
Arm® PSA-M Functional API Test Suite
Version 1.3

Validation Methodology

Non-Confidential
Copyright © 2018–2021 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
101447_0103_01_en

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Arm® PSA-M Functional API Test Suite
Validation Methodology

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue Date Confidentiality Change

A 28 September 2018 Non-Confidential Alpha release

B 30 October 2018 Non-Confidential Minor edits

C 15 January 2019 Non-Confidential Beta release. The document number has been changed.

D 4 June 2019 Non-Confidential Beta quality with minor updates

E 30 September 2019 Non-Confidential Beta quality with minor updates

F 28 February 2020 Non-Confidential EAC quality with minor updates

G 30 November 2020 Non-Confidential EAC quality with minor updates

0102-01 30 June 2021 Non-Confidential EAC release. The document now follows a new numbering format.

0103-01 8 October 2021 Non-Confidential EAC release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click
through or signed written agreement covering this document with Arm, then the click through or
signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 26

https://www.arm.com/company/policies/trademarks

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 26

https://developer.arm.com
mailto:terms@arm.com

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01
Contents

Contents

1 Introduction... 6
1.1 Conventions..6
1.2 Additional reading... 7
1.3 Feedback... 7
1.4 Other information... 8

2 Introduction to PSA test suite..9
2.1 Abbreviations..9
2.2 PSA APIs..9
2.2.1 PSA Firmware Framework.. 10
2.2.2 PSA functional APIs..11
2.3 Test suite.. 11
2.4 Test suite components.. 12
2.5 Directory structure...12
2.6 Feedback and contributions...13

3 Validation methodology...14
3.1 Test layering details..14
3.2 Test suite organization.. 15
3.3 Test execution flow..19
3.4 Integrating the test suite with the SUT..21
3.5 Test dispatcher.. 22
3.6 Analyzing test run results...23

A Revisions..25
A.1 Revisions...25

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Introduction

1 Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Convention Use

italic Introduces citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in
descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source
code.

monospace bold Denotes language keywords when used outside example code.

monospace underline Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of
the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For ex-
ample:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

This represents a recommendation which, if not followed, might lead to system failure or damage.

This represents a requirement for the system that, if not followed, might result in system failure or
damage.

This represents a requirement for the system that, if not followed, will result in system failure or damage.

This represents an important piece of information that needs your attention.

This represents a useful tip that might make it easier, better or faster to perform a task.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 26

https://developer.arm.com/glossary

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Introduction

Convention Use
This is a reminder of something important that relates to the information you are reading.

1.2 Additional reading
This document contains information that is specific to this product. See the following documents
for other relevant information:

Table 1-2: Arm publications

Document name Document ID Licensee only

Arm® Platform Security Architecture Firmware Framework specification DEN 0063 No

PSA Security model DEN 0079 No

Arm® Trusted Base System Architecture for Armv8-M DEN 0021F No

Platform Security Boot Guide DEN 0072 No

PSA Cryptography API IHI 0086 No

Arm®v8 Architecture Reference Manual, Armv8 for M-profile DDI0553B.q ID30092021 No

Table 1-3: Other publications

Document ID Organization Document name

- - -

1.3 Feedback
Arm welcomes feedback on this product and its documentation.

Feedback on this product
If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
Information about how to give feedback on the content.

If you have comments on content then send an e-mail to support-psa-arch-tests@arm.com. Give:

• The title Arm® PSA-M Functional API Test Suite Validation Methodology.

• The number 101447_0103_01_en.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 26

support-psa-arch-tests@arm.com

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Introduction

• If applicable, the page number(s) to which your comments refer.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot
guarantee the quality of the represented document when used with any other PDF
reader.

1.4 Other information
See the Arm® website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 26

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Introduction to PSA test suite

2 Introduction to PSA test suite
This chapter introduces the features and components of the functional API test suite for Arm®

Firmware Framework for Armv8-M.

