Check that no
spurious fault occurs when a Trusted world operation accesses the Non-Trusted world.

#test_b001:
Secure.c

e Install Fault handler.
e Get the memory and peripheral details from targetConfig.cfg.
e Perform a read and write operation to confirm the trusted accesses can access the trusted and non-trusted assets.

Non_Secure.c

e Get the memory and peripheral details from targetConfig.cfg.
e Perform aread and write operation to confirm if the Non-trusted accesses to trusted asset will result in fault.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 os41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.1.3 R030_TBSA_BASE: The SoC must be based on an Armv8-M architecture PE with the
Security Extension and MPU implemented

Check that CPUID, ID_PFRO, and MPU_TYPE indicate that the primary processor in the SoC is based on Armv8-M architecture with
Security extension and MPU implemented.

#test_b002:
Secure.c

e Read CPUID architecture register as defined in ARMv8M and extract the information of Mainline or Baseline target
implementation.

e Read ID_PFR architecture register as defined in ARMv8M to check whether the system implements security extensions.

e Read MPU_TYPE architecture register from both security states to confirm that both secure and non-secure MPU’s are
implemented in the system.

4.2. Infrastructure scenarios

4.2.1 R0O10_TBSA_INFRA: A Trusted operation can issue Secure or Non-secure transactions
Check the scenario as defined in rule RO10_TBSA_BASE.
#itest_b001:

Refer to the algorithm defined in rule RO10_TBSA_BASE

4.2.2 R020_TBSA_INFRA: A Non-Trusted operation must only issue Non-secure transactions
Check the scenario as defined in rule R0O20_TBSA_BASE.
#test_b001:

Refer algorithm as defined in rule RO10_TBSA BASE.

4.2.3 R030_TBSA_INFRA: A Non-secure Transaction must only access Non-secure storage
Check that Non-secure transaction (read/write) accesses the Non-secure storage (like memory).
#test_b001:

Refer algorithm as defined in rule RO10_TBSA_BASE.

4.2.4 R040_TBSA_INFRA If programmable address remapping logic is implemented in the
interconnect then its configuration must only be possible from the Trusted world

Check that programming of remapping logic in the interconnect can be performed only from a Trusted world. A single set of meta
data register file (from targetConfig.cfg input file) can be used to check that these bunch of registers are indeed programmed from

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 1841

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

Trusted world. A single test algorithm can be used to cover all the registers in this space which can be programmed from the Trusted
world.

#test_b006:

Secure.c

e Install Fault handler.
Non-secure.c

e Disable all types of fault in SHCSR architecture register such that only Hardfault is taken.
e Get the interconnect remap register details from targetConfig.cfg.
e Perform a read and write operation to confirm the Non-trusted accesses is not allowed and this operation shall result in fault.

4.2.5 R0O50_TBSA_INFRA A unified address map that uses target side filtering to disambiguate
Non-secure and Secure transactions must only permit all Secure or all Non-secure transactions
to any one region. Secure and Non-secure aliased accesses to the same address region are not
permitted.

Check that access to two distinct address from Trusted and Non-trusted world doesn’t land in one physical address.
#test_b007:
Secure.c

e Get detail of free secure block from target configuration file.
e Write a known pattern to the free block found.

Non-secure.c

e Check for the same pattern in all the available NS block of memory, if found fail the test otherwise pass the test

4.2.6 R060_TBSA_INFRA The target transaction filters configuration space must only be
accessed from the Trusted world

Check that if any one of the target transaction filters like MPC or PPC is implemented, then it should be accessible only from the
Trusted world.

#test_b005:

Secure.c

e Install Fault handler.
Non-secure.c

e Disable all types of fault in SHCSR architecture register such that only Hardfault is taken.
e Get the device base address of PPC and MPCs implemented in the System via targetConfig.cfg.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 1941

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

e Perform a read and write operation to this device base address to confirm the non-trusted accesses is not allowed and this
operation shall result in fault.

4.2.7 R0O70_TBSA_INFRA Security Exception Interrupts must be wired or configured as Secure
interrupt sources

Check that a trusted interrupt should be mapped only to Secure and it should not be possible to assert a Non-secure exception or
interrupt even if when NVIC_ITNS is programmed.

#test_i004
Secure.c

e Get the interrupt source number and security attribute from targetConfig.cfg
e Install trusted interrupt handler

e Configure a pend bit for the given interrupt source number

e Check that the interrupt routing is appropriate.

Non-secure.c

e Install non-trusted interrupt handler
e Configure a pend bit for the given interrupt source number
e Check that the interrupt routing is appropriate.

4.2.8 R0O80_TBSA_INFRA Configuration of the on-chip interconnect that modifies routing or
the memory map must only be possible from the Trusted world unless it is not possible for
such modifications to affect secure transactions

If there is an on-chip interconnect configuration that modifies the routing, possibly like MPC or PPC, then check that the
configuration of those are possible only from a Trusted world.

#itest_b005
Secure.c

e Install Fault handler.
Non-secure.c

e Disable all types of fault in SHCSR architecture register such that only Hardfault is taken.

e Get the device base address of PPC and MPCs implemented in the System via targetConfig.cfg.

e Perform aread and write operation to this device base address to confirm the non-trusted accesses is not allowed and this
operation shall result in fault.

4.2.9 R090_TBSA_INFRA All transactions must be constrained; it must not be possible for a
transaction to bypass a constraining mechanism

#TBD

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200741

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.2.10 R100_TBSA_INFRA If shared volatile storage is implemented, then the associated
location or region must be scrubbed before it can be reallocated from Trusted to Non-
Trusted

Check that when a memory is configured from a Secure to Non-secure, the memory location is scrubbed before it is given back to
Non-Trusted memory. Hence if there is a write access in Trusted world written with valuel. After configuring this memory location
to Non-trusted, the Non-trusted memory should never read the ‘valuel’ which was written by Trusted world.

#test_b003

Secure.c

e Geta memory block whose memory attribute can be configurable to either secure or non-secure from targetConfig.cfg.
e Configure the memory attribute as secure via MPC and then write a known pattern to these memory blocks.
e Reconfigure this memory block to non-secure via MPC.

Non-secure.c

e Read the memory block which was configured as Non-secure via MPC in ‘secure.c’.
e Check that the memory block is scrubbed and does not contain the pattern written in ‘secure.c’.

4.2.11 R110_TBSA_INFRA If shared volatile storage is implemented, then the associated
location must not be executable or NSC immediately after it is reallocated from Non-Trusted
to Trusted

Check that a when the shared memory is configured from Non-secure to Secure, then a function call executed from the remapped
location should cause a fault since it is expected to not be executed.

