David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame] | 1 | /* cmac_mode.c - TinyCrypt CMAC mode implementation */ |
| 2 | |
| 3 | /* |
Fabio Utzig | 3efe6b6 | 2017-09-22 16:03:24 -0300 | [diff] [blame] | 4 | * Copyright (C) 2017 by Intel Corporation, All Rights Reserved. |
David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame] | 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions are met: |
| 8 | * |
| 9 | * - Redistributions of source code must retain the above copyright notice, |
| 10 | * this list of conditions and the following disclaimer. |
| 11 | * |
| 12 | * - Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in the |
| 14 | * documentation and/or other materials provided with the distribution. |
| 15 | * |
| 16 | * - Neither the name of Intel Corporation nor the names of its contributors |
| 17 | * may be used to endorse or promote products derived from this software |
| 18 | * without specific prior written permission. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 21 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 24 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | * POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | #include <tinycrypt/aes.h> |
| 34 | #include <tinycrypt/cmac_mode.h> |
| 35 | #include <tinycrypt/constants.h> |
| 36 | #include <tinycrypt/utils.h> |
| 37 | |
| 38 | /* max number of calls until change the key (2^48).*/ |
Fabio Utzig | 3efe6b6 | 2017-09-22 16:03:24 -0300 | [diff] [blame] | 39 | const static uint64_t MAX_CALLS = ((uint64_t)1 << 48); |
David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame] | 40 | |
| 41 | /* |
| 42 | * gf_wrap -- In our implementation, GF(2^128) is represented as a 16 byte |
| 43 | * array with byte 0 the most significant and byte 15 the least significant. |
| 44 | * High bit carry reduction is based on the primitive polynomial |
| 45 | * |
| 46 | * X^128 + X^7 + X^2 + X + 1, |
| 47 | * |
| 48 | * which leads to the reduction formula X^128 = X^7 + X^2 + X + 1. Indeed, |
| 49 | * since 0 = (X^128 + X^7 + X^2 + 1) mod (X^128 + X^7 + X^2 + X + 1) and since |
| 50 | * addition of polynomials with coefficients in Z/Z(2) is just XOR, we can |
| 51 | * add X^128 to both sides to get |
| 52 | * |
| 53 | * X^128 = (X^7 + X^2 + X + 1) mod (X^128 + X^7 + X^2 + X + 1) |
| 54 | * |
| 55 | * and the coefficients of the polynomial on the right hand side form the |
| 56 | * string 1000 0111 = 0x87, which is the value of gf_wrap. |
| 57 | * |
| 58 | * This gets used in the following way. Doubling in GF(2^128) is just a left |
| 59 | * shift by 1 bit, except when the most significant bit is 1. In the latter |
| 60 | * case, the relation X^128 = X^7 + X^2 + X + 1 says that the high order bit |
| 61 | * that overflows beyond 128 bits can be replaced by addition of |
| 62 | * X^7 + X^2 + X + 1 <--> 0x87 to the low order 128 bits. Since addition |
| 63 | * in GF(2^128) is represented by XOR, we therefore only have to XOR 0x87 |
| 64 | * into the low order byte after a left shift when the starting high order |
| 65 | * bit is 1. |
| 66 | */ |
| 67 | const unsigned char gf_wrap = 0x87; |
| 68 | |
| 69 | /* |
| 70 | * assumes: out != NULL and points to a GF(2^n) value to receive the |
| 71 | * doubled value; |
| 72 | * in != NULL and points to a 16 byte GF(2^n) value |
| 73 | * to double; |
| 74 | * the in and out buffers do not overlap. |
