blob: 1d678dbfc29c57ca1b516643e5d2b55ff2d2c37b [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine79733992022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Dave Rodgmane3c05852023-11-03 12:21:36 +000024 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
Gilles Peskinef3b731e2018-12-12 13:38:31 +010025 */
26
27#ifndef PSA_CRYPTO_VALUES_H
28#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020029#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010030
31/** \defgroup error Error codes
32 * @{
33 */
34
David Saadab4ecc272019-02-14 13:48:10 +020035/* PSA error codes */
36
Gilles Peskine79733992022-06-20 18:41:20 +020037/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskine955993c2022-06-29 14:37:17 +020038 * etc.). Do not change the values in this section or even the expansions
39 * of each macro: it must be possible to `#include` both this header
40 * and some other PSA component's headers in the same C source,
41 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
42 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
43 * to the same sequence of tokens.
44 *
45 * If you must add a new
Gilles Peskine79733992022-06-20 18:41:20 +020046 * value, check with the Arm PSA framework group to pick one that other
47 * domains aren't already using. */
48
Gilles Peskine45873ce2023-01-04 19:50:27 +010049/* Tell uncrustify not to touch the constant definitions, otherwise
50 * it might change the spacing to something that is not PSA-compliant
51 * (e.g. adding a space after casts).
52 *
53 * *INDENT-OFF*
54 */
55
Gilles Peskinef3b731e2018-12-12 13:38:31 +010056/** The action was completed successfully. */
57#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010058
59/** An error occurred that does not correspond to any defined
60 * failure cause.
61 *
62 * Implementations may use this error code if none of the other standard
63 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020064#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010065
66/** The requested operation or a parameter is not supported
67 * by this implementation.
68 *
69 * Implementations should return this error code when an enumeration
70 * parameter such as a key type, algorithm, etc. is not recognized.
71 * If a combination of parameters is recognized and identified as
72 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** The requested action is denied by a policy.
76 *
77 * Implementations should return this error code when the parameters
78 * are recognized as valid and supported, and a policy explicitly
79 * denies the requested operation.
80 *
81 * If a subset of the parameters of a function call identify a
82 * forbidden operation, and another subset of the parameters are
83 * not valid or not supported, it is unspecified whether the function
84 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
85 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
88/** An output buffer is too small.
89 *
90 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
91 * description to determine a sufficient buffer size.
92 *
93 * Implementations should preferably return this error code only
94 * in cases when performing the operation with a larger output
95 * buffer would succeed. However implementations may return this
96 * error if a function has invalid or unsupported parameters in addition
97 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020098#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
David Saadab4ecc272019-02-14 13:48:10 +0200100/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100101 *
David Saadab4ecc272019-02-14 13:48:10 +0200102 * Implementations should return this error, when attempting
103 * to write an item (like a key) that already exists. */
104#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100105
David Saadab4ecc272019-02-14 13:48:10 +0200106/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100107 *
David Saadab4ecc272019-02-14 13:48:10 +0200108 * Implementations should return this error, if a requested item (like
109 * a key) does not exist. */
110#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100111
112/** The requested action cannot be performed in the current state.
113 *
114 * Multipart operations return this error when one of the
115 * functions is called out of sequence. Refer to the function
116 * descriptions for permitted sequencing of functions.
117 *
118 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100119 * that a key either exists or not,
120 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * as applicable.
122 *
123 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200124 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100125 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** The parameters passed to the function are invalid.
129 *
130 * Implementations may return this error any time a parameter or
131 * combination of parameters are recognized as invalid.
132 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100133 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200134 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100135 * instead.
136 */
David Saadab4ecc272019-02-14 13:48:10 +0200137#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100138
139/** There is not enough runtime memory.
140 *
141 * If the action is carried out across multiple security realms, this
142 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200143#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100144
145/** There is not enough persistent storage.
146 *
147 * Functions that modify the key storage return this error code if
148 * there is insufficient storage space on the host media. In addition,
149 * many functions that do not otherwise access storage may return this
150 * error code if the implementation requires a mandatory log entry for
151 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200152#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153
154/** There was a communication failure inside the implementation.
155 *
156 * This can indicate a communication failure between the application
157 * and an external cryptoprocessor or between the cryptoprocessor and
158 * an external volatile or persistent memory. A communication failure
159 * may be transient or permanent depending on the cause.
160 *
161 * \warning If a function returns this error, it is undetermined
162 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200163 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
165 * if the requested action was completed successfully in an external
166 * cryptoprocessor but there was a breakdown of communication before
167 * the cryptoprocessor could report the status to the application.
168 */
David Saadab4ecc272019-02-14 13:48:10 +0200169#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100170
171/** There was a storage failure that may have led to data loss.
172 *
173 * This error indicates that some persistent storage is corrupted.
174 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200175 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 * between the cryptoprocessor and its external storage (use
177 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
178 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
179 *
180 * Note that a storage failure does not indicate that any data that was
181 * previously read is invalid. However this previously read data may no
182 * longer be readable from storage.
183 *
184 * When a storage failure occurs, it is no longer possible to ensure
185 * the global integrity of the keystore. Depending on the global
186 * integrity guarantees offered by the implementation, access to other
187 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100188 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189 *
190 * Implementations should only use this error code to report a
191 * permanent storage corruption. However application writers should
192 * keep in mind that transient errors while reading the storage may be
193 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200194#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100195
196/** A hardware failure was detected.
197 *
198 * A hardware failure may be transient or permanent depending on the
199 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200200#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100201
202/** A tampering attempt was detected.
203 *
204 * If an application receives this error code, there is no guarantee
205 * that previously accessed or computed data was correct and remains
206 * confidential. Applications should not perform any security function
207 * and should enter a safe failure state.
208 *
209 * Implementations may return this error code if they detect an invalid
210 * state that cannot happen during normal operation and that indicates
211 * that the implementation's security guarantees no longer hold. Depending
212 * on the implementation architecture and on its security and safety goals,
213 * the implementation may forcibly terminate the application.
214 *
215 * This error code is intended as a last resort when a security breach
216 * is detected and it is unsure whether the keystore data is still
217 * protected. Implementations shall only return this error code
218 * to report an alarm from a tampering detector, to indicate that
219 * the confidentiality of stored data can no longer be guaranteed,
220 * or to indicate that the integrity of previously returned data is now
221 * considered compromised. Implementations shall not use this error code
222 * to indicate a hardware failure that merely makes it impossible to
223 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
224 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
225 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
226 * instead).
227 *
228 * This error indicates an attack against the application. Implementations
229 * shall not return this error code as a consequence of the behavior of
230 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200231#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100232
233/** There is not enough entropy to generate random data needed
234 * for the requested action.
235 *
236 * This error indicates a failure of a hardware random generator.
237 * Application writers should note that this error can be returned not
238 * only by functions whose purpose is to generate random data, such
239 * as key, IV or nonce generation, but also by functions that execute
240 * an algorithm with a randomized result, as well as functions that
241 * use randomization of intermediate computations as a countermeasure
242 * to certain attacks.
243 *
244 * Implementations should avoid returning this error after psa_crypto_init()
245 * has succeeded. Implementations should generate sufficient
246 * entropy during initialization and subsequently use a cryptographically
247 * secure pseudorandom generator (PRNG). However implementations may return
248 * this error at any time if a policy requires the PRNG to be reseeded
249 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200250#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100251
252/** The signature, MAC or hash is incorrect.
253 *
254 * Verification functions return this error if the verification
255 * calculations completed successfully, and the value to be verified
256 * was determined to be incorrect.
257 *
258 * If the value to verify has an invalid size, implementations may return
259 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200260#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100261
262/** The decrypted padding is incorrect.
263 *
264 * \warning In some protocols, when decrypting data, it is essential that
265 * the behavior of the application does not depend on whether the padding
266 * is correct, down to precise timing. Applications should prefer
267 * protocols that use authenticated encryption rather than plain
268 * encryption. If the application must perform a decryption of
269 * unauthenticated data, the application writer should take care not
270 * to reveal whether the padding is invalid.
271 *
272 * Implementations should strive to make valid and invalid padding
273 * as close as possible to indistinguishable to an external observer.
274 * In particular, the timing of a decryption operation should not
275 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200276#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100277
David Saadab4ecc272019-02-14 13:48:10 +0200278/** Return this error when there's insufficient data when attempting
279 * to read from a resource. */
280#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100281
Ryan Everett0e3b6772024-01-08 11:11:39 +0000282/** This can be returned if a function can no longer operate correctly.
283 * For example, if an essential initialization operation failed or
284 * a mutex operation failed. */
285#define PSA_ERROR_SERVICE_FAILURE ((psa_status_t)-144)
286
Ronald Croncf56a0a2020-08-04 09:51:30 +0200287/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100288 */
David Saadab4ecc272019-02-14 13:48:10 +0200289#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100290
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100291/** Stored data has been corrupted.
292 *
293 * This error indicates that some persistent storage has suffered corruption.
294 * It does not indicate the following situations, which have specific error
295 * codes:
296 *
297 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
298 * - A communication error between the cryptoprocessor and its external
299 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
300 * - When the storage is in a valid state but is full - use
301 * #PSA_ERROR_INSUFFICIENT_STORAGE.
302 * - When the storage fails for other reasons - use
303 * #PSA_ERROR_STORAGE_FAILURE.
304 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
305 *
306 * \note A storage corruption does not indicate that any data that was
307 * previously read is invalid. However this previously read data might no
308 * longer be readable from storage.