#test_b004
Secure.c

e Install fault handler.

Non-secure.c

e Get a memory block (say A) which is configurable from targetConfig.cfg and ensure it is marked as non-secure.

e Copy a piece of function (say B) into this non-secure memory which will have valid result only when executed from trusted
world.

e Configure memory block A to secure

e [f the function B is attempted to execute, then a fault is expected.

4.2.12 R120_TBSA_INFRA An interrupt originating from a Trusted operation must be
mapped only to a Trusted target. By default, this must be the case following a system reset

Check that interrupt originating from Trusted world operations (like Trusted Timer configuration and Watchdog) are being serviced
by Trusted handlers configured initially.

#test_t001
Refer test algorithm as defined in rule RO30_TBSA_TIME

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2141

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.2.13 R130_TBSA_INFRA Any configuration to mask or route a Trusted interrupt must only
be carried out from the Trusted world

Check that an interrupt (if configurable to either Secure or Non-secure), then check that routing of this interrupt through
NVIC_ITNS happens from Trusted world.

Check that an interrupt can be masked (disabling the interrupt line) only from a Trusted world by checking the pend bit status
across both Secure and Non-secure worlds.

#test_i001

Secure.c
e Dummy functions for entry, exit and test_payload.
Non-secure.c

e Get atimer instance that is secure programmable from targetConfig.cfg

e Set the pending bit for the trusted timer (via secure functions).

e Route the trusted timer interrupt to non-trusted mode and check that pending bit is set in the non-trusted mode.
e Check that the trusted timer interrupt can be masked only from the trusted world (via secure functions).

e Clear pending bits for the trusted timer.

4.2.14 R140_TBSA_INFRA The interrupt network might be configured to route an interrupt
originating from a Trusted operation to a Non-Trusted target

Check the scenario as defined in rule R130_TBSA_INFRA.
#test_i002

Secure.c
e Dummy functions for entry, exit and test_payload.
Non-secure.c

e Get atimer instance that is secure programmable from targetConfig.cfg.

e Set the pending bit for the trusted timer (via secure functions).

e Route the trusted timer interrupt to non-trusted mode and check that the non-trusted interrupt handler is serviced.
e (Clear pending bits for the trusted timer.

4.2.15 R150_TBSA_INFRA Any status flags recording Trusted interrupt events must only be
read from the Trusted world, unless specifically configured by the Trusted world, to be
readable by the Non-Trusted world

Check that Trusted interrupt pending status flag can be read in Non-trusted or Non-secure world as well when the trusted
interrupt is routed to Non-trusted target.

#test_i003
Secure.c

e Dummy functions for entry, exit and test_payload.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2241

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

Non-secure.c

e Get atimer instance that is secure programmable from targetConfig.cfg.

e Set the pending bit for the trusted timer (via secure functions).

e Read and check the pending bit in both secure and non-secure state and confirm that the trusted timer pend status bit can be
read from the trusted world.

4.2.16 R160_TBSA_INFRA A TBSA-v8M system must integrate a Secure RAM

#itest_mO001
Refer test algorithm as defined in rule R180_TBSA_INFRA

4.2.17 R170_TBSA_INFRA Secure RAM must be mapped into the Trusted world only

#itest_mO001
Refer test algorithm as defined in rule R180_TBSA_INFRA

4.2.18 R180_TBSA_INFRA If the mapping of Secure RAM into regions is programmable, then
configuration of the regions must only be possible from the Trusted world

Check that if an implementation allows a memory region to be configured through protection controllers like MPC, then check that
configuration of MPC can occur only from the Trusted world.

#itest_mO001

Secure.c

e Install fault handler.

e Get the memory instances of SRAM and Flash from targetConfig.cfg.

e If a memory block is marked as configurable, then program MPC such that the memory block is configured as Non-secure.
Perform read and write access and confirm the value.

e Reprogram the memory block to original security state (Secure).

Non-secure.c

e Try to access the MPC configuration registers from the Non-trusted world. Check that a secure fault is triggered.
e Perform memory read and write accesses to confirm the access permissions via MPC.

4.2.19 R190_TBSA_INFRA The advanced power mechanism must integrate a Trusted
management function to control clocks and power. It must not be possible to directly access
clock and power functionality from the Non-trusted world

Check that clock and power domain controls can be accessed only from a Trusted world.
#test_p001
Secure.c

e Install fault handler.

Non-secure.c

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23041

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

e Get a clock and power controller device base address from targetConfig.cfg.
e Check that accessing these device registers shall result in fault.

4.2.20 R210_TBSA_INFRA If access to a peripheral or a subset of its operations can be
dynamically switched between Trusted world and Non-trusted world, then this must be
done only under the control of the Trusted world

Check that when a peripheral can be configured as either Trusted or Non-trusted entity, this configuration should be performed
from Trusted world. If a Non-trusted world tries to configure the peripheral, then the access should result in Secure fault.

#test_b005 — Covered as a part of rule RO60_TBSA_INFRA

4.2.21 R220_TBSA_INFRA If the peripheral stores assets in local embedded storage, a Non-
trusted operation must not be able to access the local assets of a Trusted operation

Check that the local storages like FIFOs, buffers of the Trusted world must be accessible by Non-trusted world entity. If the local
storage is mapped to memory, then it should be mapped to trusted world.

#test_b001
Refer test algorithms in rule RO10_TBSA BASE.

4.2.22 R230_TBSA_INFRA A Trusted operation must be able to distinguish the originating
world of commands and data arriving at its interface, by using the address.

VAL APIs uses TT instruction to check the received address is from Trusted world or Non-trusted world.
#itest_b004
Refer test algorithms in rule R110_TBSA_INFRA.

4.3. Fuse scenarios

4.3.1 R020_TBSA_FUSE: A fuse is permitted to transition in one direction only, from its
unprogrammed state to its programmed state. The reverse operation must be prevented

First write the value OXFFFFFFFF in fuse and then write OxFOFOFOFO in the same fuse. Check if the value is OXFFFFFFFF.
#test_c005
Secure.c

e Obtain an empty fuse.

e Write the value OXO0O00FFFF in the fuse.

e Make sure that the value is fused.

e Try writing the value 0OxO000FOFO.

e Read the value and check that the value is 0XOO00FFFF.

Non-secure.c

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2441

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

e Dummy entry, exit and payload functions.