| 75 | * effects: doubles the GF(2^n) value pointed to by "in" and places |
| 76 | * the result in the GF(2^n) value pointed to by "out." |
| 77 | */ |
| 78 | void gf_double(uint8_t *out, uint8_t *in) |
| 79 | { |
| 80 | |
| 81 | /* start with low order byte */ |
| 82 | uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1); |
| 83 | |
| 84 | /* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */ |
| 85 | uint8_t carry = (in[0] >> 7) ? gf_wrap : 0; |
| 86 | |
| 87 | out += (TC_AES_BLOCK_SIZE - 1); |
| 88 | for (;;) { |
| 89 | *out-- = (*x << 1) ^ carry; |
| 90 | if (x == in) { |
| 91 | break; |
| 92 | } |
| 93 | carry = *x-- >> 7; |
| 94 | } |
| 95 | } |
| 96 | |
Fabio Utzig | 3efe6b6 | 2017-09-22 16:03:24 -0300 | [diff] [blame] | 97 | int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched) |
David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame] | 98 | { |
| 99 | |
| 100 | /* input sanity check: */ |
| 101 | if (s == (TCCmacState_t) 0 || |
| 102 | key == (const uint8_t *) 0) { |
| 103 | return TC_CRYPTO_FAIL; |
| 104 | } |
| 105 | |
| 106 | /* put s into a known state */ |
| 107 | _set(s, 0, sizeof(*s)); |
| 108 | s->sched = sched; |
| 109 | |
| 110 | /* configure the encryption key used by the underlying block cipher */ |
| 111 | tc_aes128_set_encrypt_key(s->sched, key); |
| 112 | |
| 113 | /* compute s->K1 and s->K2 from s->iv using s->keyid */ |
| 114 | _set(s->iv, 0, TC_AES_BLOCK_SIZE); |
| 115 | tc_aes_encrypt(s->iv, s->iv, s->sched); |
| 116 | gf_double (s->K1, s->iv); |
| 117 | gf_double (s->K2, s->K1); |
| 118 | |
| 119 | /* reset s->iv to 0 in case someone wants to compute now */ |
| 120 | tc_cmac_init(s); |
| 121 | |
| 122 | return TC_CRYPTO_SUCCESS; |
| 123 | } |
| 124 | |
Fabio Utzig | 3efe6b6 | 2017-09-22 16:03:24 -0300 | [diff] [blame] | 125 | int tc_cmac_erase(TCCmacState_t s) |
David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame] | 126 | { |
| 127 | if (s == (TCCmacState_t) 0) { |
| 128 | return TC_CRYPTO_FAIL; |
| 129 | } |
| 130 | |
| 131 | /* destroy the current state */ |
| 132 | _set(s, 0, sizeof(*s)); |
| 133 | |
| 134 | return TC_CRYPTO_SUCCESS; |
| 135 | } |
| 136 | |
Fabio Utzig | 3efe6b6 | 2017-09-22 16:03:24 -0300 | [diff] [blame] | 137 | int tc_cmac_init(TCCmacState_t s) |
David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame] | 138 | { |
| 139 | /* input sanity check: */ |
| 140 | if (s == (TCCmacState_t) 0) { |
| 141 | return TC_CRYPTO_FAIL; |
| 142 | } |
| 143 | |
| 144 | /* CMAC starts with an all zero initialization vector */ |
| 145 | _set(s->iv, 0, TC_AES_BLOCK_SIZE); |
| 146 | |
| 147 | /* and the leftover buffer is empty */ |
| 148 | _set(s->leftover, 0, TC_AES_BLOCK_SIZE); |
| 149 | s->leftover_offset = 0; |
| 150 | |
| 151 | /* Set countdown to max number of calls allowed before re-keying: */ |
| 152 | s->countdown = MAX_CALLS; |
| 153 | |
| 154 | return TC_CRYPTO_SUCCESS; |
| 155 | } |
| 156 | |
Fabio Utzig | 3efe6b6 | 2017-09-22 16:03:24 -0300 | [diff] [blame] | 157 | int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length) |
David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame] | 158 | { |
Fabio Utzig | 3efe6b6 | 2017-09-22 16:03:24 -0300 | [diff] [blame] | 159 | unsigned int i; |
David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame] | 160 | |
| 161 | /* input sanity check: */ |
| 162 | if (s == (TCCmacState_t) 0) { |