2.1 Abbreviations
This section lists the abbreviations used in this document.

Table 2-1: Abbreviations and expansions

Abbreviation Expansion

API Application Programming Interface

FF Firmware Framework

ITS Internal Trusted Storage

NSPE Non-Secure Processing Element

PAL Platform Abstraction Layer

PE Processing Element

PS Protected Storage

PSA Platform Security Architecture

RoT Root of Trust

RTOS Real-Time Operating System

SPE Secure Processing Element

SPM Secure Partition Manager

SUT System Under Test

VAL Validation Abstraction Layer

2.2 PSA APIs
Arm® Platform Security Architecture (PSA) is a holistic set of threat models, security analyses,
hardware and firmware architecture specifications, and an open-source firmware reference
implementation.

PSA provides a recipe that allows security to be consistently designed at both hardware and
firmware level. One of the goals of PSA is to make IoT security easier and quicker. This means
having reliable, consistent APIs and useful built-in security functions for device manufacturers and
the developer community. These PSA APIs provide a consistent developer experience, hiding the
underlying complexity of the security system.

Arm PSA defines the following set of API specifications:

• PSA Firmware Framework

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Introduction to PSA test suite

• PSA functional APIs

2.2.1 PSA Firmware Framework

PSA Firmware Framework (FF) defines a standard programming environment and firmware
interfaces for implementing and accessing security services within Root of Trust (RoT) of a device.

PSA security model divides execution within the system into two domains:

• Non-secure Processing Environment (NSPE)

• Secure Processing Environment (SPE)

NSPE contains application firmware, and OS kernel and libraries. It controls most I/O peripherals.
SPE contains security firmware and hardware resources that must be isolated from NSPE firmware
and hardware resources. The security model requires that no NSPE firmware nor hardware can
inspect or modify any SPE hardware, code, or data.

Security functionality is exposed by PSA as a collection of RoT services. Each RoT service is a
set of related security functionality. For example, there may be an RoT service for cryptography
operations, and another for Secure storage.

PSA subdivides the SPE into two subdomains:

• PSA RoT

• Application RoT

PSA RoT provides the fundamental RoT services to the system and also manages the isolated
execution environment for the application RoT services.

The following table describes the main components of PSA RoT.

Table 2-2: PSA RoT components

Component Description

PSA security
lifecycle

Identifies the production phase of the device and controls the availability of device secrets and sensitive capabilities
such as Secure debug.

PSA immutable RoT Hardware and non-modifiable firmware, and data installed during manufacturing.

Trusted boot and
Firmware update

Ensures the integrity and authenticity of the device firmware.

Secure Partition
Manager

Manages isolation of the RoT services, the IPC mechanism that allows software in one domain to make requests of
another, and scheduling logic to ensure that requests are eventually serviced.

PSA RoT services Provides essential cryptographic functionality and manage accesses to the immutable RoTs for application RoT
services.

The Firmware Framework specification:

• Provides requirements for the Secure Partition Manager (SPM).

• Defines a standard runtime environment for developing protected RoT services, including the
programming interfaces provided by the SPM for implementing and using RoT services.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Introduction to PSA test suite

• Defines the standard interfaces for the PSA RoT services.

For more information on SPM and PSA RoT, see the Arm® Platform Security Architecture Firmware
Framework specification.

2.2.2 PSA functional APIs

PSA functional APIs are the top-level APIs used by application developers and Real-Time Operating
System (RTOS) vendors. These APIs provide the top-level essential services related to Crypto,
Secure storage, and attestation tokens.

These APIs have been designed for even non-expert software developers who want to implement
hardware security features. For more information on PSA functional APIs, see the Functional APIs
specification.

2.3 Test suite
Architecture tests are a set of examples of the invariant behaviors that are specified by the PSA API
specifications. Use these tests to check if the behaviors are interpreted correctly in your system.

These tests cover checks for the following categories of features, each covering a different area of
architecture.

Table 2-3: Test categories and their descriptions

API type Test category Subcategory Description

Level of isolation Tests verifying the expected behavior of SPM involved in different levels of
isolation, as defined by the specification.

Client APIs Tests that validate client APIs.

Secure partition
APIs

Tests that validate Secure partition APIs.

Manifest input Tests that validate manifest input parameters.

PSA Firmware
Framework

IPC

PSA RoT lifecycle
API

Tests that validate PSA RoT lifecycle API.