4.3.2 R040_TBSA_FUSE: It must be possible to blow at least a subset of the fuses when the
device has left the silicon manufacturing facility

Check if user otp area is present. Write a value and verify it.
#test_c010
Secure.c

e Get the current Life Cycle State of the device.

e For systems that doesn't have LCS, get the state from the target config.
e Check that the life cycle state is in Deployed LCS.

e Get the free fuse from the target config.

e Make sure that the fuse is empty.

e Blow the fuse and make sure that the value is written.

Non-secure.c

e Dummy entry, exit and payload functions.

4.3.3 R080_TBSA_FUSE: A confidential fuse whose recipient is a hardware IP must not be
readable by any software process

Check if a confidential fuse is readable only by IP for target config. If yes, then accessing it should not reveal the key.
#itest_c007
Secure.c

e Setup the interrupt handlers.

e Get the details of the confidential fuse from the target config.
e Trying to read the fuse address.

e The value should be read as zero or raise a fault.

Non-secure.c

e Dummy entry, exit and payload functions.

4.3.4 R090_TBSA_FUSE: A confidential fuse whose recipient is a hardware IP must be
connected to the IP using a path that is not visible to software or any other hardware IP

Check the scenario covered as a part of RO80_TBSA_FUSE.
#test_c007

Refer test algorithm as defined in rule RO80_TBSA_FUSE

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25041

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.3.5 R100_TBSA_FUSE: A confidential fuse whose recipient is a software process might be
readable by that process and must be readable by privileged software

Check that a fault is triggered when a read happens from an unprivileged software.
#test_c011

Secure.c

e Setup the interrupt handlers.

e Get the details of the confidential fuse from target config.
e Read the fuse value and make sure that it is not zero.

e Change the mode to un-privilege access.

e Try accessing the fuse again.

e |t should either result in a fault or read as zero (RAZ).

Non-secure.c

e Dummy entry, exit and payload functions.

4.3.6 R110_TBSA_FUSE: A confidential fuse whose recipient is a Trusted world software
process must be protected by a hardware filtering mechanism that can only be configured by
secure software, for example an NS-bit filter

Try reading a confidential fuse from unprivileged software and expect a fault. Change the configuration to allow access from Non-
secure and should be able to read. Also check if the configuration register is accessible only from Secure space.

#test_b005 — Covered as a part of rule RO60_TBSA_INFRA

4.3.7 R120_TBSA_FUSE: It must be possible to fix a lockable fuse in its current state,
regardless of whether it is programmed or unprogrammed

Check that the locked fuse does not get modified.
#test_c009

Secure.c

o Get the already locked fuse from the target config.

e Read the value of the fuse.

e Try to blow the fuse with value OXFFFFFFFF (try to program all the bits).

e Read the value of the fuse.

e The value of the fuse must not be changed and must the same as previous.

Non-secure.c

e Dummy entry, exit and payload functions.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26041

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.3.8 R140_TBSA_FUSE: A bulk fuse must also be a lockable fuse to ensure that any
unprogrammed bits cannot be programmed later

Refer scenario as defined in the rule R120_TBSA_FUSE.
#test_c009

Refer test algorithm as defined in rule R120_TBSA_FUSE.
4.4. Key scenarios

4.4.1 R010_TBSA_KEY: A key must be treated as an atomic unit. It must not be possible to
use a key in a cryptographic operation before it has been fully created, during an update
operation, or during its destruction

Program the timer to receive at least 5 interrupts before key generation. Start the key generation. If interrupt is serviced midway
during key generation, copy the current values of the key (only partial key will be present) and disable the interrupt. If it is serviced
after the key generation, copy the current value of the key (full key value will be present). Compare it against the generated key to
see if full or partial key is copied.

#test_c001

Secure.c

e Get the details of the timer from target config

e |Initialize the timer and interrupt handlers

e Check that we receive at least 5 exceptions before we generate the key

e If not, reinitialize the timer with lesser time interval

e Start key generation

e If interrupt is handled in the middle of key generation, save the partly generated key
e Ifinterruptis not handled, save the whole key

e Once key generation is done, check that saved key is equal to the generated key

Non-secure.c

4.4.2 R020_TBSA_KEY: Any operations on a key must be atomic. It must not be possible to
interrupt the creation, update, or destruction of a key

Covered in rule RO20_TBSA_KEY.
#itest_c008
Refer test algorithm as defined in rule RO10_TBSA_KEY.

4.4.3 R030_TBSA_KEY: When a key is no longer required by the system, it must be put

beyond use to prevent a hack at a later time from revealing it

Make sure that a key is accessible. Then revoke the key. Accessing the key again should be read as zero or raise a fault.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 os41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

#test_c001
Secure.c

e Get the details of the key to be revoked from the target config.

e Read the key and make sure that it is non-zero.

e Revoke the key.

e Read the key region again and make sure that it not the same as before.

Non-secure.c

e Dummy entry, exit and payload functions

4.4.4 RO70_TBSA_KEY: A static key must be stored in an immutable structure, for example a
ROM or a set of Bulk-Lockable fuses

Check if the key is in Bulk-lockable fuse. Try to modify the value and expect it to be unchanged.
#test_c004

Secure.c

e Check if the static key is present.

e Checkifitis bulk and lockable (based on the input from target config).
e Ifthe key is readable, read the key and store the value.

e Check that the key is not zero.

e Try modifying the key and make sure that it is not modified.

Non-secure.c

e Dummy entry, exit and payload functions.

4.4.5 R140_TBSA_KEY: A Trusted hardware key must not be directly accessible by any
software

Accessing a trusted hardware key should be read as zero or raise a fault.
#test_c006

Secure.c

e Get the details of trusted hardware key.
e Make a read access to the key (in the Trusted world).
e Check that the value read is zero.

Non-secure.c

e Dummy entry, exit and payload functions.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2841

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.4.6 R160_TBSA_KEY: A TBSA-v8M device must either entirely embed a root of trust public
key (ROTPK), or the information that is needed to securely identify it

Check if the ROTPK is present in the system.
#itest_c002

Secure.c

e Get the ROTPK details from the target config.
e [fthe key is ECC.
0 Check if the size is greater than equal to 256 bits.
0 Validate if the number of zeros in the key is equal to the zero count in the config fuse.
e Ifthe key is RSA
0 Check if the size is greater than equal to 3072 bits.
0 Validate the number of zeros in the key is equal to the zero count in the config fuse.
e [fthe key is Hash of ROTPK
0 Check that it is immutable

Non-secure.c

e Dummy entry, exit and payload functions.

4.4.7 R180_TBSA_KEY: An elliptic-curve-based ROTPK must be at least 256 bits in size

Check if the key size is at least 256 bits and the number of zeros in the key is equal to the number of zeros in the fuse flag.
#test_c002
Refer test algorithm as given in rule R160_TBSA_KEY.