309 *
310 * When a storage failure occurs, it is no longer possible to ensure the
311 * global integrity of the keystore.
312 */
313#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
314
gabor-mezei-armfe309242020-11-09 17:39:56 +0100315/** Data read from storage is not valid for the implementation.
316 *
317 * This error indicates that some data read from storage does not have a valid
318 * format. It does not indicate the following situations, which have specific
319 * error codes:
320 *
321 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
322 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
323 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
324 *
325 * This error is typically a result of either storage corruption on a
326 * cleartext storage backend, or an attempt to read data that was
327 * written by an incompatible version of the library.
328 */
329#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
330
Paul Elliott1265f002022-09-09 17:15:43 +0100331/** The function that returns this status is defined as interruptible and
332 * still has work to do, thus the user should call the function again with the
333 * same operation context until it either returns #PSA_SUCCESS or any other
334 * error. This is not an error per se, more a notification of status.
335 */
336#define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)
337
Gilles Peskine45873ce2023-01-04 19:50:27 +0100338/* *INDENT-ON* */
339
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340/**@}*/
341
342/** \defgroup crypto_types Key and algorithm types
343 * @{
344 */
345
Gilles Peskine79733992022-06-20 18:41:20 +0200346/* Note that key type values, including ECC family and DH group values, are
347 * embedded in the persistent key store, as part of key metadata. As a
348 * consequence, they must not be changed (unless the storage format version
349 * changes).
350 */
351
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100352/** An invalid key type value.
353 *
354 * Zero is not the encoding of any key type.
355 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100356#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100358/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100359 *
360 * Key types defined by this standard will never have the
361 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
362 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
363 * respect the bitwise structure used by standard encodings whenever practical.
364 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100365#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100366
Gilles Peskine449bd832023-01-11 14:50:10 +0100367#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
368#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
369#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
370#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
371#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100372
Gilles Peskine449bd832023-01-11 14:50:10 +0100373#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100374
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100375/** Whether a key type is vendor-defined.
376 *
377 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
378 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100379#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
380 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
381
382/** Whether a key type is an unstructured array of bytes.
383 *
384 * This encompasses both symmetric keys and non-key data.
385 */
386#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100387 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
388 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100389
390/** Whether a key type is asymmetric: either a key pair or a public key. */
391#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
392 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
393 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
394 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
395/** Whether a key type is the public part of a key pair. */
396#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
397 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
398/** Whether a key type is a key pair containing a private part and a public
399 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200400#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100401 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
402/** The key pair type corresponding to a public key type.
403 *
404 * You may also pass a key pair type as \p type, it will be left unchanged.
405 *
406 * \param type A public key type or key pair type.
407 *
408 * \return The corresponding key pair type.
409 * If \p type is not a public key or a key pair,
410 * the return value is undefined.
411 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200412#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100413 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
414/** The public key type corresponding to a key pair type.
415 *
Gilles Peskine4da1f012024-02-15 15:32:12 +0100416 * You may also pass a public key type as \p type, it will be left unchanged.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100417 *
418 * \param type A public key type or key pair type.
419 *
420 * \return The corresponding public key type.
421 * If \p type is not a public key or a key pair,
422 * the return value is undefined.
423 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200424#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100425 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
426
427/** Raw data.
428 *
429 * A "key" of this type cannot be used for any cryptographic operation.
430 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100431#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100432
433/** HMAC key.
434 *
435 * The key policy determines which underlying hash algorithm the key can be
436 * used for.
437 *
438 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100439 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100441#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100442
443/** A secret for key derivation.
444 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200445 * This key type is for high-entropy secrets only. For low-entropy secrets,
446 * #PSA_KEY_TYPE_PASSWORD should be used instead.
447 *
448 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
449 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
450 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100451 * The key policy determines which key derivation algorithm the key
452 * can be used for.
453 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100454#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100455
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200456/** A low-entropy secret for password hashing or key derivation.
457 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200458 * This key type is suitable for passwords and passphrases which are typically
459 * intended to be memorizable by humans, and have a low entropy relative to
460 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200461 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200462 * for such keys. It is not suitable for passwords with extremely low entropy,
463 * such as numerical PINs.
464 *
465 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
466 * key derivation algorithms. Algorithms that accept such an input were
467 * designed to accept low-entropy secret and are known as password hashing or
468 * key stretching algorithms.
469 *
470 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
471 * key derivation algorithms, as the algorithms that take such an input expect
472 * it to be high-entropy.
473 *
474 * The key policy determines which key derivation algorithm the key can be
475 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200476 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100477#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t) 0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200478
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200479/** A secret value that can be used to verify a password hash.
480 *
481 * The key policy determines which key derivation algorithm the key
482 * can be used for, among the same permissible subset as for
483 * #PSA_KEY_TYPE_PASSWORD.
484 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100485#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t) 0x1205)
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200486
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200487/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200488 *
489 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200490 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200491 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100492#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t) 0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200493
Gilles Peskine737c6be2019-05-21 16:01:06 +0200494/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100495 *
496 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
497 * 32 bytes (AES-256).
498 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100499#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200501/** Key for a cipher, AEAD or MAC algorithm based on the
502 * ARIA block cipher. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100503#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200504
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100505/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
506 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100507 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
508 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100509 *
510 * Note that single DES and 2-key 3DES are weak and strongly
511 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
512 * is weak and deprecated and should only be used in legacy protocols.
513 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100514#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100515
Gilles Peskine737c6be2019-05-21 16:01:06 +0200516/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100517 * Camellia block cipher. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100518#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100519
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200520/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
521 *
522 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
523 *
Gilles Peskine14d35542022-03-10 18:36:37 +0100524 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
525 * 12-byte nonces.
526 *
527 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
528 * with the initial counter value 1, you can process and discard a
529 * 64-byte block before the real data.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200530 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100531#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200532
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100533/** RSA public key.
534 *
535 * The size of an RSA key is the bit size of the modulus.
536 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100537#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100538/** RSA key pair (private and public key).
539 *
540 * The size of an RSA key is the bit size of the modulus.
541 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100542#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100543/** Whether a key type is an RSA key (pair or public-only). */
544#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200545 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100546
Gilles Peskine449bd832023-01-11 14:50:10 +0100547#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
548#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
549#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100550/** Elliptic curve key pair.
551 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100552 * The size of an elliptic curve key is the bit size associated with the curve,
553 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
554 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
555 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100556 * \param curve A value of type ::psa_ecc_family_t that
557 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100558 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200559#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
560 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100561/** Elliptic curve public key.
562 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100563 * The size of an elliptic curve public key is the same as the corresponding
564 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
565 * `PSA_ECC_FAMILY_xxx` curve families).
566 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100567 * \param curve A value of type ::psa_ecc_family_t that
568 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100569 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100570#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
571 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
572
573/** Whether a key type is an elliptic curve key (pair or public-only). */
574#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200575 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100576 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100577/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200578#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100579 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200580 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100581/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100582#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
583 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
584 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
585
586/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100587#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
588 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskine449bd832023-01-11 14:50:10 +0100589 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
590 0))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100591
Przemyslaw Stekiel6d3d18b2022-01-20 22:41:17 +0100592/** Check if the curve of given family is Weierstrass elliptic curve. */
593#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
594
Gilles Peskine228abc52019-12-03 17:24:19 +0100595/** SEC Koblitz curves over prime fields.
596 *
597 * This family comprises the following curves:
598 * secp192k1, secp224k1, secp256k1.
599 * They are defined in _Standards for Efficient Cryptography_,
600 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
601 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine6e206962024-01-03 20:59:03 +0100602 *
603 * \note For secp224k1, the bit-size is 225 (size of a private value).
Gilles Peskine44d557c2024-01-03 20:59:38 +0100604 *
605 * \note Mbed TLS only supports secp192k1 and secp256k1.
Gilles Peskine228abc52019-12-03 17:24:19 +0100606 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100607#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100608
609/** SEC random curves over prime fields.
610 *
611 * This family comprises the following curves:
Gilles Peskine2a22dac2024-01-03 20:58:55 +0100612 * secp192r1, secp224r1, secp256r1, secp384r1, secp521r1.
Gilles Peskine228abc52019-12-03 17:24:19 +0100613 * They are defined in _Standards for Efficient Cryptography_,
614 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
615 * https://www.secg.org/sec2-v2.pdf
616 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100617#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine44d557c2024-01-03 20:59:38 +0100618/* SECP160R2 (SEC2 v1, obsolete, not supported in Mbed TLS) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100619#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100620
621/** SEC Koblitz curves over binary fields.
622 *
623 * This family comprises the following curves:
624 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
625 * They are defined in _Standards for Efficient Cryptography_,
626 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
627 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine44d557c2024-01-03 20:59:38 +0100628 *
629 * \note Mbed TLS does not support any curve in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100630 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100631#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100632
633/** SEC random curves over binary fields.
634 *
635 * This family comprises the following curves:
636 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
637 * They are defined in _Standards for Efficient Cryptography_,
638 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
639 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine44d557c2024-01-03 20:59:38 +0100640 *
641 * \note Mbed TLS does not support any curve in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100642 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100643#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100644
645/** SEC additional random curves over binary fields.
646 *
647 * This family comprises the following curve:
648 * sect163r2.
649 * It is defined in _Standards for Efficient Cryptography_,
650 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
651 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine44d557c2024-01-03 20:59:38 +0100652 *
653 * \note Mbed TLS does not support any curve in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100654 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100655#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100656
657/** Brainpool P random curves.
658 *
659 * This family comprises the following curves:
660 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
661 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
662 * It is defined in RFC 5639.
