David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame^] | 1 | /* hmac.c - TinyCrypt implementation of the HMAC algorithm */ |
| 2 | |
| 3 | /* |
| 4 | * Copyright (C) 2015 by Intel Corporation, All Rights Reserved. |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions are met: |
| 8 | * |
| 9 | * - Redistributions of source code must retain the above copyright notice, |
| 10 | * this list of conditions and the following disclaimer. |
| 11 | * |
| 12 | * - Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in the |
| 14 | * documentation and/or other materials provided with the distribution. |
| 15 | * |
| 16 | * - Neither the name of Intel Corporation nor the names of its contributors |
| 17 | * may be used to endorse or promote products derived from this software |
| 18 | * without specific prior written permission. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 21 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 24 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | * POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | #include <tinycrypt/hmac.h> |
| 34 | #include <tinycrypt/constants.h> |
| 35 | #include <tinycrypt/utils.h> |
| 36 | |
| 37 | static void rekey(uint8_t *key, const uint8_t *new_key, uint32_t key_size) |
| 38 | { |
| 39 | const uint8_t inner_pad = (uint8_t) 0x36; |
| 40 | const uint8_t outer_pad = (uint8_t) 0x5c; |
| 41 | uint32_t i; |
| 42 | |
| 43 | for (i = 0; i < key_size; ++i) { |
| 44 | key[i] = inner_pad ^ new_key[i]; |
| 45 | key[i + TC_SHA256_BLOCK_SIZE] = outer_pad ^ new_key[i]; |
| 46 | } |
| 47 | for (; i < TC_SHA256_BLOCK_SIZE; ++i) { |
| 48 | key[i] = inner_pad; key[i + TC_SHA256_BLOCK_SIZE] = outer_pad; |
| 49 | } |
| 50 | } |
| 51 | |
| 52 | int32_t tc_hmac_set_key(TCHmacState_t ctx, |
| 53 | const uint8_t *key, |
| 54 | uint32_t key_size) |
| 55 | { |
| 56 | /* input sanity check: */ |
| 57 | if (ctx == (TCHmacState_t) 0 || |
| 58 | key == (const uint8_t *) 0 || |
| 59 | key_size == 0) { |
| 60 | return TC_CRYPTO_FAIL; |
| 61 | } |
| 62 | |
| 63 | const uint8_t dummy_key[key_size]; |
| 64 | struct tc_hmac_state_struct dummy_state; |
| 65 | |
| 66 | if (key_size <= TC_SHA256_BLOCK_SIZE) { |
| 67 | /* |
| 68 | * The next three lines consist of dummy calls just to avoid |
| 69 | * certain timing attacks. Without these dummy calls, |
| 70 | * adversaries would be able to learn whether the key_size is |
| 71 | * greater than TC_SHA256_BLOCK_SIZE by measuring the time |
| 72 | * consumed in this process. |
| 73 | */ |
| 74 | (void)tc_sha256_init(&dummy_state.hash_state); |
| 75 | (void)tc_sha256_update(&dummy_state.hash_state, |
| 76 | dummy_key, |
| 77 | key_size); |
| 78 | (void)tc_sha256_final(&dummy_state.key[TC_SHA256_DIGEST_SIZE], |
| 79 | &dummy_state.hash_state); |
| 80 | |
| 81 | /* Actual code for when key_size <= TC_SHA256_BLOCK_SIZE: */ |
| 82 | rekey(ctx->key, key, key_size); |
| 83 | } else { |
| 84 | (void)tc_sha256_init(&ctx->hash_state); |
| 85 | (void)tc_sha256_update(&ctx->hash_state, key, key_size); |
| 86 | (void)tc_sha256_final(&ctx->key[TC_SHA256_DIGEST_SIZE], |
| 87 | &ctx->hash_state); |
| 88 | rekey(ctx->key, |
| 89 | &ctx->key[TC_SHA256_DIGEST_SIZE], |
| 90 | TC_SHA256_DIGEST_SIZE); |
| 91 | } |
| 92 | |
| 93 | return TC_CRYPTO_SUCCESS; |
| 94 | } |
| 95 | |
| 96 | int32_t tc_hmac_init(TCHmacState_t ctx) |
| 97 | { |
| 98 | /* input sanity check: */ |
| 99 | if (ctx == (TCHmacState_t) 0) { |
| 100 | return TC_CRYPTO_FAIL; |
| 101 | } |
| 102 | |
| 103 | (void)tc_sha256_init(&ctx->hash_state); |
| 104 | (void)tc_sha256_update(&ctx->hash_state, |
| 105 | ctx->key, |
| 106 | TC_SHA256_BLOCK_SIZE); |
| 107 | |
| 108 | return TC_CRYPTO_SUCCESS; |
| 109 | } |
| 110 | |
| 111 | int32_t tc_hmac_update(TCHmacState_t ctx, |
| 112 | const void *data, |
| 113 | uint32_t data_length) |
| 114 | { |
| 115 | /* input sanity check: */ |
| 116 | if (ctx == (TCHmacState_t) 0) { |
| 117 | return TC_CRYPTO_FAIL; |
| 118 | } |
| 119 | |
| 120 | (void)tc_sha256_update(&ctx->hash_state, data, data_length); |
| 121 | |
| 122 | return TC_CRYPTO_SUCCESS; |
| 123 | } |
| 124 | |
| 125 | int32_t tc_hmac_final(uint8_t *tag, uint32_t taglen, TCHmacState_t ctx) |
| 126 | { |
| 127 | /* input sanity check: */ |
| 128 | if (tag == (uint8_t *) 0 || |
| 129 | taglen != TC_SHA256_DIGEST_SIZE || |
| 130 | ctx == (TCHmacState_t) 0) { |
| 131 | return TC_CRYPTO_FAIL; |
| 132 | } |
| 133 | |
| 134 | (void) tc_sha256_final(tag, &ctx->hash_state); |
| 135 | |
| 136 | (void)tc_sha256_init(&ctx->hash_state); |
| 137 | (void)tc_sha256_update(&ctx->hash_state, |
| 138 | &ctx->key[TC_SHA256_BLOCK_SIZE], |
| 139 | TC_SHA256_BLOCK_SIZE); |
| 140 | (void)tc_sha256_update(&ctx->hash_state, tag, TC_SHA256_DIGEST_SIZE); |
| 141 | (void)tc_sha256_final(tag, &ctx->hash_state); |
| 142 | |
| 143 | /* destroy the current state */ |
| 144 | _set(ctx, 0, sizeof(*ctx)); |
| 145 | |
| 146 | return TC_CRYPTO_SUCCESS; |
| 147 | } |