4.4.8 R190_TBSA_KEY: An RSA-based ROTPK must be at least 3072 bits in size

Check if the key size is at least 3072 bits and the number of zeros in the key is equal to the number of zeros in the fuse flag.
#test_c002
Refer test algorithm as given in rule R160_TBSA_KEY.

4.4.9 R200_TBSA_KEY: If a cryptographic hash of the ROTPK is stored in on chip non-volatile
memory, rather than the key itself, it must be immutable

Check if the ROTPK fuse is immutable.
#itest_c002
Refer test algorithm as given in rule R160_TBSA_KEY.

4.4.10 R220_TBSA_KEY: A TBSA-v8M device must embed a hardware unique root key (HUK)
in Confidential-Lockable-Bulk fuses

Check if the HUK is in Confidential-Lockable-Bulk fuses from the target config.
#itest_c003

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29,41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

Secure.c

e Get the details of the HUK from target config

e Check that the fuse type is confidential, bulk and lockable (using details from target config)
e |f HUK is readable, then make sure that it is non-zero

e Else skip the test.

Non-secure.c

e Get the details of the HUK from target config

e Check that the fuse type is confidential, bulk and lockable (using details from target config)

e If HUK is readable, then copy the key value in secure mode

e Make a non-secure access to the HUK and make sure that it is not equal to value reading secure mode

4.4.11 R240_TBSA_KEY: The HUK must only be accessible by Trusted code or Trusted
hardware that acts on behalf of Trusted code

Check if the HUK is accessible only by Trusted hardware from target config. If yes, then the value should be read as zero. If
accessible from Trusted code, then it must raise a fault when accessed from Non-trusted code.

#test_c003
Refer test algorithm as given in rule R220_TBSA_KEY.

4.5. Boot scenarios

4.5.1 R010_TBSA_BOOT A TBSA-M device must embed a Boot ROM with the initial code that
is needed to perform a Trusted system boot.

#test_s001

Refer test algorithm as given in rule RO30_TBSA BOOT

4.5.2 R020_TBSA_BOOT If the device supports warm boot, a flag or register that survives
warm boot must exist, to enable distinguishing between warm and cold boots. This register
or flag must be programmable only by the Trusted world and must be reset after a cold boot

If an implementation allows warm and cold reset, then check that on a warm reset, the platform layer shall read the flag register
which indicates the type of reset. On accessing this flag register from Non-trusted world, a fault is expected.

test_s001 (part a)
Secure.c
e [nstall fault handler

Non-secure.c

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30041

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

e Assuming that a flag register/memory will be implemented in a trusted world where the reset type will be preserved, and
accessing this flag register/memory from a non-trusted world should result in a fault.

4.5.3 R030_TBSA_BOOT On a cold boot, the primary processor must boot from the Boot
ROM. It must not be possible to boot from any other storage unless Trusted Kernel debug is
enabled

#test_s001 (part b)
Secure.c

e Install fault handler
Non-secure.c

e Get the Boot ROM address range from targetConfig.cfg

e Read VTOR and check that it falls under the boot ROM address range.
e Check whether VTOR is relocated before ‘tbsa_entry’ configures VTOR
e Ifre-located throw a warning message else pass the test.

4.5.4 R090_TBSA_BOOT If a boot status register is implemented, then it must be accessible
only by the Trusted world

If an implementation allows warm and cold reset, then check that on a warm reset, the platform layer shall read the flag register
which indicates the type of reset. On accessing this flag register from Non-trusted world, a fault is expected.

#test_s001

Refer test algorithm as defined in rule R020_TBSA_ BOOT

4.5.5 R100_TBSA_BOOT In an Assisted architecture, the key to decrypt the Trusted Boot
Firmware image must be visible only to the acceleration peripheral

#test_c006

Refer test algorithm as defined in rule R140_TBSA_KEY
4.6. Timer scenarios

4.6.1 R0O30_TBSA_TIME At least one Trusted timer must exist
Check that at least one trusted time exists.

#itest_t001

Secure.c

e Install fault handler

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31.41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

e Get the base address of trusted timer from targetConfig.cfg.
e Setup the interrupt handler and enable the timer. Check that a trusted interrupt from the trusted timer will be triggered.

Non-secure.c

e Access the base address of trusted timer from non-trusted world and check that the fault is triggered.

4.6.2 R040_TBSA_TIME A Trusted timer must only be modified by a Trusted access.
Examples of modifications are the timer being refreshed, suspended, or reset

Check that the Trusted timer can be accessed only from a Trusted world.
#itest_t001

Refer test algorithm as defined in rule RO30_TBSA_TIME

4.6.3 R0O50_TBSA_TIME The clock source that drives a Trusted timer must be a Trusted clock
source

Check that PLL configuration control registers can only be accessed through Trusted world.
#itest_t001

Refer test algorithm as defined in rule RO30_TBSA_TIME.

4.6.4 RO60_TBSA_TIME At least one Trusted watchdog timer must exist
Check that at least one watchdog timer exists.

#test_t002

Secure.c

e Install fault handler.
e Get the base address of watchdog timer from targetConfig.cfg.
e Setup the interrupt handler and enable the timer. Check that a watchdog reset is asserted.

Non-secure.c

e Access the base address of watchdog timer from non-trusted world and check that the fault is triggered.

e Asserting a watchdog timer shall result in a reset. After the reset, flag should be implemented to be make sure that the software
can distinguish between the timeout reset from watchdog vs power on cold boot.

e Access the base address of the clock source from non-trusted world and check that the fault is triggered.

4.6.5 R0O70_TBSA_TIME After a system reset, a Trusted watchdog timer must be started

before the execution of immutable boot code transfers control to the next firmware stage

Check that after a watchdog timer reset, the watchdog is enabled by default.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32.41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

#test_t002

Refer test algorithm as given in rule RO60_TBSA_ TIME.

4.6.6 R080_TBSA_TIME A Trusted watchdog timer must only be modified by a Trusted
access. Examples of modifications are the timer being refreshed, suspended, or reset

Check that a watchdog timer can only be accessed from a trusted world.
#test_t002

Refer test algorithm as given in rule RO60_TBSA_TIME.

4.6.7 R100_TBSA_TIME A Trusted watchdog timer must be able to trigger a reset of the SoC,
after a predefined period. This value can be fixed in hardware or programmed by a Trusted
access

Check that watchdog reset is asserted after a predetermined value for watchdog.
#test_t002

Refer test algorithm as given in rule RO60_TBSA_ TIME.