Gilles Peskine44d557c2024-01-03 20:59:38 +0100663 *
664 * \note Mbed TLS only supports the 256-bit, 384-bit and 512-bit curves
665 * in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100666 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100667#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100668
669/** Curve25519 and Curve448.
670 *
671 * This family comprises the following Montgomery curves:
672 * - 255-bit: Bernstein et al.,
673 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
674 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
675 * - 448-bit: Hamburg,
676 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
677 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
678 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100679#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100680
Gilles Peskine67546802021-02-24 21:49:40 +0100681/** The twisted Edwards curves Ed25519 and Ed448.
682 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100683 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100684 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100685 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100686 *
687 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100688 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100689 * to Curve25519.
690 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
691 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
692 * to Curve448.
693 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
Gilles Peskine44d557c2024-01-03 20:59:38 +0100694 *
695 * \note Mbed TLS does not support Edwards curves yet.
Gilles Peskine67546802021-02-24 21:49:40 +0100696 */
697#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
698
Gilles Peskine449bd832023-01-11 14:50:10 +0100699#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
700#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
701#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100702/** Diffie-Hellman key pair.
703 *
Paul Elliott75e27032020-06-03 15:17:39 +0100704 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100705 * Diffie-Hellman group to be used.
706 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200707#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
708 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100709/** Diffie-Hellman public key.
710 *
Paul Elliott75e27032020-06-03 15:17:39 +0100711 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100712 * Diffie-Hellman group to be used.
713 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200714#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
715 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
716
717/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
718#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200719 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200720 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
721/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200722#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200723 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200724 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200725/** Whether a key type is a Diffie-Hellman public key. */
726#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
727 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
728 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
729
730/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100731#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
732 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskine449bd832023-01-11 14:50:10 +0100733 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
734 0))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200735
Gilles Peskine228abc52019-12-03 17:24:19 +0100736/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
737 *
738 * This family includes groups with the following key sizes (in bits):
739 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
740 * all of these sizes or only a subset.
741 */
Paul Elliott75e27032020-06-03 15:17:39 +0100742#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100743
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100744#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100745 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100746/** The block size of a block cipher.
747 *
748 * \param type A cipher key type (value of type #psa_key_type_t).
749 *
750 * \return The block size for a block cipher, or 1 for a stream cipher.
751 * The return value is undefined if \p type is not a supported
752 * cipher key type.
753 *
754 * \note It is possible to build stream cipher algorithms on top of a block
755 * cipher, for example CTR mode (#PSA_ALG_CTR).
756 * This macro only takes the key type into account, so it cannot be
757 * used to determine the size of the data that #psa_cipher_update()
758 * might buffer for future processing in general.
759 *
760 * \note This macro returns a compile-time constant if its argument is one.
761 *
762 * \warning This macro may evaluate its argument multiple times.
763 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100764#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100765 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100766 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine449bd832023-01-11 14:50:10 +0100767 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100768
Gilles Peskine79733992022-06-20 18:41:20 +0200769/* Note that algorithm values are embedded in the persistent key store,
770 * as part of key metadata. As a consequence, they must not be changed
771 * (unless the storage format version changes).
772 */
773
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100774/** Vendor-defined algorithm flag.
775 *
776 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
777 * bit set. Vendors who define additional algorithms must use an encoding with
778 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
779 * used by standard encodings whenever practical.
780 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100781#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100782
Gilles Peskine449bd832023-01-11 14:50:10 +0100783#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
784#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
785#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
786#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
787#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
788#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
789#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
790#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
791#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100792
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100793/** Whether an algorithm is vendor-defined.
794 *
795 * See also #PSA_ALG_VENDOR_FLAG.
796 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100797#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
798 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
799
800/** Whether the specified algorithm is a hash algorithm.
801 *
802 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
803 *
804 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
805 * This macro may return either 0 or 1 if \p alg is not a supported
806 * algorithm identifier.
807 */
808#define PSA_ALG_IS_HASH(alg) \
809 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
810
811/** Whether the specified algorithm is a MAC algorithm.
812 *
813 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
814 *
815 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
816 * This macro may return either 0 or 1 if \p alg is not a supported
817 * algorithm identifier.
818 */
819#define PSA_ALG_IS_MAC(alg) \
820 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
821
822/** Whether the specified algorithm is a symmetric cipher algorithm.
823 *
824 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
825 *
826 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
827 * This macro may return either 0 or 1 if \p alg is not a supported
828 * algorithm identifier.
829 */
830#define PSA_ALG_IS_CIPHER(alg) \
831 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
832
833/** Whether the specified algorithm is an authenticated encryption
834 * with associated data (AEAD) algorithm.
835 *
836 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
837 *
838 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
839 * This macro may return either 0 or 1 if \p alg is not a supported
840 * algorithm identifier.
841 */
842#define PSA_ALG_IS_AEAD(alg) \
843 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
844
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200845/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200846 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100847 *
848 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
849 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200850 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100851 * This macro may return either 0 or 1 if \p alg is not a supported
852 * algorithm identifier.
853 */
854#define PSA_ALG_IS_SIGN(alg) \
855 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
856
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200857/** Whether the specified algorithm is an asymmetric encryption algorithm,
858 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100859 *
860 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
861 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200862 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100863 * This macro may return either 0 or 1 if \p alg is not a supported
864 * algorithm identifier.
865 */
866#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
867 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
868
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100869/** Whether the specified algorithm is a key agreement algorithm.
870 *
871 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
872 *
873 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
874 * This macro may return either 0 or 1 if \p alg is not a supported
875 * algorithm identifier.
876 */
877#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100878 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100879
880/** Whether the specified algorithm is a key derivation algorithm.
881 *
882 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
883 *
884 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
885 * This macro may return either 0 or 1 if \p alg is not a supported
886 * algorithm identifier.
887 */
888#define PSA_ALG_IS_KEY_DERIVATION(alg) \
889 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
890
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200891/** Whether the specified algorithm is a key stretching / password hashing
892 * algorithm.
893 *
894 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200895 * that is suitable for use with a low-entropy secret such as a password.
896 * Equivalently, it's a key derivation algorithm that uses a
897 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200898 *
899 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
900 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100901 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200902 * otherwise. This macro may return either 0 or 1 if \p alg is not a
903 * supported algorithm identifier.
904 */
905#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
906 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
907 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
908
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200909/** An invalid algorithm identifier value. */
Gilles Peskinea6516072023-01-04 19:52:38 +0100910/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200911#define PSA_ALG_NONE ((psa_algorithm_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +0100912/* *INDENT-ON* */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200913
Gilles Peskine449bd832023-01-11 14:50:10 +0100914#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100915/** MD5 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100916#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100917/** PSA_ALG_RIPEMD160 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100918#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100919/** SHA1 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100920#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100921/** SHA2-224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100922#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100923/** SHA2-256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100924#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100925/** SHA2-384 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100926#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100927/** SHA2-512 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100928#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100929/** SHA2-512/224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100930#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100931/** SHA2-512/256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100932#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100933/** SHA3-224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100934#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100935/** SHA3-256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100936#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100937/** SHA3-384 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100938#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100939/** SHA3-512 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100940#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100941/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100942 *
943 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
944 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
945 * has the same output size and a (theoretically) higher security strength.
946 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100947#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100948
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100949/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100950 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100951 * This value may be used to form the algorithm usage field of a policy
952 * for a signature algorithm that is parametrized by a hash. The key
953 * may then be used to perform operations using the same signature
954 * algorithm parametrized with any supported hash.
955 *
956 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200957 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100958 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100959 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100960 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
961 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100962 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200963 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100964 * ```
965 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100966 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100967 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
968 * call to sign or verify a message may use a different hash.
969 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200970 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
971 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
972 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100973 * ```
974 *
975 * This value may not be used to build other algorithms that are
976 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100977 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100978 *
979 * This value may not be used to build an algorithm specification to
980 * perform an operation. It is only valid to build policies.
981 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100982#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100983
Gilles Peskine449bd832023-01-11 14:50:10 +0100984#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
985#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100986/** Macro to build an HMAC algorithm.
987 *
988 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
989 *
990 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
991 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
992 *
993 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100994 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100995 * hash algorithm.
996 */
997#define PSA_ALG_HMAC(hash_alg) \
998 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
999
1000#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
1001 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
1002
1003/** Whether the specified algorithm is an HMAC algorithm.
1004 *
1005 * HMAC is a family of MAC algorithms that are based on a hash function.
1006 *
1007 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1008 *
1009 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
1010 * This macro may return either 0 or 1 if \p alg is not a supported
1011 * algorithm identifier.
1012 */
1013#define PSA_ALG_IS_HMAC(alg) \
1014 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1015 PSA_ALG_HMAC_BASE)
1016
1017/* In the encoding of a MAC algorithm, the bits corresponding to
1018 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
1019 * truncated. As an exception, the value 0 means the untruncated algorithm,
1020 * whatever its length is. The length is encoded in 6 bits, so it can
1021 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1022 * to full length is correctly encoded as 0 and any non-trivial truncation
1023 * is correctly encoded as a value between 1 and 63. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001024#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001025#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001026
Steven Cooremand927ed72021-02-22 19:59:35 +01001027/* In the encoding of a MAC algorithm, the bit corresponding to
1028 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001029 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1030 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001031 * same base class and having a (potentially truncated) MAC length greater or
1032 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001033#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001034
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001035/** Macro to build a truncated MAC algorithm.