| 163 | return TC_CRYPTO_FAIL; |
| 164 | } |
| 165 | if (data_length == 0) { |
| 166 | return TC_CRYPTO_SUCCESS; |
| 167 | } |
| 168 | if (data == (const uint8_t *) 0) { |
| 169 | return TC_CRYPTO_FAIL; |
| 170 | } |
| 171 | |
| 172 | if (s->countdown == 0) { |
| 173 | return TC_CRYPTO_FAIL; |
| 174 | } |
| 175 | |
| 176 | s->countdown--; |
| 177 | |
| 178 | if (s->leftover_offset > 0) { |
| 179 | /* last data added to s didn't end on a TC_AES_BLOCK_SIZE byte boundary */ |
| 180 | size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset; |
| 181 | |
| 182 | if (data_length < remaining_space) { |
| 183 | /* still not enough data to encrypt this time either */ |
| 184 | _copy(&s->leftover[s->leftover_offset], data_length, data, data_length); |
| 185 | s->leftover_offset += data_length; |
| 186 | return TC_CRYPTO_SUCCESS; |
| 187 | } |
| 188 | /* leftover block is now full; encrypt it first */ |
| 189 | _copy(&s->leftover[s->leftover_offset], |
| 190 | remaining_space, |
| 191 | data, |
| 192 | remaining_space); |
| 193 | data_length -= remaining_space; |
| 194 | data += remaining_space; |
| 195 | s->leftover_offset = 0; |
| 196 | |
| 197 | for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) { |
| 198 | s->iv[i] ^= s->leftover[i]; |
| 199 | } |
| 200 | tc_aes_encrypt(s->iv, s->iv, s->sched); |
| 201 | } |
| 202 | |
| 203 | /* CBC encrypt each (except the last) of the data blocks */ |
| 204 | while (data_length > TC_AES_BLOCK_SIZE) { |
| 205 | for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) { |
| 206 | s->iv[i] ^= data[i]; |
| 207 | } |
| 208 | tc_aes_encrypt(s->iv, s->iv, s->sched); |
| 209 | data += TC_AES_BLOCK_SIZE; |
| 210 | data_length -= TC_AES_BLOCK_SIZE; |
| 211 | } |
| 212 | |
| 213 | if (data_length > 0) { |
| 214 | /* save leftover data for next time */ |
| 215 | _copy(s->leftover, data_length, data, data_length); |
| 216 | s->leftover_offset = data_length; |
| 217 | } |
| 218 | |
| 219 | return TC_CRYPTO_SUCCESS; |
| 220 | } |
| 221 | |
Fabio Utzig | 3efe6b6 | 2017-09-22 16:03:24 -0300 | [diff] [blame] | 222 | int tc_cmac_final(uint8_t *tag, TCCmacState_t s) |
David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame] | 223 | { |
| 224 | uint8_t *k; |
Fabio Utzig | 3efe6b6 | 2017-09-22 16:03:24 -0300 | [diff] [blame] | 225 | unsigned int i; |
David Brown | fecda2d | 2017-09-07 10:20:34 -0600 | [diff] [blame] | 226 | |
| 227 | /* input sanity check: */ |
| 228 | if (tag == (uint8_t *) 0 || |
| 229 | s == (TCCmacState_t) 0) { |
| 230 | return TC_CRYPTO_FAIL; |
| 231 | } |
| 232 | |
| 233 | if (s->leftover_offset == TC_AES_BLOCK_SIZE) { |
| 234 | /* the last message block is a full-sized block */ |
| 235 | k = (uint8_t *) s->K1; |
| 236 | } else { |
| 237 | /* the final message block is not a full-sized block */ |
| 238 | size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset; |
| 239 | |
| 240 | _set(&s->leftover[s->leftover_offset], 0, remaining); |
| 241 | s->leftover[s->leftover_offset] = TC_CMAC_PADDING; |
| 242 | k = (uint8_t *) s->K2; |
| 243 | } |
| 244 | for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) { |
| 245 | s->iv[i] ^= s->leftover[i] ^ k[i]; |
| 246 | } |
| 247 | |
| 248 | tc_aes_encrypt(tag, s->iv, s->sched); |
| 249 | |
| 250 | /* erasing state: */ |
| 251 | tc_cmac_erase(s); |
| 252 | |
| 253 | return TC_CRYPTO_SUCCESS; |
| 254 | } |