Crypto PSA Crypto APIs Tests that validate PSA Crypto APIs.

Internal Trusted
Storage (ITS)

PSA ITS APIs Tests that validate PSA ITS APIs.

Protected Storage
(PS)

PSA PS APIs Tests that validate PSA PS APIs.

Functional APIs

Initial Attestation PSA Initial
Attestation API

Tests that validate PSA Initial Attestation API.

The test suite contains tests that have checks embedded within the test code. To view the list of
test suites and how these different categories of features are checked, see test-list documents in
the docs/ directory.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 26

https://github.com/ARM-software/psa-arch-tests/blob/master/api-specs
https://github.com/ARM-software/psa-arch-tests/blob/master/api-specs

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Introduction to PSA test suite

2.4 Test suite components
The following table describes the test suite components.

Table 2-4: Test suite components

Component Description

Test suites Contains self-checking tests that are written in C.

Substructure Test-supporting layers consist of a framework and libraries set up as:

• Tools to build the tests

• Validation Abstraction Layer (VAL) library

• Platform Abstraction Layer (PAL) library

Documentation Suite-specific documents such as test lists, porting guide, and API specification.

2.5 Directory structure
The test components must be in a specific hierarchy for the test suite.

The following figure contains the top-level directory files which is a release package downloaded
from GitHub.

Figure 2-1: Test suite

platform/

api-tests/

dev_apis/

docs/

ff/

tools/

val/

CMakeLists.txt

README.md

dev_apis
has subsuites containing architecture tests for the functional APIs specification. This test
suite is a set of C-based directed tests, each of which verifies the implementation against
a test scenario that is described by the PSA functional APIs specification. These tests are
abstracted from the underlying hardware platform by the VAL.

docs
contains the test suite documentation.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Introduction to PSA test suite

ff
has subsuites containing architecture tests for PSA-FF specification. This test suite is a set of
C-based directed tests, each of which verifies the implementation against a test scenario that
is described by the PSA-FF specifications. These tests are abstracted from the underlying
hardware platform by the VAL.

platform
contains files to form the PAL. PAL is the closest to hardware and is aware of the underlying
hardware details. Since this layer interacts with hardware, it must be ported or tailored to
specific hardware required for system components present in a platform. This layer is also
responsible for presenting a consistent interface to the VAL required for the tests.

tools
contains makefiles and scripts that are used to generate test binaries.

val
contains subdirectories for the VAL libraries. This layer provides a uniform and consistent
view of the available test infrastructure to the tests in the test suite. VAL makes appropriate
calls to the PAL to achieve this functionality. This layer is not required to be ported when the
underlying hardware changes.

CMakeLists.txt
contains information about CMake build support.

README.md
README file for PSA test suite.

2.6 Feedback and contributions
For feedback, use the GitHub Issue Tracker that is associated with this repository.

Arm licensees can contact Arm directly through their partner managers.

Arm also welcomes code contributions through GitHub pull requests. See GitHub documentation
on how to raise pull requests.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

3 Validation methodology
This chapter describes the validation methodology used for the PSA functional API test suite.

3.1 Test layering details
PSA tests are self-checking and portable C-based tests with directed stimulus. These tests use the
layered software stack approach to enable porting across different test platforms.

The constituents of the layered stack are:

• Tests

• Secure partitions

• VAL

• PAL

The following figure illustrates the layered software stack approach.

Figure 3-1: Layered software stack

SoC

NSPE SPE

Application SW/OS

Test Partitions (For IPC
tests only)

PAL_S

VAL_S
Developer APIs
implementation

Tests (Crypto/Storage/
Attestation/IPC)

VAL_NS

PAL_NS

SPM – Secure SW/OS

Test suite boundary

Manifest

From Arm
Defined by Arm and to be
ported by Partner
Platform-specific software

Hardware

The following table describes the constituents of the layered stack.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

Table 3-1: Layered software stack components

Layer Description

Tests A set of C-based directed tests, each of which verifies the implementation against a test scenario that is described by the PSA
specification.