4.6.8 R110_TBSA_TIME A Trusted watchdog timer must implement a flag that indicates the
occurrence of a timeout event that causes a Warm reset, to allow post-reset software to
distinguish this from a powerup cold boot.

Check that a watchdog timer reset has asserted a warm reset through a flag register (in a platform abstraction layer).
#test_t002

Refer test algorithm as given in rule RO60_TBSA_TIME.

4.6.9 R120_TBSA_TIME The clock source driving a Trusted watchdog timer must be a Trusted
clock source

Check that PLL configuration control registers can only be accessed through Trusted world.
#test_t002

Refer test algorithm as given in rule RO60_TBSA_TIME.

4.6.10 R130_TBSA_TIME A TRTC must be configured only by a Trusted world access

Check that TRTC control registers can be configured only from a Trusted world.
#test_t003

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3341

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

Secure.c
e [nstall fault handler
Non-secure.c

e Check that at least one trusted TRTC is implemented.

e Ensure that TRTC access from non-trusted world triggers a fault.

e Check that clock source base address of TRTC triggers a fault.

e Check whether TRTC is synchronized to server and the validity mechanism throws out the output as whether it is trusted or non-
trusted.

4.6.11 R150_TBSA_TIME On initial power up and following any other outage of power to the
TRTC, a validity mechanism must indicate that the TRTC is not Trusted

Refer scenario as defined in rule R130_TBSA_TIME.

#test_t003, refer test algorithm as given in rule R130_TBSA_TIME.

4.6.12 R160_TBSA_TIME: The TRTC must be driven by a Trusted clock source

Like trusted timer, check that PLL in the SoC can be configured only through Trusted world.

#test_t003, refer test algorithm as given in rule R130_TBSA_TIME.
4.7. Version Counter scenarios

4.7.1 R010_TBSA_COUNT An on-chip non-volatile Trusted firmware version counter
implementation must provide a counter range of at least 0 to 63

Check that maximum number of trusted firmware version counters implement a counter range between 0 to 63.
#test_v001

Secure.c

e Install fault and reset handler.

Non-secure.c

e Get details of version counter from targetConfig.cfg

e For each instance of version counter, check that it is mapped to trusted or non-trusted firmware.

e Based on the details of the version counter provided in the targetConfig.cfg, check for valid ranges.
e Check that firmware version number can only be incremented

e Check that firmware version counter’s maximum range cannot be auto-rolled.

e Check that the update of the firmware version counter is only from trusted mode

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3441

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.7.2 R020_TBSA_COUNT An on-chip non-volatile Non-Trusted firmware version counter
implementation must provide a counter range of at least 0 to 255

Check that maximum number of Non-trusted firmware version counters implement a counter range between 0 to 255.
#itest_v001

Refer test algorithm as defined in rule RO10_TBSA_COUNT.

4.7.3 R030_TBSA_COUNT It must only be possible to increment a version counter through a
Trusted access

Check that a version counter can be accessed through Trusted world.
#itest_v001

Refer test algorithm as defined in rule RO10_TBSA_COUNT.

4.7.4 R040_TBSA_COUNT It must only be possible to increment a version counter; it must
not be possible to decrement it

Check that version counter (both Trusted and Non-trusted) can only be possible to increment from Trusted world and cannot be
decremented.

#itest_v001

Refer test algorithm as defined in rule RO10_TBSA_COUNT.

4.7.5 RO50_TBSA_COUNT When a version counter reaches its maximum value, it must not
roll over, and no further changes must be possible

Check that when the version counter reaches maximum value, it should not be possible to get into a new value as there are no
new changes are possible.

#test_v001

Refer test algorithm as defined in rule RO10_TBSA_COUNT.

4.7.6 R060_TBSA_COUNT A version counter must be non-volatile, and the stored value must
survive a power down period up to the lifetime of the device

Check that version counter value is retained even after Power on reset. (Lifetime of the device cannot be verified).
#test_v001

Refer test algorithm as defined in rule RO10_TBSA_ COUNT.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35441

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.8. Debug scenarios

4.8.1 R010_TBSA_DEBUG All debug functionality must be protected by a DPM so that only
an authorized external entity can access the debug functionality. There might be scenarios
where all external entities can access the debug functionality.

Check that an external entity can access the debug functionality through Debug Protection Mechanisms (DPM).
#itest_d001
Secure.c

e Read targetConfig.cfg and check that a DPM is implemented in SoC.

e Check whether debugger is connected by checking the message passing.
e [fthe DPM is available, then set the state to open via unlock method.

e Check that the accesses under the DPM control have valid and correct.

Non-secure.c

e Dummy functions for entry, exit and payload.

4.8.2 R020_TBSA_DEBUG A DPM must be implemented either solely in hardware or together
with software running in the Trusted world

Refer scenario listed in rule R280_TBSA_DEBUG.

4.8.3 R030_TBSA_DEBUG There must be a DPM to permit access to all assets (Trusted)

Check that all assets within the SoC has an associated DPM through which the accesses are controlled through Open and Closed
states.

#itest_d001

Refer test algorithm as defined in R0O10_TBSA_DEBUG.

4.8.4 R040_TBSA_DEBUG There must be a DPM to permit access to all Non-Trusted world
assets. This mechanism must not permit access to Trusted world assets.

Check that the debug access through DPM allows only Non-trusted asset view while on the background check that a trusted
watchdog timer is suspended from counting.

#test_d002
Secure.c
e Dummy functions for entry, exit and payload.

Non-secure.c

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36041

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

e Read targetConfig.cfg and check that a DPM is implemented in SoC.

e Configure the DPM to allow only the access to non-secure state only.

e Ifthe DPM is available, then set the state to open via unlock method.

e Check that the accesses under the DPM control have valid and correct from the non-trusted world.

4.8.5 R0O50_TBSA_DEBUG All DPMs must implement the following fuse-controlled states:
Closed - Only an unlock operation is permitted (to transition to Open). This is determined by
a Boolean value (dpm_enable) that is stored in a Public-Open-Bitwise fuse or derived from
the Device Lifecycle state stored in fuses.

Check that all DPMs (Trusted and Non-trusted) implemented in the SoC has fuse controlled states as defined as Open/Closed.
#test_d003
Secure.c

e Read targetConfig.cfg and check that a DPM is implemented in SoC.
e |fthe DPM is available, then set the state to closed. Check for the current state of the DPM.
e Check that the accesses under the DPM control should not be allowed as the DPM is in closed state.

Non-secure.c

e Dummy functions for entry, exit and payload.