1036 *
1037 * A truncated MAC algorithm is identical to the corresponding MAC
1038 * algorithm except that the MAC value for the truncated algorithm
1039 * consists of only the first \p mac_length bytes of the MAC value
1040 * for the untruncated algorithm.
1041 *
1042 * \note This macro may allow constructing algorithm identifiers that
1043 * are not valid, either because the specified length is larger
1044 * than the untruncated MAC or because the specified length is
1045 * smaller than permitted by the implementation.
1046 *
1047 * \note It is implementation-defined whether a truncated MAC that
1048 * is truncated to the same length as the MAC of the untruncated
1049 * algorithm is considered identical to the untruncated algorithm
1050 * for policy comparison purposes.
1051 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001052 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001053 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001054 * is true). This may be a truncated or untruncated
1055 * MAC algorithm.
1056 * \param mac_length Desired length of the truncated MAC in bytes.
1057 * This must be at most the full length of the MAC
1058 * and must be at least an implementation-specified
1059 * minimum. The implementation-specified minimum
1060 * shall not be zero.
1061 *
1062 * \return The corresponding MAC algorithm with the specified
1063 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001064 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001065 * MAC algorithm or if \p mac_length is too small or
1066 * too large for the specified MAC algorithm.
1067 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001068#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1069 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1070 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001071 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1072
1073/** Macro to build the base MAC algorithm corresponding to a truncated
1074 * MAC algorithm.
1075 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001076 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001077 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001078 * is true). This may be a truncated or untruncated
1079 * MAC algorithm.
1080 *
1081 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001082 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001083 * MAC algorithm.
1084 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001085#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1086 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1087 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001088
1089/** Length to which a MAC algorithm is truncated.
1090 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001091 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001092 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001093 * is true).
1094 *
1095 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001096 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1097 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001098 * MAC algorithm.
1099 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001100#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1101 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001102
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001103/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001104 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001105 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001106 * sharing the same base algorithm, and where the (potentially truncated) MAC
1107 * length of the specific algorithm is equal to or larger then the wildcard
1108 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001109 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001110 * \note When setting the minimum required MAC length to less than the
1111 * smallest MAC length allowed by the base algorithm, this effectively
1112 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001113 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001114 * \param mac_alg A MAC algorithm identifier (value of type
1115 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1116 * is true).
1117 * \param min_mac_length Desired minimum length of the message authentication
1118 * code in bytes. This must be at most the untruncated
1119 * length of the MAC and must be at least 1.
1120 *
1121 * \return The corresponding MAC wildcard algorithm with the
1122 * specified minimum length.
1123 * \return Unspecified if \p mac_alg is not a supported MAC
1124 * algorithm or if \p min_mac_length is less than 1 or
1125 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001126 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001127#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001128 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1129 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001130
Gilles Peskine449bd832023-01-11 14:50:10 +01001131#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001132/** The CBC-MAC construction over a block cipher
1133 *
1134 * \warning CBC-MAC is insecure in many cases.
1135 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1136 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001137#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001138/** The CMAC construction over a block cipher */
Gilles Peskine449bd832023-01-11 14:50:10 +01001139#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001140
1141/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1142 *
1143 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1144 *
1145 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1146 * This macro may return either 0 or 1 if \p alg is not a supported
1147 * algorithm identifier.
1148 */
1149#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1150 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1151 PSA_ALG_CIPHER_MAC_BASE)
1152
Gilles Peskine449bd832023-01-11 14:50:10 +01001153#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1154#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001155
1156/** Whether the specified algorithm is a stream cipher.
1157 *
1158 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1159 * by applying a bitwise-xor with a stream of bytes that is generated
1160 * from a key.
1161 *
1162 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1163 *
1164 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1165 * This macro may return either 0 or 1 if \p alg is not a supported
1166 * algorithm identifier or if it is not a symmetric cipher algorithm.
1167 */
1168#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1169 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
Gilles Peskine449bd832023-01-11 14:50:10 +01001170 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001171
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001172/** The stream cipher mode of a stream cipher algorithm.
1173 *
1174 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001175 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001176 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001177#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001178
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001179/** The CTR stream cipher mode.
1180 *
1181 * CTR is a stream cipher which is built from a block cipher.
1182 * The underlying block cipher is determined by the key type.
1183 * For example, to use AES-128-CTR, use this algorithm with
1184 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1185 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001186#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001187
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001188/** The CFB stream cipher mode.
1189 *
1190 * The underlying block cipher is determined by the key type.
1191 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001192#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001193
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001194/** The OFB stream cipher mode.
1195 *
1196 * The underlying block cipher is determined by the key type.
1197 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001198#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001199
1200/** The XTS cipher mode.
1201 *
1202 * XTS is a cipher mode which is built from a block cipher. It requires at
1203 * least one full block of input, but beyond this minimum the input
1204 * does not need to be a whole number of blocks.
1205 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001206#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001207
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001208/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1209 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001210 * \warning ECB mode does not protect the confidentiality of the encrypted data
1211 * except in extremely narrow circumstances. It is recommended that applications
1212 * only use ECB if they need to construct an operating mode that the
1213 * implementation does not provide. Implementations are encouraged to provide
1214 * the modes that applications need in preference to supporting direct access
1215 * to ECB.
1216 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001217 * The underlying block cipher is determined by the key type.
1218 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001219 * This symmetric cipher mode can only be used with messages whose lengths are a
1220 * multiple of the block size of the chosen block cipher.
1221 *
1222 * ECB mode does not accept an initialization vector (IV). When using a
1223 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1224 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001225 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001226#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001227
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001228/** The CBC block cipher chaining mode, with no padding.
1229 *
1230 * The underlying block cipher is determined by the key type.
1231 *
1232 * This symmetric cipher mode can only be used with messages whose lengths
1233 * are whole number of blocks for the chosen block cipher.
1234 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001235#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001236
1237/** The CBC block cipher chaining mode with PKCS#7 padding.
1238 *
1239 * The underlying block cipher is determined by the key type.
1240 *
1241 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1242 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001243#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001244
Gilles Peskine449bd832023-01-11 14:50:10 +01001245#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskine679693e2019-05-06 15:10:16 +02001246
1247/** Whether the specified algorithm is an AEAD mode on a block cipher.
1248 *
1249 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1250 *
1251 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1252 * a block cipher, 0 otherwise.
1253 * This macro may return either 0 or 1 if \p alg is not a supported
1254 * algorithm identifier.
1255 */
1256#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1257 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1258 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1259
Gilles Peskine9153ec02019-02-15 13:02:02 +01001260/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001261 *
1262 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001263 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001264#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001265
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001266/** The CCM* cipher mode without authentication.
1267 *
1268 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1269 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1270 *
1271 * The underlying block cipher is determined by the key type.
1272 *
1273 * Currently only 13-byte long IV's are supported.
1274 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001275#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t) 0x04c01300)
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001276
Gilles Peskine9153ec02019-02-15 13:02:02 +01001277/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001278 *
1279 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001280 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001281#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001282
1283/** The Chacha20-Poly1305 AEAD algorithm.
1284 *
1285 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001286 *
1287 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1288 * and should reject other sizes.
1289 *
1290 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001291 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001292#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001293
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01001294/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001295 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1296 * The constants for default lengths follow this encoding.
1297 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001298#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001299#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001300
Steven Cooremand927ed72021-02-22 19:59:35 +01001301/* In the encoding of an AEAD algorithm, the bit corresponding to
1302 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001303 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1304 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001305 * same base class and having a tag length greater than or equal to the one
1306 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001307#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001308
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001309/** Macro to build a shortened AEAD algorithm.
1310 *
1311 * A shortened AEAD algorithm is similar to the corresponding AEAD
1312 * algorithm, but has an authentication tag that consists of fewer bytes.
1313 * Depending on the algorithm, the tag length may affect the calculation
1314 * of the ciphertext.
1315 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001316 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001317 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001318 * is true).
1319 * \param tag_length Desired length of the authentication tag in bytes.
1320 *
1321 * \return The corresponding AEAD algorithm with the specified
1322 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001323 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001324 * AEAD algorithm or if \p tag_length is not valid
1325 * for the specified AEAD algorithm.
1326 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001327#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001328 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1329 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001330 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
Gilles Peskine449bd832023-01-11 14:50:10 +01001331 PSA_ALG_AEAD_TAG_LENGTH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001332
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001333/** Retrieve the tag length of a specified AEAD algorithm
1334 *
1335 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001336 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001337 * is true).
1338 *
1339 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001340 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001341 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001342 */
1343#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1344 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
Gilles Peskine449bd832023-01-11 14:50:10 +01001345 PSA_AEAD_TAG_LENGTH_OFFSET)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001346
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001347/** Calculate the corresponding AEAD algorithm with the default tag length.
1348 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001349 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001350 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001351 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001352 * \return The corresponding AEAD algorithm with the default
1353 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001354 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001355#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001356 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001357 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1358 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1359 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001360 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001361#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1362 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1363 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001364 ref :
1365
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001366/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001367 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001368 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001369 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001370 * algorithm is equal to or larger then the minimum tag length specified by the
1371 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001372 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001373 * \note When setting the minimum required tag length to less than the
1374 * smallest tag length allowed by the base algorithm, this effectively
1375 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001376 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001377 * \param aead_alg An AEAD algorithm identifier (value of type
1378 * #psa_algorithm_t such that
1379 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1380 * \param min_tag_length Desired minimum length of the authentication tag in
1381 * bytes. This must be at least 1 and at most the largest
1382 * allowed tag length of the algorithm.