These tests include checks related to PSA-FF and functional APIs, and are expected to be run in Non-secure mode. PSA-FF
tests may further use IPC calls to communicate test suite-defined Secure partition to cover the appropriate test scenario.
These tests are abstracted from the underlying hardware platform by the VAL. This implies that porting a test for a specific
target platform is not required.

Secure
partitions

PSA-FF test suite defines three Secure partitions:

• Driver partition provides driver-related services such as print API to the PSA test suite Non-secure code and to the other
partitions.

• Client partition drives the Secure client test functions for the IPC tests.

• Server partition drives the Secure server test functions for the IPC tests.

These Secure partitions must be integrated into your Secure software containing SPM. They are valid only for IPC tests. Func-
tional APIs tests are not required to use these partitions.

Secure partition-related manifest files are available in the platform/manifests/ directory.

VAL This layer provides a uniform and consistent view of the available test infrastructure to the tests in the test pool by making
appropriate calls to the PAL. It is designed such that it can be used both from Secure and Non-secure sides.
This layer does not require porting when the underlying hardware changes.

PAL This layer is the closest to the hardware and is aware of the platform details. It is responsible for presenting the hardware
through a consistent interface to VAL. This layer must be ported to the specific hardware present in the platform. The PAL is
designed such that it can be used from both Secure and Non-secure sides.

3.2 Test suite organization
The directory structures of PSA-FF and functional APIs test suites are described in this section.

PSA-FF test suite
The following figure shows the contents of the directories, subdirectories, and files in the PSA-FF
test suite.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

Figure 3-2: PSA-FF test suite

ff/

ipc/

test.cmake

test_i[x].c

test_i[x].h

test_entry_i[x].c

test_supp_i[x].c

test_i[x]/

partition/

common/

driver_partition.c

ipc/

server_partition.c

server_partition.h

client_partition.c

client_partition.h

README.md

testsuite.db

test_l[x]/

test.cmake

test_l[x].c

test_l[x].h

test_entry_l[x].c

test_supp_l[x].c

ipc

Holds IPC tests.

test_[y][x]

Test directory containing IPC test related files. Here, y is:

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

• i for IPC tests.

• l for lifecycle tests.

test.cmake

Helps to identify the test files that must be compiled to generate the test binaries.

test_entry_i[x].c

Holds the test entry point in NSPE and executes test functions from NSPE. For IPC tests, it
can execute the same test functions from SPE, based on the test requirement.

test_[y][x].c and test_[y][x].h
test_[y][x].c and test_[y][x].h.

test_supp_[y][x].c

Holds server test functions.

testsuite.db

A database file representing tests to be compiled and run as part of specific suite. This
provides flexibility to run specific tests individually by commenting out the other tests.

partition

Contains partition files that provide different driver services to the tests and the dispatcher
logic to dispatch specific client or server test functions.

README.md

This file contains information for building the PSA-FF test suite.

Functional APIs test suite
The following figure shows the contents of the directories, subdirectories, and files in the functional
APIs test suite.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

Figure 3-3: Functional APIs test suite

dev_apis/

test.cmake

initial_attestation/

crypto/

test_c[x]/

test_c[x].c

test_c[x].h

test_entry_c[x].c

testsuite.db

README.md

protected_storage/

internal_trusted_storage/

crypto Holds Crypto tests.
test_[x][y] Test directory containing test-related files.

[x] can be:

• c for Crypto tests

• a for Initial Attestation

• p for Protected Storage

• s for Internal Trusted Storage

[y] is the test number.
test.cmake Helps to identify the test files that must be compiled to

generate the test binaries.
test_[x][y].c and
test_[x][y].h

Hold the actual test functions.

test_entry_c[x].c Holds the test entry point in NSPE and executes test functions
from NSPE.

testsuite.db A database file representing tests to be compiled and run as
part of specific suite. This provides flexibility to run specific
tests individually by commenting out the other tests.

initial_attestation Holds Initial Attestation tests.
internal_trusted_storage Holds Internal Trusted Storage tests.
protected_storage Holds Protected Storage tests.
README.md This file contains information for building the functional APIs

test suite.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

3.3 Test execution flow
This section provides details of the test execution flows for PSA-FF tests and functional APIs tests.