4.8.6 R090_TBSA_DEBUG The DPM controlling Trusted world functionality must also have
another fuse controlled state: Locked - The unlock operation is disabled (no state transition
is possible). This is determined by a Boolean value (dpm_lock) that is stored in a Public-
Open-Bitwise fuse or derived from the Device Lifecycle state stored in fuses.

Check that DPM controlling trusted functionality must implement fuse-controlled locked state (state machine check as per
specification)

#itest_d004
Secure.c

e Read targetConfig.cfg and check that a DPM is implemented in SoC.
e Get the current state of the DPM
0 Ifthe DPM lock is implemented and lock is set, then proceed with access check (if there is only one DPM and it is in locked
state then exit the test, as access check is not possible).
0 if DPM lock is implemented but not locked, then set a variable which will be used to set the DPM lock.
o0 if DPM lock in not implemented then start the loop again to find next DPM with lock implemented.

Non-secure.c

e Dummy functions for entry, exit and payload.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.8.7 R120_TBSA_DEBUG All DPMs must have the following state: Open - Debug is
permitted. The Open state can only be entered from the Closed state after a successful
unlock operation.

Check that all assets within the SoC has an associated DPM through which the accesses are controlled via Open and Closed states.
#test_d001

Refer test algorithm as defined in rule RO30_TBSA DEBUG.

4.8.8 R150_TBSA_DEBUG The Trusted world DPM must be enabled, using the respective
dpm_enable fuses, or locked, using the respective dpm_lock fuses, before any Trusted world
assets are provisioned to the system.

Check that DPM state machine cycle is checked for all states.
#test_d005
Secure.c

e Read targetConfig.cfg and check that a DPM is implemented in SoC.
e Get the current state of the DPM and check for the various states of the DPM state machine.

Non-secure.c

e Dummy functions for entry, exit and payload.

4.8.9 R200_TBSA_DEBUG A password unlock token must be at least 128bits in length.
Check that password unlock token is less than 128 bits for DPM.

#test_d006

Secure.c

e Read targetConfig.cfg and check that a DPM is implemented in SoC.
e Get the unlock token details from targetConfig.cfg and if the unlock token is password, then check that the DPMs gets unlocked
via the password token.

Non-secure.c

e Dummy functions for entry, exit and payload.

4.8.10 R210_TBSA_DEBUG Each debug protection mechanism must use a unique password
unlock token.

Check that each DPM has a unique password unlock token to unlock.

#test_d006

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38441

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

Secure.c

e Read targetConfig.cfg and check that a DPM is implemented in SoC.

e Get the unlock token details from targetConfig.cfg and if the unlock token is password, then check that the DPMs gets unlocked
via the password token.

e |fthe number of DPMs implemented is more than one, then check that each password used is unique for each DPM.

Non-secure.c

e Dummy functions for entry, exit and payload.

4.8.11 R220_TBSA_DEBUG The unique ID must be included in a certificate unlock token.
Check that each DPM has a unique ID for the unlock certificate using public key.

#test_d007

Secure.c

e Read targetConfig.cfg and check that a DPM is implemented in SoC.

e Get the unlock token details from targetConfig.cfg and if the unlock token is certificate, then check that the DPMs gets unlocked
via the certificate if it is valid. Using the public key base address and certificate base address obtained from the targetConfig.cfg,
the unlock operation is performed.

e Also check that an authenticated field for DPM is needed for both public key and certificate and compared.

Non-secure.c

e Dummy functions for entry, exit and payload

4.8.12 R230_TBSA_DEBUG An unlock operation using a certificate unlock token must use an
approved asymmetric algorithm to check the certificate signature

#test_d007

Refer test algorithm as defined in rule R220_TBSA DEBUG.

4.8.13 R240_TBSA_DEBUG An unlock operation using a certificate unlock token must have
access to an asymmetric public key stored on the device. The asymmetric public key that is
used to authenticate the certificate unlock token must be immutably stored on the device or
have been loaded as a certificate during secure boot and authenticated by a chain of
certificates that begins with the ROTPK.

#itest_d007

Refer test algorithm as defined in rule R220_TBSA DEBUG.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39.41

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.8.14 R250_TBSA_DEBUG A certificate unlock token must indicate which DPM(s) it is able to
unlock using an authenticated field

#test_d007

Refer test algorithm as defined in rule R220_TBSA DEBUG.

4.8.15 R260_TBSA_DEBUG A loadable public key for certificate unlock token authentication
must include an authenticated field indicating which DPM(s) it is authorized to unlock

#test_d007

Refer test algorithm as defined in rule R220_TBSA_DEBUG.

4.8.16 R270_TBSA_DEBUG A certificate unlock token must only unlock a DPM that its public
key is authorized to unlock

#itest_d007

Refer test algorithm as defined in rule R220_TBSA_DEBUG.

4.8.17 R280_TBSA_DEBUG The device must implement registers, that, when written to by
software, unlock the associated hardware debug features. Access to the secure DPM
registers must be restricted to privileged Secure world software

#test_d008
Secure.c

e Read targetConfig.cfg and check that a DPM is implemented in SoC.

e Install hard fault handler such that reset will be used as mechanism to come out of hard fault.

e Disable all faults such that hard fault is triggered on the occurrence of any error.

e Get the unlock token details from targetConfig.cfg and if the unlock token is certificate, then check that the DPMs gets unlocked
via the certificate if it is valid in privileged mode.

e Check that in an unprivileged mode, an error is thrown.

Non-secure.c

e Dummy functions for entry, exit and payload

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40041

Arm® TBSA-v8M Test Scenarios PJDOC-2042731200-3595
Version 1.1
Verification scenarios

4.9. External Interface Peripheral scenarios

4.9.1 R020_TBSA_EIP Where an EIP can receive commands from an external device, for
example PCle, then the system must enforce a policy to check that those commands do not
breach the security of the TBSA-v8M device

#TBD

4.9.2 R040_TBSA_EIP Any sensitive user data that is stored must be stored in Secure storage.
#itest_b001

Refer test algorithm as defined in rule RO10_TBSA_ BASE.