1383 *
1384 * \return The corresponding AEAD wildcard algorithm with the
1385 * specified minimum length.
1386 * \return Unspecified if \p aead_alg is not a supported
1387 * AEAD algorithm or if \p min_tag_length is less than 1
1388 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001389 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001390#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001391 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1392 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001393
Gilles Peskine449bd832023-01-11 14:50:10 +01001394#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001395/** RSA PKCS#1 v1.5 signature with hashing.
1396 *
1397 * This is the signature scheme defined by RFC 8017
1398 * (PKCS#1: RSA Cryptography Specifications) under the name
1399 * RSASSA-PKCS1-v1_5.
1400 *
1401 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1402 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001403 * This includes #PSA_ALG_ANY_HASH
1404 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001405 *
1406 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001407 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001408 * hash algorithm.
1409 */
1410#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1411 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1412/** Raw PKCS#1 v1.5 signature.
1413 *
1414 * The input to this algorithm is the DigestInfo structure used by
1415 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1416 * steps 3&ndash;6.
1417 */
1418#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1419#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1420 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1421
Gilles Peskine449bd832023-01-11 14:50:10 +01001422#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1423#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001424/** RSA PSS signature with hashing.
1425 *
1426 * This is the signature scheme defined by RFC 8017
1427 * (PKCS#1: RSA Cryptography Specifications) under the name
1428 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu44baacd2022-06-17 10:25:05 +01001429 * a salt length equal to the length of the hash, or the largest
1430 * possible salt length for the algorithm and key size if that is
1431 * smaller than the hash length. The specified hash algorithm is
1432 * used to hash the input message, to create the salted hash, and
1433 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001434 *
1435 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1436 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001437 * This includes #PSA_ALG_ANY_HASH
1438 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001439 *
1440 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001441 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001442 * hash algorithm.
1443 */
1444#define PSA_ALG_RSA_PSS(hash_alg) \
1445 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001446
1447/** RSA PSS signature with hashing with relaxed verification.
1448 *
1449 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1450 * but allows an arbitrary salt length (including \c 0) when verifying a
1451 * signature.
1452 *
1453 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1454 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1455 * This includes #PSA_ALG_ANY_HASH
1456 * when specifying the algorithm in a usage policy.
1457 *
1458 * \return The corresponding RSA PSS signature algorithm.
1459 * \return Unspecified if \p hash_alg is not a supported
1460 * hash algorithm.
1461 */
1462#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1463 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1464
1465/** Whether the specified algorithm is RSA PSS with standard salt.
1466 *
1467 * \param alg An algorithm value or an algorithm policy wildcard.
1468 *
1469 * \return 1 if \p alg is of the form
1470 * #PSA_ALG_RSA_PSS(\c hash_alg),
1471 * where \c hash_alg is a hash algorithm or
1472 * #PSA_ALG_ANY_HASH. 0 otherwise.
1473 * This macro may return either 0 or 1 if \p alg is not
1474 * a supported algorithm identifier or policy.
1475 */
1476#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001477 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1478
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001479/** Whether the specified algorithm is RSA PSS with any salt.
1480 *
1481 * \param alg An algorithm value or an algorithm policy wildcard.
1482 *
1483 * \return 1 if \p alg is of the form
1484 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1485 * where \c hash_alg is a hash algorithm or
1486 * #PSA_ALG_ANY_HASH. 0 otherwise.
1487 * This macro may return either 0 or 1 if \p alg is not
1488 * a supported algorithm identifier or policy.
1489 */
1490#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1491 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1492
1493/** Whether the specified algorithm is RSA PSS.
1494 *
1495 * This includes any of the RSA PSS algorithm variants, regardless of the
1496 * constraints on salt length.
1497 *
1498 * \param alg An algorithm value or an algorithm policy wildcard.
1499 *
1500 * \return 1 if \p alg is of the form
1501 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1502 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1503 * where \c hash_alg is a hash algorithm or
1504 * #PSA_ALG_ANY_HASH. 0 otherwise.
1505 * This macro may return either 0 or 1 if \p alg is not
1506 * a supported algorithm identifier or policy.
1507 */
1508#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001509 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1510 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001511
Gilles Peskine449bd832023-01-11 14:50:10 +01001512#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001513/** ECDSA signature with hashing.
1514 *
1515 * This is the ECDSA signature scheme defined by ANSI X9.62,
1516 * with a random per-message secret number (*k*).
1517 *
1518 * The representation of the signature as a byte string consists of
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001519 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001520 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1521 * of the base point of the curve in octets. Each value is represented
1522 * in big-endian order (most significant octet first).
1523 *
1524 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1525 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001526 * This includes #PSA_ALG_ANY_HASH
1527 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001528 *
1529 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001530 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001531 * hash algorithm.
1532 */
1533#define PSA_ALG_ECDSA(hash_alg) \
1534 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1535/** ECDSA signature without hashing.
1536 *
1537 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1538 * without specifying a hash algorithm. This algorithm may only be
1539 * used to sign or verify a sequence of bytes that should be an
1540 * already-calculated hash. Note that the input is padded with
1541 * zeros on the left or truncated on the left as required to fit
1542 * the curve size.
1543 */
1544#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Gilles Peskine449bd832023-01-11 14:50:10 +01001545#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001546/** Deterministic ECDSA signature with hashing.
1547 *
1548 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1549 *
1550 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1551 *
1552 * Note that when this algorithm is used for verification, signatures
1553 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1554 * same private key are accepted. In other words,
1555 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1556 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1557 *
1558 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1559 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001560 * This includes #PSA_ALG_ANY_HASH
1561 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001562 *
1563 * \return The corresponding deterministic ECDSA signature
1564 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001565 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001566 * hash algorithm.
1567 */
1568#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1569 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine449bd832023-01-11 14:50:10 +01001570#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001571#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001572 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001573 PSA_ALG_ECDSA_BASE)
1574#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001575 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001576#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1577 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1578#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1579 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1580
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001581/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1582 * using standard parameters.
1583 *
1584 * Contexts are not supported in the current version of this specification
1585 * because there is no suitable signature interface that can take the
1586 * context as a parameter. A future version of this specification may add
1587 * suitable functions and extend this algorithm to support contexts.
1588 *
1589 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1590 * In this specification, the following curves are supported:
1591 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1592 * in RFC 8032.
1593 * The curve is Edwards25519.
1594 * The hash function used internally is SHA-512.
1595 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1596 * in RFC 8032.
1597 * The curve is Edwards448.
1598 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001599 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001600 *
1601 * This algorithm can be used with psa_sign_message() and
1602 * psa_verify_message(). Since there is no prehashing, it cannot be used
1603 * with psa_sign_hash() or psa_verify_hash().
1604 *
1605 * The signature format is the concatenation of R and S as defined by
1606 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1607 * string for Ed448).
1608 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001609#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001610
Gilles Peskine449bd832023-01-11 14:50:10 +01001611#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001612#define PSA_ALG_IS_HASH_EDDSA(alg) \
1613 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1614
1615/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001616 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001617 *
1618 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1619 *
1620 * This algorithm is Ed25519 as specified in RFC 8032.
1621 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001622 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001623 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001624 *
1625 * This is a hash-and-sign algorithm: to calculate a signature,
1626 * you can either:
1627 * - call psa_sign_message() on the message;
1628 * - or calculate the SHA-512 hash of the message
1629 * with psa_hash_compute()
1630 * or with a multi-part hash operation started with psa_hash_setup(),
1631 * using the hash algorithm #PSA_ALG_SHA_512,
1632 * then sign the calculated hash with psa_sign_hash().
1633 * Verifying a signature is similar, using psa_verify_message() or
1634 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001635 */
1636#define PSA_ALG_ED25519PH \
1637 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1638
1639/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1640 * using SHAKE256 and the Edwards448 curve.
1641 *
1642 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1643 *
1644 * This algorithm is Ed448 as specified in RFC 8032.
1645 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001646 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001647 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001648 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001649 *
1650 * This is a hash-and-sign algorithm: to calculate a signature,
1651 * you can either:
1652 * - call psa_sign_message() on the message;
1653 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1654 * with psa_hash_compute()
1655 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001656 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001657 * then sign the calculated hash with psa_sign_hash().
1658 * Verifying a signature is similar, using psa_verify_message() or
1659 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001660 */
1661#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001662 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001663
Gilles Peskine6d400852021-02-24 21:39:52 +01001664/* Default definition, to be overridden if the library is extended with
1665 * more hash-and-sign algorithms that we want to keep out of this header
1666 * file. */
1667#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1668
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001669/** Whether the specified algorithm is a signature algorithm that can be used
1670 * with psa_sign_hash() and psa_verify_hash().
1671 *
1672 * This encompasses all strict hash-and-sign algorithms categorized by
1673 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1674 * paradigm more loosely:
1675 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1676 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1677 *
1678 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1679 *
1680 * \return 1 if alg is a signature algorithm that can be used to sign a
1681 * hash. 0 if alg is a signature algorithm that can only be used
1682 * to sign a message. 0 if alg is not a signature algorithm.
1683 * This macro can return either 0 or 1 if alg is not a
1684 * supported algorithm identifier.
1685 */
1686#define PSA_ALG_IS_SIGN_HASH(alg) \
1687 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1688 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1689 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1690
1691/** Whether the specified algorithm is a signature algorithm that can be used
1692 * with psa_sign_message() and psa_verify_message().
1693 *
1694 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1695 *
1696 * \return 1 if alg is a signature algorithm that can be used to sign a
1697 * message. 0 if \p alg is a signature algorithm that can only be used
1698 * to sign an already-calculated hash. 0 if \p alg is not a signature
1699 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1700 * supported algorithm identifier.