PSA-FF tests
The test compilation tool generates the NSPE and SPE archives for IPC tests. You must integrate
test suite SPE archives with your Secure software stack containing the SPM, such that it gets
access to PSA-defined client APIs and Secure partition APIs. The NSPE libraries generated by the
test suite must be integrated with the NSPE OS such that test suite NSPE code gets access to the
PSA-defined client APIs.

For more information on IPC test archives, see 3.4 Integrating the test suite with the SUT on page
21.

The System Under Test (SUT) boots to an environment that enables the test functionality. This
implies that the SPM is initialized, and PSA-FF partitions are ready to accept requests.

On the Non-secure side, the SUT boot software gives control to the tests entry point (val_entry
symbol) as an application entry point in Non-secure privileged mode.

The PSA tests query the VAL layer to get the necessary information to run the tests. This
information can include memory maps, interrupt maps, and hardware controller maps.

Based on the test scenario, the test and partition communicate with each other using IPC APIs that
are defined in the specification, and report the test results using VAL print API (in turn PAL API
ported to the specific platform). Each IPC test scenario is driven using dedicated client-server tests
functions. The client functions are available in test_ix.c and are suffixed with client_test_ label.
Based on test requirements, client functions are executed either in NSPE or SPE or both. Server
functions are available in test_supp_ix.c and are suffixed with server_test label. They are always
executed in SPE.

All the tests are executed sequentially. The dispatcher in the VAL queries the next test on the
completion of the present test. The dispatcher also makes VAL (and in turn PAL) calls to save and
reports each of the test results.

For more information on the dispatcher, see 3.5 Test dispatcher on page 22.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

Figure 3-4: Test execution flow for PSA-FF IPC tests

Launch tests
as an application

Test check

Launch client test function

Start test #xx

Test dispatcher

Last test?

Report log

Secure SW/OS
(SPM) boot

Application SW/OS boot

Application SW/OS boot

Application SW/OS boot

Application SW/OS boot

Secure domain Non-secure domain

IPC

IPC

IPC

Application SW/OS boot

All test checks are
completed?

Yes

No

Yes

Functional APIs tests
You must integrate the test suite NSPE archives with your Non-secure software stack such that it
gets access to PSA-defined functional APIs. The SUT then boots to an environment that enables
the test functionality. The SUT boot software gives control to the test entry point (val_entry
symbol) as an application entry point in the Non-secure privileged mode.

The test compilation tool generates the NSPE archives for functional tests as described in the 3.4
Integrating the test suite with the SUT on page 21 section.

The tests query the VAL to get necessary information to run the tests. This information can include
memory maps, interrupt maps, and hardware controller maps. Based on the test scenario, the test
calls functional APIs and reports the test results using the VAL print API (in turn PAL API ported to
the specific platform).

All the tests are executed sequentially. The dispatcher in the VAL queries the next test on the
completion of the present test. For more information on the dispatcher, see 3.5 Test dispatcher on
page 22.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

Figure 3-5: Test execution flow for functional APIs tests

Application SW/OS boot

Launch test suite as an
application val_entry();

Test check

Launch client test
function

Start test #xx

Test dispatcher

Last test?

Report log

Secure SW/OS
(SPM) boot

Secure domain Non-secure domain

RoT services

Yes

No

Yes

Functional
API

3.4 Integrating the test suite with the SUT
The test compilation flow creates the following libraries that you must integrate with your SUT
software.

• Test framework
The test compilation flow creates two archive files that contain code for the test
framework (VAL and PAL APIs), and the test dispatcher logic that must be available in the
main memory and executed as an application in NSPE. Link these archives with the NS
OS library to generate an NSPE binary.

◦ <BUILD_PATH>/BUILD/val/val_nspe.a

◦ <BUILD_PATH>/BUILD/platform/pal_nspe.a

• Combined tests archive
The test compilation flow generates a combined test archive by combining all the
Non-secure test objects for Non-secure tests. The generated archive is placed at
<BUILD_PATH>/<top_level_suite>/<suite>/test_combine.a. Integrate this archive library
with the test framework libraries and NS OS library to generate an NSPE binary. The
dispatcher function within the VAL calls each test entry function one after another, to run
the Non-secure tests.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

• Test suite Secure partitions
Along with test framework and combined tests libraries, the IPC tests require the SPE
binaries. The test suite compilation flow generates the following Secure partition archives
for IPC tests. You must integrate these test suite partition archives with your SPE code
such that it follows the level of isolation rules defined in the PSA-FF specification. Load
the resultant SPE binary into the Secure main memory.