4.9.3 RO50_TBSA_EIP In cases where a sensor has modes that allow it to be used for the
acquisition of assets in both the Trusted world and the Non-Trusted world, activating
features for Trusted world sensing must be under the control of the Trusted world

#TBD

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 41

	1 About this document
	1.1. References
	1.2. Terms and Abbreviations
	1.3. Scope

	2 Introduction
	2.1. Limitations of the TBSA-v8M test suite

	3 Correlation between architecture and tests
	4 Verification scenarios
	4.1. Base system scenarios
	4.1.1 R010_TBSA_BASE: A Non-Trusted world operation must only access Non-Trusted world assets
	4.1.2 R020_TBSA_BASE: A Trusted world operation can access both Trusted and Non-Trusted world assets
	4.1.3 R030_TBSA_BASE: The SoC must be based on an Armv8-M architecture PE with the Security Extension and MPU implemented

	4.2. Infrastructure scenarios
	4.2.1 R010_TBSA_INFRA: A Trusted operation can issue Secure or Non-secure transactions
	4.2.2 R020_TBSA_INFRA: A Non-Trusted operation must only issue Non-secure transactions
	4.2.3 R030_TBSA_INFRA: A Non-secure Transaction must only access Non-secure storage
	4.2.4 R040_TBSA_INFRA If programmable address remapping logic is implemented in the interconnect then its configuration must only be possible from the Trusted world
	4.2.5 R050_TBSA_INFRA A unified address map that uses target side filtering to disambiguate Non-secure and Secure transactions must only permit all Secure or all Non-secure transactions to any one region. Secure and Non-secure aliased accesses to the ...
	4.2.6 R060_TBSA_INFRA The target transaction filters configuration space must only be accessed from the Trusted world
	4.2.7 R070_TBSA_INFRA Security Exception Interrupts must be wired or configured as Secure interrupt sources
	4.2.8 R080_TBSA_INFRA Configuration of the on-chip interconnect that modifies routing or the memory map must only be possible from the Trusted world unless it is not possible for such modifications to affect secure transactions
	4.2.9 R090_TBSA_INFRA All transactions must be constrained; it must not be possible for a transaction to bypass a constraining mechanism
	4.2.10 R100_TBSA_INFRA If shared volatile storage is implemented, then the associated location or region must be scrubbed before it can be reallocated from Trusted to Non-Trusted
	4.2.11 R110_TBSA_INFRA If shared volatile storage is implemented, then the associated location must not be executable or NSC immediately after it is reallocated from Non-Trusted to Trusted
	4.2.12 R120_TBSA_INFRA An interrupt originating from a Trusted operation must be mapped only to a Trusted target. By default, this must be the case following a system reset
	4.2.13 R130_TBSA_INFRA Any configuration to mask or route a Trusted interrupt must only be carried out from the Trusted world
	4.2.14 R140_TBSA_INFRA The interrupt network might be configured to route an interrupt originating from a Trusted operation to a Non-Trusted target
	4.2.15 R150_TBSA_INFRA Any status flags recording Trusted interrupt events must only be read from the Trusted world, unless specifically configured by the Trusted world, to be readable by the Non-Trusted world
	4.2.16 R160_TBSA_INFRA A TBSA-v8M system must integrate a Secure RAM
	4.2.17 R170_TBSA_INFRA Secure RAM must be mapped into the Trusted world only
	4.2.18 R180_TBSA_INFRA If the mapping of Secure RAM into regions is programmable, then configuration of the regions must only be possible from the Trusted world
	4.2.19 R190_TBSA_INFRA The advanced power mechanism must integrate a Trusted management function to control clocks and power. It must not be possible to directly access clock and power functionality from the Non-trusted world
	4.2.20 R210_TBSA_INFRA If access to a peripheral or a subset of its operations can be dynamically switched between Trusted world and Non-trusted world, then this must be done only under the control of the Trusted world
	4.2.21 R220_TBSA_INFRA If the peripheral stores assets in local embedded storage, a Non-trusted operation must not be able to access the local assets of a Trusted operation
	4.2.22 R230_TBSA_INFRA A Trusted operation must be able to distinguish the originating world of commands and data arriving at its interface, by using the address.

	4.3. Fuse scenarios
	4.3.1 R020_TBSA_FUSE: A fuse is permitted to transition in one direction only, from its unprogrammed state to its programmed state. The reverse operation must be prevented
	4.3.2 R040_TBSA_FUSE: It must be possible to blow at least a subset of the fuses when the device has left the silicon manufacturing facility
	4.3.3 R080_TBSA_FUSE: A confidential fuse whose recipient is a hardware IP must not be readable by any software process
	4.3.4 R090_TBSA_FUSE: A confidential fuse whose recipient is a hardware IP must be connected to the IP using a path that is not visible to software or any other hardware IP
	4.3.5 R100_TBSA_FUSE: A confidential fuse whose recipient is a software process might be readable by that process and must be readable by privileged software
	4.3.6 R110_TBSA_FUSE: A confidential fuse whose recipient is a Trusted world software process must be protected by a hardware filtering mechanism that can only be configured by secure software, for example an NS-bit filter
	4.3.7 R120_TBSA_FUSE: It must be possible to fix a lockable fuse in its current state, regardless of whether it is programmed or unprogrammed
	4.3.8 R140_TBSA_FUSE: A bulk fuse must also be a lockable fuse to ensure that any unprogrammed bits cannot be programmed later

	4.4. Key scenarios
	4.4.1 R010_TBSA_KEY: A key must be treated as an atomic unit. It must not be possible to use a key in a cryptographic operation before it has been fully created, during an update operation, or during its destruction
	4.4.2 R020_TBSA_KEY: Any operations on a key must be atomic. It must not be possible to interrupt the creation, update, or destruction of a key
	4.4.3 R030_TBSA_KEY: When a key is no longer required by the system, it must be put beyond use to prevent a hack at a later time from revealing it
	4.4.4 R070_TBSA_KEY: A static key must be stored in an immutable structure, for example a ROM or a set of Bulk-Lockable fuses
	4.4.5 R140_TBSA_KEY: A Trusted hardware key must not be directly accessible by any software
	4.4.6 R160_TBSA_KEY: A TBSA-v8M device must either entirely embed a root of trust public key (ROTPK), or the information that is needed to securely identify it
	4.4.7 R180_TBSA_KEY: An elliptic-curve-based ROTPK must be at least 256 bits in size
	4.4.8 R190_TBSA_KEY: An RSA-based ROTPK must be at least 3072 bits in size
	4.4.9 R200_TBSA_KEY: If a cryptographic hash of the ROTPK is stored in on chip non-volatile memory, rather than the key itself, it must be immutable
	4.4.10 R220_TBSA_KEY: A TBSA-v8M device must embed a hardware unique root key (HUK) in Confidential-Lockable-Bulk fuses
	4.4.11 R240_TBSA_KEY: The HUK must only be accessible by Trusted code or Trusted hardware that acts on behalf of Trusted code