1701 */
1702#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001703 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001704
Gilles Peskined35b4892019-01-14 16:02:15 +01001705/** Whether the specified algorithm is a hash-and-sign algorithm.
1706 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001707 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1708 * structured in two parts: first the calculation of a hash in a way that
1709 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001710 * hash value and the key. Hash-and-sign algorithms encode the hash
1711 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1712 * to extract this algorithm.
1713 *
1714 * Thus, for a hash-and-sign algorithm,
1715 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1716 * ```
1717 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1718 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1719 * ```
1720 * Most usefully, separating the hash from the signature allows the hash
1721 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1722 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1723 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001724 *
1725 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1726 *
1727 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1728 * This macro may return either 0 or 1 if \p alg is not a supported
1729 * algorithm identifier.
1730 */
1731#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001732 (PSA_ALG_IS_SIGN_HASH(alg) && \
1733 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001734
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001735/** Get the hash used by a hash-and-sign signature algorithm.
1736 *
1737 * A hash-and-sign algorithm is a signature algorithm which is
1738 * composed of two phases: first a hashing phase which does not use
1739 * the key and produces a hash of the input message, then a signing
1740 * phase which only uses the hash and the key and not the message
1741 * itself.
1742 *
1743 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1744 * #PSA_ALG_IS_SIGN(\p alg) is true).
1745 *
1746 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1747 * algorithm.
1748 * \return 0 if \p alg is a signature algorithm that does not
1749 * follow the hash-and-sign structure.
1750 * \return Unspecified if \p alg is not a signature algorithm or
1751 * if it is not supported by the implementation.
1752 */
1753#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001754 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001755 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1756 0)
1757
1758/** RSA PKCS#1 v1.5 encryption.
Janos Follath393df9c2023-12-29 11:14:58 +00001759 *
1760 * \warning Calling psa_asymmetric_decrypt() with this algorithm as a
1761 * parameter is considered an inherently dangerous function
1762 * (CWE-242). Unless it is used in a side channel free and safe
1763 * way (eg. implementing the TLS protocol as per 7.4.7.1 of
1764 * RFC 5246), the calling code is vulnerable.
1765 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001766 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001767#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001768
Gilles Peskine449bd832023-01-11 14:50:10 +01001769#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001770/** RSA OAEP encryption.
1771 *
1772 * This is the encryption scheme defined by RFC 8017
1773 * (PKCS#1: RSA Cryptography Specifications) under the name
1774 * RSAES-OAEP, with the message generation function MGF1.
1775 *
1776 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1777 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1778 * for MGF1.
1779 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001780 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001781 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001782 * hash algorithm.
1783 */
1784#define PSA_ALG_RSA_OAEP(hash_alg) \
1785 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1786#define PSA_ALG_IS_RSA_OAEP(alg) \
1787 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1788#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1789 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1790 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1791 0)
1792
Gilles Peskine449bd832023-01-11 14:50:10 +01001793#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001794/** Macro to build an HKDF algorithm.
1795 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001796 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001797 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001798 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001799 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001800 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001801 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1802 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1803 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1804 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001805 * starting to generate output.
1806 *
Przemek Stekiel73f97d42022-06-03 09:05:08 +02001807 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1808 * if the salt is longer than the block size of the hash algorithm; then
1809 * pad with null bytes up to the block size. As a result, it is possible
1810 * for distinct salt inputs to result in the same outputs. To ensure
1811 * unique outputs, it is recommended to use a fixed length for salt values.
1812 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001813 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1814 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1815 *
1816 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001817 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001818 * hash algorithm.
1819 */
1820#define PSA_ALG_HKDF(hash_alg) \
1821 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1822/** Whether the specified algorithm is an HKDF algorithm.
1823 *
1824 * HKDF is a family of key derivation algorithms that are based on a hash
1825 * function and the HMAC construction.
1826 *
1827 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1828 *
1829 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1830 * This macro may return either 0 or 1 if \c alg is not a supported
1831 * key derivation algorithm identifier.
1832 */
1833#define PSA_ALG_IS_HKDF(alg) \
1834 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1835#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1836 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1837
Gilles Peskine449bd832023-01-11 14:50:10 +01001838#define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t) 0x08000400)
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001839/** Macro to build an HKDF-Extract algorithm.
1840 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001841 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001842 * HKDF-Extract using HMAC-SHA-256.
1843 *
1844 * This key derivation algorithm uses the following inputs:
Przemek Stekielb398d862022-05-18 15:43:54 +02001845 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001846 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1847 * "extract" step.
Przemek Stekielb398d862022-05-18 15:43:54 +02001848 * The inputs are mandatory and must be passed in the order above.
1849 * Each input may only be passed once.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001850 *
1851 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1852 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1853 * as a separate algorithm for the sake of protocols that use it as a
1854 * building block. It may also be a slight performance optimization
1855 * in applications that use HKDF with the same salt and key but many
1856 * different info strings.
1857 *
Przemek Stekielb398d862022-05-18 15:43:54 +02001858 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1859 * if the salt is longer than the block size of the hash algorithm; then
1860 * pad with null bytes up to the block size. As a result, it is possible
1861 * for distinct salt inputs to result in the same outputs. To ensure
1862 * unique outputs, it is recommended to use a fixed length for salt values.
1863 *
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001864 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1865 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1866 *
1867 * \return The corresponding HKDF-Extract algorithm.
1868 * \return Unspecified if \p hash_alg is not a supported
1869 * hash algorithm.
1870 */
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001871#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1872 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1873/** Whether the specified algorithm is an HKDF-Extract algorithm.
1874 *
1875 * HKDF-Extract is a family of key derivation algorithms that are based
1876 * on a hash function and the HMAC construction.
1877 *
1878 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1879 *
1880 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1881 * This macro may return either 0 or 1 if \c alg is not a supported
1882 * key derivation algorithm identifier.
1883 */
1884#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1885 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1886
Gilles Peskine449bd832023-01-11 14:50:10 +01001887#define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t) 0x08000500)
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001888/** Macro to build an HKDF-Expand algorithm.
1889 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001890 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001891 * HKDF-Expand using HMAC-SHA-256.
1892 *
1893 * This key derivation algorithm uses the following inputs:
Przemek Stekiel459ee352022-06-02 11:16:52 +02001894 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001895 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1896 *
1897 * The inputs are mandatory and must be passed in the order above.
1898 * Each input may only be passed once.
1899 *
1900 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1901 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1902 * a separate algorithm for the sake of protocols that use it as a building
1903 * block. It may also be a slight performance optimization in applications
1904 * that use HKDF with the same salt and key but many different info strings.
1905 *
1906 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1907 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1908 *
1909 * \return The corresponding HKDF-Expand algorithm.
1910 * \return Unspecified if \p hash_alg is not a supported
1911 * hash algorithm.
1912 */
1913#define PSA_ALG_HKDF_EXPAND(hash_alg) \
1914 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Przemek Stekielebf62812022-05-11 14:16:05 +02001915/** Whether the specified algorithm is an HKDF-Expand algorithm.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001916 *
1917 * HKDF-Expand is a family of key derivation algorithms that are based
1918 * on a hash function and the HMAC construction.
1919 *
1920 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1921 *
1922 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1923 * This macro may return either 0 or 1 if \c alg is not a supported
1924 * key derivation algorithm identifier.
1925 */
1926#define PSA_ALG_IS_HKDF_EXPAND(alg) \
1927 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1928
Przemek Stekiela29b4882022-06-02 11:37:03 +02001929/** Whether the specified algorithm is an HKDF or HKDF-Extract or
1930 * HKDF-Expand algorithm.
1931 *
1932 *
1933 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1934 *
1935 * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1936 * This macro may return either 0 or 1 if \c alg is not a supported
1937 * key derivation algorithm identifier.
1938 */
1939#define PSA_ALG_IS_ANY_HKDF(alg) \
1940 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
1941 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
1942 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1943
Gilles Peskine449bd832023-01-11 14:50:10 +01001944#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001945/** Macro to build a TLS-1.2 PRF algorithm.
1946 *
1947 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1948 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1949 * used with either SHA-256 or SHA-384.
1950 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001951 * This key derivation algorithm uses the following inputs, which must be
1952 * passed in the order given here:
1953 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001954 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1955 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001956 *
1957 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001958 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001959 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001960 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001961 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001962 * TLS 1.2 PRF using HMAC-SHA-256.
1963 *
1964 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1965 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1966 *
1967 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001968 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001969 * hash algorithm.
1970 */
1971#define PSA_ALG_TLS12_PRF(hash_alg) \
1972 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1973
1974/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1975 *
1976 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1977 *
1978 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1979 * This macro may return either 0 or 1 if \c alg is not a supported
1980 * key derivation algorithm identifier.
1981 */
1982#define PSA_ALG_IS_TLS12_PRF(alg) \
1983 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1984#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1985 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1986
Gilles Peskine449bd832023-01-11 14:50:10 +01001987#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001988/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1989 *
1990 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1991 * from the PreSharedKey (PSK) through the application of padding
1992 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1993 * The latter is based on HMAC and can be used with either SHA-256
1994 * or SHA-384.