Table 3-2: Libraries and protection domains

Test suite partition libraries Protection domain

<build_dir>/BUILD/partition/driver_partition.a PSA-RoT

<build_dir>/BUILD/partition/client_partition.a Application-RoT

<build_dir>/BUILD/partition/server_partition.a Application-RoT

• The client and server test functions of all the tests are compiled as part of
client_partition and server_partition respectively. All these functions are
loaded into the Secure main memory and are available at same time.

• If an SUT has main memory size constraints, you can compile and run the tests
in a bulk of test sets, for example, 10 tests at time. To do this, remove the test
references other than the ones required from the respective suite specific
testsuite.db file. Repeat this process for all the test sets.

Figure 3-6: Loading test binaries

Non-secure SRAM

Partition #1

Secure SRAM

VAL

PAL

Test
framework

Combined test
(Non-secure

SRAM)

Test #1
From Arm

Defined by Arm and
to be ported by
Partner

3.5 Test dispatcher
The dispatcher has certain responsibilities. Each test must present the test_entry function address
to the dispatcher. To this function, the dispatcher passes a pointer to a structure containing the
function pointers to all the available VAL functions. These functions make the appropriate VAL
function call.

The flow of the dispatcher is as follows:

1. Query the test_entry function address.

2. Call the test_entry function of the test and execute the tests.

3. Wait for completion of the test.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

4. Print and save the result of the test.

5. Repeat steps 1-4 until the end of the last test.

6. Report the test suite result summary.

To facilitate test reporting and management of observing aspects, the PSA-FF system contains
UART for printing the status of tests. If a display console is not available, PAL can be updated to
make the test results available to the external world through other means.

Information about the environment in which a host test harness is running, is beyond the scope of
this document. However, it is presumed that the SUT is communicating with the host using serial
port, JTAG, Wi-Fi, USB, or any other means that allow for access to the external world.

3.6 Analyzing test run results
Each test follows a uniform test structure that is defined by VAL.

• Performing any test initializations.

• Dispatching the test functions.

• Waiting for test completion.

• Performing the test exit.

The test may pass, fail, skip, or be in an error state. For example, if the test times out or the system
hangs, it means that something went wrong and the test framework was unable to determine what
happened. In this case, you may have to check the logs. If a test fails or skips, you may see extra
print messages to determine the cause.

The test suite summary is displayed at the end. An example of the test suite summary is shown
below.

***** PSA Architecture Test Suite - Version 1.3 *****

Running.. Crypto Suite

TEST: 201 | DESCRIPTION: Testing psa_crypto_init API: Basic
TEST RESULT: PASSED

TEST: 202 | DESCRIPTION: Testing crypto key management APIs
Failed at Checkpoint : 3
Actual : 1
Expected : 0
TEST RESULT : FAILED (Error Code=0x1)

*************** Crypto Suite Report *************
TOTAL TESTS : 2
TOTAL PASSED : 1
TOTAL SIM ERROR : 0
TOTAL FAILED : 1

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01

Validation methodology

TOTAL SKIPPED : 0

Entering standby..

Debugging of a failed test
Each test is organized with a logical set of self-checking code. If a failure occurs, searching for the
relevant self-checking point is a useful point to start debugging.

Consider the above snippet of a failing test on the display console.

Here are some debugging points to consider.

• If the default prints do not give enough information, you can recompile and rerun the test
binaries with high print verbosity level. See the PSA test suite build README to understand
how test verbosity can be changed.

• In the above example, test 2 is failing. This test is located at dev_apis/crypto/test_c002/

• Since the failure message is shown as checkpoint 3, go to this print point in the test source
code and debug the failing cause. The checkpoints are reserved in the test suite as shown
below:

◦ Checkpoints 1-100 are reserved for functional APIs tests. Checkpoints print messages with
numbers which can come from test_[x][y].c file. Here, [x] is reserved for functional API
tests and [y] is the test number.