	4.5. Boot scenarios
	4.5.1 R010_TBSA_BOOT A TBSA-M device must embed a Boot ROM with the initial code that is needed to perform a Trusted system boot.
	4.5.2 R020_TBSA_BOOT If the device supports warm boot, a flag or register that survives warm boot must exist, to enable distinguishing between warm and cold boots. This register or flag must be programmable only by the Trusted world and must be reset ...
	4.5.3 R030_TBSA_BOOT On a cold boot, the primary processor must boot from the Boot ROM. It must not be possible to boot from any other storage unless Trusted Kernel debug is enabled
	4.5.4 R090_TBSA_BOOT If a boot status register is implemented, then it must be accessible only by the Trusted world
	4.5.5 R100_TBSA_BOOT In an Assisted architecture, the key to decrypt the Trusted Boot Firmware image must be visible only to the acceleration peripheral

	4.6. Timer scenarios
	4.6.1 R030_TBSA_TIME At least one Trusted timer must exist
	4.6.2 R040_TBSA_TIME A Trusted timer must only be modified by a Trusted access. Examples of modifications are the timer being refreshed, suspended, or reset
	4.6.3 R050_TBSA_TIME The clock source that drives a Trusted timer must be a Trusted clock source
	4.6.4 R060_TBSA_TIME At least one Trusted watchdog timer must exist
	4.6.5 R070_TBSA_TIME After a system reset, a Trusted watchdog timer must be started before the execution of immutable boot code transfers control to the next firmware stage
	4.6.6 R080_TBSA_TIME A Trusted watchdog timer must only be modified by a Trusted access. Examples of modifications are the timer being refreshed, suspended, or reset
	4.6.7 R100_TBSA_TIME A Trusted watchdog timer must be able to trigger a reset of the SoC, after a predefined period. This value can be fixed in hardware or programmed by a Trusted access
	4.6.8 R110_TBSA_TIME A Trusted watchdog timer must implement a flag that indicates the occurrence of a timeout event that causes a Warm reset, to allow post-reset software to distinguish this from a powerup cold boot.
	4.6.9 R120_TBSA_TIME The clock source driving a Trusted watchdog timer must be a Trusted clock source
	4.6.10 R130_TBSA_TIME A TRTC must be configured only by a Trusted world access
	4.6.11 R150_TBSA_TIME On initial power up and following any other outage of power to the TRTC, a validity mechanism must indicate that the TRTC is not Trusted
	4.6.12 R160_TBSA_TIME: The TRTC must be driven by a Trusted clock source

	4.7. Version Counter scenarios
	4.7.1 R010_TBSA_COUNT An on-chip non-volatile Trusted firmware version counter implementation must provide a counter range of at least 0 to 63
	4.7.2 R020_TBSA_COUNT An on-chip non-volatile Non-Trusted firmware version counter implementation must provide a counter range of at least 0 to 255
	4.7.3 R030_TBSA_COUNT It must only be possible to increment a version counter through a Trusted access
	4.7.4 R040_TBSA_COUNT It must only be possible to increment a version counter; it must not be possible to decrement it
	4.7.5 R050_TBSA_COUNT When a version counter reaches its maximum value, it must not roll over, and no further changes must be possible
	4.7.6 R060_TBSA_COUNT A version counter must be non-volatile, and the stored value must survive a power down period up to the lifetime of the device

	4.8. Debug scenarios
	4.8.1 R010_TBSA_DEBUG All debug functionality must be protected by a DPM so that only an authorized external entity can access the debug functionality. There might be scenarios where all external entities can access the debug functionality.
	4.8.2 R020_TBSA_DEBUG A DPM must be implemented either solely in hardware or together with software running in the Trusted world
	4.8.3 R030_TBSA_DEBUG There must be a DPM to permit access to all assets (Trusted)
	4.8.4 R040_TBSA_DEBUG There must be a DPM to permit access to all Non-Trusted world assets. This mechanism must not permit access to Trusted world assets.
	4.8.5 R050_TBSA_DEBUG All DPMs must implement the following fuse-controlled states: Closed - Only an unlock operation is permitted (to transition to Open). This is determined by a Boolean value (dpm_enable) that is stored in a Public-Open-Bitwise fuse...
	4.8.6 R090_TBSA_DEBUG The DPM controlling Trusted world functionality must also have another fuse controlled state: Locked - The unlock operation is disabled (no state transition is possible). This is determined by a Boolean value (dpm_lock) that is s...
	4.8.7 R120_TBSA_DEBUG All DPMs must have the following state: Open - Debug is permitted. The Open state can only be entered from the Closed state after a successful unlock operation.
	4.8.8 R150_TBSA_DEBUG The Trusted world DPM must be enabled, using the respective dpm_enable fuses, or locked, using the respective dpm_lock fuses, before any Trusted world assets are provisioned to the system.
	4.8.9 R200_TBSA_DEBUG A password unlock token must be at least 128bits in length.
	4.8.10 R210_TBSA_DEBUG Each debug protection mechanism must use a unique password unlock token.
	4.8.11 R220_TBSA_DEBUG The unique ID must be included in a certificate unlock token.
	4.8.12 R230_TBSA_DEBUG An unlock operation using a certificate unlock token must use an approved asymmetric algorithm to check the certificate signature
	4.8.13 R240_TBSA_DEBUG An unlock operation using a certificate unlock token must have access to an asymmetric public key stored on the device. The asymmetric public key that is used to authenticate the certificate unlock token must be immutably stored...
	4.8.14 R250_TBSA_DEBUG A certificate unlock token must indicate which DPM(s) it is able to unlock using an authenticated field
	4.8.15 R260_TBSA_DEBUG A loadable public key for certificate unlock token authentication must include an authenticated field indicating which DPM(s) it is authorized to unlock
	4.8.16 R270_TBSA_DEBUG A certificate unlock token must only unlock a DPM that its public key is authorized to unlock
	4.8.17 R280_TBSA_DEBUG The device must implement registers, that, when written to by software, unlock the associated hardware debug features. Access to the secure DPM registers must be restricted to privileged Secure world software

	4.9. External Interface Peripheral scenarios
	4.9.1 R020_TBSA_EIP Where an EIP can receive commands from an external device, for example PCIe, then the system must enforce a policy to check that those commands do not breach the security of the TBSA-v8M device
	4.9.2 R040_TBSA_EIP Any sensitive user data that is stored must be stored in Secure storage.
	4.9.3 R050_TBSA_EIP In cases where a sensor has modes that allow it to be used for the acquisition of assets in both the Trusted world and the Non-Trusted world, activating features for Trusted world sensing must be under the control of the Trusted wo...

