David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame^] | 1 | /* sha256.c - TinyCrypt SHA-256 crypto hash algorithm implementation */ |
| 2 | |
| 3 | /* |
| 4 | * Copyright (C) 2015 by Intel Corporation, All Rights Reserved. |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions are met: |
| 8 | * |
| 9 | * - Redistributions of source code must retain the above copyright notice, |
| 10 | * this list of conditions and the following disclaimer. |
| 11 | * |
| 12 | * - Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in the |
| 14 | * documentation and/or other materials provided with the distribution. |
| 15 | * |
| 16 | * - Neither the name of Intel Corporation nor the names of its contributors |
| 17 | * may be used to endorse or promote products derived from this software |
| 18 | * without specific prior written permission. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 21 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 24 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | * POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | #include <tinycrypt/sha256.h> |
| 34 | #include <tinycrypt/constants.h> |
| 35 | #include <tinycrypt/utils.h> |
| 36 | |
| 37 | static void compress(uint32_t *iv, const uint8_t *data); |
| 38 | |
| 39 | int32_t tc_sha256_init(TCSha256State_t s) |
| 40 | { |
| 41 | /* input sanity check: */ |
| 42 | if (s == (TCSha256State_t) 0) { |
| 43 | return TC_CRYPTO_FAIL; |
| 44 | } |
| 45 | |
| 46 | /* |
| 47 | * Setting the initial state values. |
| 48 | * These values correspond to the first 32 bits of the fractional parts |
| 49 | * of the square roots of the first 8 primes: 2, 3, 5, 7, 11, 13, 17 |
| 50 | * and 19. |
| 51 | */ |
| 52 | _set((uint8_t *) s, 0x00, sizeof(*s)); |
| 53 | s->iv[0] = 0x6a09e667; |
| 54 | s->iv[1] = 0xbb67ae85; |
| 55 | s->iv[2] = 0x3c6ef372; |
| 56 | s->iv[3] = 0xa54ff53a; |
| 57 | s->iv[4] = 0x510e527f; |
| 58 | s->iv[5] = 0x9b05688c; |
| 59 | s->iv[6] = 0x1f83d9ab; |
| 60 | s->iv[7] = 0x5be0cd19; |
| 61 | |
| 62 | return TC_CRYPTO_SUCCESS; |
| 63 | } |
| 64 | |
| 65 | int32_t tc_sha256_update(TCSha256State_t s, const uint8_t *data, size_t datalen) |
| 66 | { |
| 67 | /* input sanity check: */ |
| 68 | if (s == (TCSha256State_t) 0 || |
| 69 | data == (void *) 0) { |
| 70 | return TC_CRYPTO_FAIL; |
| 71 | } else if (datalen == 0) { |
| 72 | return TC_CRYPTO_SUCCESS; |
| 73 | } |
| 74 | |
| 75 | while (datalen-- > 0) { |
| 76 | s->leftover[s->leftover_offset++] = *(data++); |
| 77 | if (s->leftover_offset >= TC_SHA256_BLOCK_SIZE) { |
| 78 | compress(s->iv, s->leftover); |
| 79 | s->leftover_offset = 0; |
| 80 | s->bits_hashed += (TC_SHA256_BLOCK_SIZE << 3); |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | return TC_CRYPTO_SUCCESS; |
| 85 | } |
| 86 | |
| 87 | int32_t tc_sha256_final(uint8_t *digest, TCSha256State_t s) |
| 88 | { |
| 89 | uint32_t i; |
| 90 | |
| 91 | /* input sanity check: */ |
| 92 | if (digest == (uint8_t *) 0 || |
| 93 | s == (TCSha256State_t) 0) { |
| 94 | return TC_CRYPTO_FAIL; |
| 95 | } |
| 96 | |
| 97 | s->bits_hashed += (s->leftover_offset << 3); |
| 98 | |
| 99 | s->leftover[s->leftover_offset++] = 0x80; /* always room for one byte */ |
| 100 | if (s->leftover_offset > (sizeof(s->leftover) - 8)) { |
| 101 | /* there is not room for all the padding in this block */ |
| 102 | _set(s->leftover + s->leftover_offset, 0x00, |
| 103 | sizeof(s->leftover) - s->leftover_offset); |
| 104 | compress(s->iv, s->leftover); |
| 105 | s->leftover_offset = 0; |
| 106 | } |
| 107 | |
| 108 | /* add the padding and the length in big-Endian format */ |
| 109 | _set(s->leftover + s->leftover_offset, 0x00, |
| 110 | sizeof(s->leftover) - 8 - s->leftover_offset); |
| 111 | s->leftover[sizeof(s->leftover) - 1] = (uint8_t)(s->bits_hashed); |
| 112 | s->leftover[sizeof(s->leftover) - 2] = (uint8_t)(s->bits_hashed >> 8); |
| 113 | s->leftover[sizeof(s->leftover) - 3] = (uint8_t)(s->bits_hashed >> 16); |
| 114 | s->leftover[sizeof(s->leftover) - 4] = (uint8_t)(s->bits_hashed >> 24); |
| 115 | s->leftover[sizeof(s->leftover) - 5] = (uint8_t)(s->bits_hashed >> 32); |