1995 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001996 * This key derivation algorithm uses the following inputs, which must be
1997 * passed in the order given here:
1998 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001999 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
2000 * computation of the premaster secret. This input is optional;
2001 * if omitted, it defaults to a string of null bytes with the same length
2002 * as the secret (PSK) input.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002003 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
2004 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002005 *
2006 * For the application to TLS-1.2, the seed (which is
2007 * forwarded to the TLS-1.2 PRF) is the concatenation of the
2008 * ClientHello.Random + ServerHello.Random,
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002009 * the label is "master secret" or "extended master secret" and
2010 * the other secret depends on the key exchange specified in the cipher suite:
2011 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
2012 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
2013 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
2014 * (RFC 5489, Section 2), the other secret should be the output of the
2015 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
2016 * The recommended way to pass this input is to use a key derivation
2017 * algorithm constructed as
2018 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
2019 * and to call psa_key_derivation_key_agreement(). Alternatively,
2020 * this input may be an output of `psa_raw_key_agreement()` passed with
2021 * psa_key_derivation_input_bytes(), or an equivalent input passed with
2022 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
2023 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2024 * should be the 48-byte client challenge (the PreMasterSecret of
2025 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2026 * a 46-byte random string chosen by the client. On the server, this is
2027 * typically an output of psa_asymmetric_decrypt() using
2028 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2029 * with `psa_key_derivation_input_bytes()`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002030 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002031 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002032 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2033 *
2034 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2035 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2036 *
2037 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01002038 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002039 * hash algorithm.
2040 */
2041#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
2042 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2043
2044/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2045 *
2046 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2047 *
2048 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2049 * This macro may return either 0 or 1 if \c alg is not a supported
2050 * key derivation algorithm identifier.
2051 */
2052#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
2053 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2054#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
2055 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2056
Andrzej Kurek1fafb1f2022-09-16 07:19:49 -04002057/* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2058 * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2059 * will use to derive the session secret, as defined by step 2 of
2060 * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2061 * Uses PSA_ALG_SHA_256.
2062 * This function takes a single input:
2063 * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2064 * The only supported curve is secp256r1 (the 256-bit curve in
2065 * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
Andrzej Kureke09aff82022-09-26 10:59:31 -04002066 * The output has to be read as a single chunk of 32 bytes, defined as
2067 * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002068 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002069#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t) 0x08000609)
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002070
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002071/* This flag indicates whether the key derivation algorithm is suitable for
2072 * use on low-entropy secrets such as password - these algorithms are also
2073 * known as key stretching or password hashing schemes. These are also the
2074 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002075 *
2076 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002077 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002078#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t) 0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002079
Gilles Peskine449bd832023-01-11 14:50:10 +01002080#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t) 0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002081/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002082 *
2083 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002084 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2085 * HMAC with the specified hash.
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002086 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002087 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002088 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002089 * This key derivation algorithm uses the following inputs, which must be
2090 * provided in the following order:
2091 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002092 * This input step must be used exactly once.
2093 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2094 * This input step must be used one or more times; if used several times, the
2095 * inputs will be concatenated. This can be used to build the final salt
2096 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002097 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002098 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002099 *
2100 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2101 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2102 *
2103 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2104 * \return Unspecified if \p hash_alg is not a supported
2105 * hash algorithm.
2106 */
2107#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2108 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2109
2110/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2111 *
2112 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2113 *
2114 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2115 * This macro may return either 0 or 1 if \c alg is not a supported
2116 * key derivation algorithm identifier.
2117 */
2118#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2119 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Kusumit Ghoderao10cc6bd2023-05-24 12:35:14 +05302120#define PSA_ALG_PBKDF2_HMAC_GET_HASH(pbkdf2_alg) \
2121 (PSA_ALG_CATEGORY_HASH | ((pbkdf2_alg) & PSA_ALG_HASH_MASK))
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002122/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2123 *
2124 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2125 * This macro specifies the PBKDF2 algorithm constructed using the
2126 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2127 *
2128 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02002129 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002130 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002131#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t) 0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002132
Kusumit Ghoderao9ab03c32023-07-27 21:14:05 +05302133#define PSA_ALG_IS_PBKDF2(kdf_alg) \
2134 (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg) || \
Kusumit Ghoderao9928ca12023-08-16 11:48:27 +05302135 ((kdf_alg) == PSA_ALG_PBKDF2_AES_CMAC_PRF_128))
Kusumit Ghoderao9ab03c32023-07-27 21:14:05 +05302136
Gilles Peskine449bd832023-01-11 14:50:10 +01002137#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
2138#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002139
Gilles Peskine6843c292019-01-18 16:44:49 +01002140/** Macro to build a combined algorithm that chains a key agreement with
2141 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002142 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002143 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2144 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2145 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2146 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002147 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002148 * \return The corresponding key agreement and derivation
2149 * algorithm.
2150 * \return Unspecified if \p ka_alg is not a supported
2151 * key agreement algorithm or \p kdf_alg is not a
2152 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002153 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002154#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2155 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002156
2157#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2158 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2159
Gilles Peskine6843c292019-01-18 16:44:49 +01002160#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2161 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002162
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002163/** Whether the specified algorithm is a raw key agreement algorithm.
2164 *
2165 * A raw key agreement algorithm is one that does not specify
2166 * a key derivation function.
2167 * Usually, raw key agreement algorithms are constructed directly with
2168 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02002169 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002170 *
2171 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2172 *
2173 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2174 * This macro may return either 0 or 1 if \p alg is not a supported
2175 * algorithm identifier.
2176 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002177#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002178 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2179 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01002180
2181#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2182 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2183
2184/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002185 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002186 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002187 * `g^{ab}` in big-endian format.
2188 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2189 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002190 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002191#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002192
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002193/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2194 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002195 * This includes the raw finite field Diffie-Hellman algorithm as well as
2196 * finite-field Diffie-Hellman followed by any supporter key derivation
2197 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002198 *
2199 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2200 *
2201 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2202 * This macro may return either 0 or 1 if \c alg is not a supported
2203 * key agreement algorithm identifier.
2204 */
2205#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002206 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002207
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002208/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2209 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002210 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002211 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2212 * `m` is the bit size associated with the curve, i.e. the bit size of the
2213 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2214 * the byte containing the most significant bit of the shared secret
2215 * is padded with zero bits. The byte order is either little-endian
2216 * or big-endian depending on the curve type.
2217 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01002218 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002219 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2220 * in little-endian byte order.
2221 * The bit size is 448 for Curve448 and 255 for Curve25519.
2222 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002223 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002224 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2225 * in big-endian byte order.
2226 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2227 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002228 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002229 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2230 * in big-endian byte order.
2231 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002232 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002233#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002234
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002235/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2236 * algorithm.
2237 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002238 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2239 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2240 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002241 *
2242 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2243 *
2244 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2245 * 0 otherwise.
2246 * This macro may return either 0 or 1 if \c alg is not a supported
2247 * key agreement algorithm identifier.
2248 */
2249#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002250 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002251
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002252/** Whether the specified algorithm encoding is a wildcard.
2253 *
2254 * Wildcard values may only be used to set the usage algorithm field in
2255 * a policy, not to perform an operation.
2256 *
2257 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2258 *
2259 * \return 1 if \c alg is a wildcard algorithm encoding.
2260 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2261 * an operation).
2262 * \return This macro may return either 0 or 1 if \c alg is not a supported
2263 * algorithm identifier.
2264 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002265#define PSA_ALG_IS_WILDCARD(alg) \
2266 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2267 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2268 PSA_ALG_IS_MAC(alg) ? \
2269 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2270 PSA_ALG_IS_AEAD(alg) ? \
2271 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002272 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002273
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002274/** Get the hash used by a composite algorithm.
2275 *
2276 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2277 *
2278 * \return The underlying hash algorithm if alg is a composite algorithm that
2279 * uses a hash algorithm.
2280 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002281 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002282 */
2283#define PSA_ALG_GET_HASH(alg) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002284 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002285
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002286/**@}*/
2287
2288/** \defgroup key_lifetimes Key lifetimes
2289 * @{
2290 */
2291
Gilles Peskine79733992022-06-20 18:41:20 +02002292/* Note that location and persistence level values are embedded in the
2293 * persistent key store, as part of key metadata. As a consequence, they
2294 * must not be changed (unless the storage format version changes).
2295 */
2296
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002297/** The default lifetime for volatile keys.
2298 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002299 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002300 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002301 *
2302 * A key with this lifetime is typically stored in the RAM area of the
2303 * PSA Crypto subsystem. However this is an implementation choice.
2304 * If an implementation stores data about the key in a non-volatile memory,
2305 * it must release all the resources associated with the key and erase the
2306 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002307 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002308#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002309
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002310/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002311 *
2312 * A persistent key remains in storage until it is explicitly destroyed or
2313 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002314 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002315 * provide their own mechanism (for example to perform a factory reset,
2316 * to prepare for device refurbishment, or to uninstall an application).
2317 *
2318 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002319 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002320 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002321 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002322#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002323
Gilles Peskineaff11812020-05-04 19:03:10 +02002324/** The persistence level of volatile keys.
2325 *
2326 * See ::psa_key_persistence_t for more information.
2327 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002328#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002329
2330/** The default persistence level for persistent keys.
2331 *
2332 * See ::psa_key_persistence_t for more information.
2333 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002334#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002335
2336/** A persistence level indicating that a key is never destroyed.
2337 *
2338 * See ::psa_key_persistence_t for more information.
2339 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002340#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002341
2342#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002343 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002344
2345#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002346 ((psa_key_location_t) ((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002347
2348/** Whether a key lifetime indicates that the key is volatile.
2349 *
2350 * A volatile key is automatically destroyed by the implementation when
2351 * the application instance terminates. In particular, a volatile key
2352 * is automatically destroyed on a power reset of the device.