◦ Checkpoints 101-200 are reserved for client test functions of IPC tests and prints related
to these numbers can come from test_i[y].c

◦ Checkpoints 201-300 are reserved for server test functions of IPC tests and prints related
to these numbers can come from test_supp_i[y].c

• Status of the failure code (0x1 in this example) is mapped with a structure val_status_t that is
available at val/common/val.h. Look for enum that is dedicated to this number to see the status
in verbatim form.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01
Revisions

Appendix A Revisions
This appendix describes the technical changes between released issues of this book.

A.1 Revisions

Table A-1: Issue A

Change Location

This is the first revision of the document. -

Table A-2: Differences between Issue A and Issue B

Change Location

Updated the path to secure manifest files. See 3.1 Test layering details on page 14

Updated the test execution flow and SPE binary information. See the following sections:

• 3.3 Test execution flow on page 19

• 3.4 Integrating the test suite with the SUT on
page 21

Table A-3: Differences between Issue B and Issue C

Change Location

Added information about Functional APIs. See the following sections:

• 2.2 PSA APIs on page 9

• 2.3 Test suite on page 11

• 2.5 Directory structure on page 12

• 3.2 Test suite organization on page 15

• 3.3 Test execution flow on page 19

Added ITS and PS information. See the following sections:

• 2.1 Abbreviations on page 9

• 2.3 Test suite on page 11

Moved information about the test dispatcher to a new section. See 3.5 Test dispatcher on page 22

Updated the test suite summary and debugging details. See 3.6 Analyzing test run results on page 23

Table A-4: Differences between Issue C and Issue D

Change Location

Added PSA RoT sub category. See 2.3 Test suite on page 11.

Updated details about the compliance sign-off process. See Compliance sign-off process.

Added lifecycle test directory in the PSA-FF directory structure. See 3.2 Test suite organization on page 15.

Updated the section with details about integrating the test suite with the
SUT.

See 3.4 Integrating the test suite with the SUT on page
21.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 26

Arm® PSA-M Functional API Test Suite Validation
Methodology

Document ID: 101447_0103_01_en
Issue: 01
Revisions

Table A-5: Differences between Issue D and Issue E

Change Location

Added CMakeLists.txt to the directory structure. See 2.5 Directory structure on page 12.

Updated source.mk and test_entry.c to test.cmake and test_en\
try_i[x].c respectively.

See 3.2 Test suite organization on page 15.

Updated the information about PSA-FF and Functional APIs test execution. See 3.3 Test execution flow on page 19.

• Updated the combined test archive section.

• Updated the image for loading test binaries.

See 3.4 Integrating the test suite with the SUT on
page 21.

Updated the dispatcher flow. See 3.5 Test dispatcher on page 22.

Table A-6: Differences between Issue E and Issue F

Change Location

Removed the compliance sign-off process section from Introduction. See 2 Introduction to PSA test suite on page 9.

Updated the description for Secure partitions. See 3.1 Test layering details on page 14.

Table A-7: Differences between Issue F and Issue G

Change Location

No technical changes. -

Table A-8: Differences between Issue G and Issue 0102-01

Change Location

No technical changes. -

Table A-9: Differences between Issue 0102-01 and Issue 0103-01

Change Location

No technical changes. -

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 26

	Arm® PSA-M Functional API Test Suite
	Contents
	1 Introduction
	1.1 Conventions
	1.2 Additional reading
	1.3 Feedback
	1.4 Other information

	2 Introduction to PSA test suite
	2.1 Abbreviations
	2.2 PSA APIs
	2.2.1 PSA Firmware Framework
	2.2.2 PSA functional APIs

	2.3 Test suite
	2.4 Test suite components
	2.5 Directory structure
	2.6 Feedback and contributions

	3 Validation methodology
	3.1 Test layering details
	3.2 Test suite organization
	3.3 Test execution flow
	3.4 Integrating the test suite with the SUT
	3.5 Test dispatcher
	3.6 Analyzing test run results

	A Revisions
	A.1 Revisions