| 116 | s->leftover[sizeof(s->leftover) - 6] = (uint8_t)(s->bits_hashed >> 40); |
| 117 | s->leftover[sizeof(s->leftover) - 7] = (uint8_t)(s->bits_hashed >> 48); |
| 118 | s->leftover[sizeof(s->leftover) - 8] = (uint8_t)(s->bits_hashed >> 56); |
| 119 | |
| 120 | /* hash the padding and length */ |
| 121 | compress(s->iv, s->leftover); |
| 122 | |
| 123 | /* copy the iv out to digest */ |
| 124 | for (i = 0; i < TC_SHA256_STATE_BLOCKS; ++i) { |
| 125 | uint32_t t = *((uint32_t *) &s->iv[i]); |
| 126 | *digest++ = (uint8_t)(t >> 24); |
| 127 | *digest++ = (uint8_t)(t >> 16); |
| 128 | *digest++ = (uint8_t)(t >> 8); |
| 129 | *digest++ = (uint8_t)(t); |
| 130 | } |
| 131 | |
| 132 | /* destroy the current state */ |
| 133 | _set(s, 0, sizeof(*s)); |
| 134 | |
| 135 | return TC_CRYPTO_SUCCESS; |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * Initializing SHA-256 Hash constant words K. |
| 140 | * These values correspond to the first 32 bits of the fractional parts of the |
| 141 | * cube roots of the first 64 primes between 2 and 311. |
| 142 | */ |
| 143 | static const uint32_t k256[64] = { |
| 144 | 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, |
| 145 | 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
| 146 | 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, |
| 147 | 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
| 148 | 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, |
| 149 | 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
| 150 | 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, |
| 151 | 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
| 152 | 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, |
| 153 | 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
| 154 | 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
| 155 | }; |
| 156 | |
| 157 | static inline uint32_t ROTR(uint32_t a, uint32_t n) |
| 158 | { |
| 159 | return (((a) >> n) | ((a) << (32 - n))); |
| 160 | } |
| 161 | |
| 162 | #define Sigma0(a)(ROTR((a), 2) ^ ROTR((a), 13) ^ ROTR((a), 22)) |
| 163 | #define Sigma1(a)(ROTR((a), 6) ^ ROTR((a), 11) ^ ROTR((a), 25)) |
| 164 | #define sigma0(a)(ROTR((a), 7) ^ ROTR((a), 18) ^ ((a) >> 3)) |
| 165 | #define sigma1(a)(ROTR((a), 17) ^ ROTR((a), 19) ^ ((a) >> 10)) |
| 166 | |
| 167 | #define Ch(a, b, c)(((a) & (b)) ^ ((~(a)) & (c))) |
| 168 | #define Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))) |
| 169 | |
| 170 | static inline uint32_t BigEndian(const uint8_t **c) |
| 171 | { |
| 172 | uint32_t n = 0; |
| 173 | |
| 174 | n = (((uint32_t)(*((*c)++))) << 24); |
| 175 | n |= ((uint32_t)(*((*c)++)) << 16); |
| 176 | n |= ((uint32_t)(*((*c)++)) << 8); |
| 177 | n |= ((uint32_t)(*((*c)++))); |
| 178 | return n; |
| 179 | } |
| 180 | |
| 181 | static void compress(uint32_t *iv, const uint8_t *data) |
| 182 | { |
| 183 | uint32_t a, b, c, d, e, f, g, h; |
| 184 | uint32_t s0, s1; |
| 185 | uint32_t t1, t2; |
| 186 | uint32_t work_space[16]; |
| 187 | uint32_t n; |
| 188 | uint32_t i; |
| 189 | |
| 190 | a = iv[0]; b = iv[1]; c = iv[2]; d = iv[3]; |
| 191 | e = iv[4]; f = iv[5]; g = iv[6]; h = iv[7]; |
| 192 | |
| 193 | for (i = 0; i < 16; ++i) { |
| 194 | n = BigEndian(&data); |
| 195 | t1 = work_space[i] = n; |
| 196 | t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i]; |
| 197 | t2 = Sigma0(a) + Maj(a, b, c); |
| 198 | h = g; g = f; f = e; e = d + t1; |
| 199 | d = c; c = b; b = a; a = t1 + t2; |
| 200 | } |
| 201 | |
| 202 | for ( ; i < 64; ++i) { |
| 203 | s0 = work_space[(i+1)&0x0f]; |
| 204 | s0 = sigma0(s0); |
| 205 | s1 = work_space[(i+14)&0x0f]; |
| 206 | s1 = sigma1(s1); |
| 207 | |
| 208 | t1 = work_space[i&0xf] += s0 + s1 + work_space[(i+9)&0xf]; |
| 209 | t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i]; |
| 210 | t2 = Sigma0(a) + Maj(a, b, c); |
| 211 | h = g; g = f; f = e; e = d + t1; |
| 212 | d = c; c = b; b = a; a = t1 + t2; |
| 213 | } |
| 214 | |
| 215 | iv[0] += a; iv[1] += b; iv[2] += c; iv[3] += d; |
| 216 | iv[4] += e; iv[5] += f; iv[6] += g; iv[7] += h; |
| 217 | } |