2353 *
2354 * A key that is not volatile is persistent. Persistent keys are
2355 * preserved until the application explicitly destroys them or until an
2356 * implementation-specific device management event occurs (for example,
2357 * a factory reset).
2358 *
2359 * \param lifetime The lifetime value to query (value of type
2360 * ::psa_key_lifetime_t).
2361 *
2362 * \return \c 1 if the key is volatile, otherwise \c 0.
2363 */
2364#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2365 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002366 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002367
Gilles Peskined133bb22021-04-21 20:05:59 +02002368/** Whether a key lifetime indicates that the key is read-only.
2369 *
2370 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2371 * They must be created through platform-specific means that bypass the API.
2372 *
2373 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002374 * consider a platform with multiple levels of privilege, where a
2375 * low-privilege application can use a key but is not allowed to destroy
2376 * it, and the platform exposes the key to the application with a read-only
2377 * lifetime. High-privilege code can destroy the key even though the
2378 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002379 *
2380 * \param lifetime The lifetime value to query (value of type
2381 * ::psa_key_lifetime_t).
2382 *
2383 * \return \c 1 if the key is read-only, otherwise \c 0.
2384 */
2385#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2386 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2387 PSA_KEY_PERSISTENCE_READ_ONLY)
2388
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002389/** Construct a lifetime from a persistence level and a location.
2390 *
2391 * \param persistence The persistence level
2392 * (value of type ::psa_key_persistence_t).
2393 * \param location The location indicator
2394 * (value of type ::psa_key_location_t).
2395 *
2396 * \return The constructed lifetime value.
2397 */
2398#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2399 ((location) << 8 | (persistence))
2400
Gilles Peskineaff11812020-05-04 19:03:10 +02002401/** The local storage area for persistent keys.
2402 *
2403 * This storage area is available on all systems that can store persistent
2404 * keys without delegating the storage to a third-party cryptoprocessor.
2405 *
2406 * See ::psa_key_location_t for more information.
2407 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002408#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002409
Gilles Peskine449bd832023-01-11 14:50:10 +01002410#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002411
Gilles Peskine79733992022-06-20 18:41:20 +02002412/* Note that key identifier values are embedded in the
2413 * persistent key store, as part of key metadata. As a consequence, they
2414 * must not be changed (unless the storage format version changes).
2415 */
2416
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002417/** The null key identifier.
2418 */
Gilles Peskinea6516072023-01-04 19:52:38 +01002419/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002420#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +01002421/* *INDENT-ON* */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002422/** The minimum value for a key identifier chosen by the application.
2423 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002424#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002425/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002426 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002427#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002428/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002429 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002430#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002431/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002432 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002433#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002434
Ronald Cron7424f0d2020-09-14 16:17:41 +02002435
2436#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2437
Gilles Peskine449bd832023-01-11 14:50:10 +01002438#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2439#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2440#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002441
2442/** Utility to initialize a key identifier at runtime.
2443 *
2444 * \param unused Unused parameter.
2445 * \param key_id Identifier of the key.
2446 */
2447static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine449bd832023-01-11 14:50:10 +01002448 unsigned int unused, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002449{
Gilles Peskine449bd832023-01-11 14:50:10 +01002450 (void) unused;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002451
Gilles Peskine449bd832023-01-11 14:50:10 +01002452 return key_id;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002453}
2454
2455/** Compare two key identifiers.
2456 *
2457 * \param id1 First key identifier.
2458 * \param id2 Second key identifier.
2459 *
2460 * \return Non-zero if the two key identifier are equal, zero otherwise.
2461 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002462static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2463 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002464{
Gilles Peskine449bd832023-01-11 14:50:10 +01002465 return id1 == id2;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002466}
2467
Ronald Cronc4d1b512020-07-31 11:26:37 +02002468/** Check whether a key identifier is null.
2469 *
2470 * \param key Key identifier.
2471 *
2472 * \return Non-zero if the key identifier is null, zero otherwise.
2473 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002474static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002475{
Gilles Peskine449bd832023-01-11 14:50:10 +01002476 return key == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002477}
2478
Ronald Cron7424f0d2020-09-14 16:17:41 +02002479#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2480
Gilles Peskine449bd832023-01-11 14:50:10 +01002481#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2482#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2483#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
Ronald Cron7424f0d2020-09-14 16:17:41 +02002484
2485/** Utility to initialize a key identifier at runtime.
2486 *
2487 * \param owner_id Identifier of the key owner.
2488 * \param key_id Identifier of the key.
2489 */
2490static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine449bd832023-01-11 14:50:10 +01002491 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002492{
Gilles Peskine449bd832023-01-11 14:50:10 +01002493 return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2494 .MBEDTLS_PRIVATE(owner) = owner_id };
Ronald Cron7424f0d2020-09-14 16:17:41 +02002495}
2496
2497/** Compare two key identifiers.
2498 *
2499 * \param id1 First key identifier.
2500 * \param id2 Second key identifier.
2501 *
2502 * \return Non-zero if the two key identifier are equal, zero otherwise.
2503 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002504static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2505 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002506{
Gilles Peskine449bd832023-01-11 14:50:10 +01002507 return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2508 mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
Ronald Cron7424f0d2020-09-14 16:17:41 +02002509}
2510
Ronald Cronc4d1b512020-07-31 11:26:37 +02002511/** Check whether a key identifier is null.
2512 *
2513 * \param key Key identifier.
2514 *
2515 * \return Non-zero if the key identifier is null, zero otherwise.
2516 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002517static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002518{
Gilles Peskine449bd832023-01-11 14:50:10 +01002519 return key.MBEDTLS_PRIVATE(key_id) == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002520}
2521
Ronald Cron7424f0d2020-09-14 16:17:41 +02002522#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002523
2524/**@}*/
2525
2526/** \defgroup policy Key policies
2527 * @{
2528 */
2529
Gilles Peskine79733992022-06-20 18:41:20 +02002530/* Note that key usage flags are embedded in the
2531 * persistent key store, as part of key metadata. As a consequence, they
2532 * must not be changed (unless the storage format version changes).
2533 */
2534
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002535/** Whether the key may be exported.
2536 *
2537 * A public key or the public part of a key pair may always be exported
2538 * regardless of the value of this permission flag.
2539 *
2540 * If a key does not have export permission, implementations shall not
2541 * allow the key to be exported in plain form from the cryptoprocessor,
2542 * whether through psa_export_key() or through a proprietary interface.
2543 * The key may however be exportable in a wrapped form, i.e. in a form
2544 * where it is encrypted by another key.
2545 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002546#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002547
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002548/** Whether the key may be copied.
2549 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002550 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002551 * with the same policy or a more restrictive policy.
2552 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002553 * For lifetimes for which the key is located in a secure element which
2554 * enforce the non-exportability of keys, copying a key outside the secure
2555 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2556 * Copying the key inside the secure element is permitted with just
2557 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2558 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002559 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2560 * is sufficient to permit the copy.
2561 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002562#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002563
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002564/** Whether the key may be used to encrypt a message.
2565 *
2566 * This flag allows the key to be used for a symmetric encryption operation,
2567 * for an AEAD encryption-and-authentication operation,
2568 * or for an asymmetric encryption operation,
2569 * if otherwise permitted by the key's type and policy.
2570 *
2571 * For a key pair, this concerns the public key.
2572 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002573#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002574
2575/** Whether the key may be used to decrypt a message.
2576 *
2577 * This flag allows the key to be used for a symmetric decryption operation,
2578 * for an AEAD decryption-and-verification operation,
2579 * or for an asymmetric decryption operation,
2580 * if otherwise permitted by the key's type and policy.
2581 *
2582 * For a key pair, this concerns the private key.
2583 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002584#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002585
2586/** Whether the key may be used to sign a message.
2587 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002588 * This flag allows the key to be used for a MAC calculation operation or for
2589 * an asymmetric message signature operation, if otherwise permitted by the
2590 * key’s type and policy.
2591 *
2592 * For a key pair, this concerns the private key.
2593 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002594#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002595
2596/** Whether the key may be used to verify a message.
2597 *
2598 * This flag allows the key to be used for a MAC verification operation or for
2599 * an asymmetric message signature verification operation, if otherwise
2600 * permitted by the key’s type and policy.
2601 *
2602 * For a key pair, this concerns the public key.
2603 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002604#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002605
2606/** Whether the key may be used to sign a message.
2607 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002608 * This flag allows the key to be used for a MAC calculation operation
2609 * or for an asymmetric signature operation,
2610 * if otherwise permitted by the key's type and policy.
2611 *
2612 * For a key pair, this concerns the private key.
2613 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002614#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002615
2616/** Whether the key may be used to verify a message signature.
2617 *
2618 * This flag allows the key to be used for a MAC verification operation
2619 * or for an asymmetric signature verification operation,
Tom Cosgrove1797b052022-12-04 17:19:59 +00002620 * if otherwise permitted by the key's type and policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002621 *
2622 * For a key pair, this concerns the public key.
2623 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002624#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002625
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002626/** Whether the key may be used to derive other keys or produce a password
2627 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002628 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002629 * This flag allows the key to be used for a key derivation operation or for
Tom Cosgrove1797b052022-12-04 17:19:59 +00002630 * a key agreement operation, if otherwise permitted by the key's type and
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002631 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002632 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002633 * If this flag is present on all keys used in calls to
2634 * psa_key_derivation_input_key() for a key derivation operation, then it
2635 * permits calling psa_key_derivation_output_bytes() or
2636 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002637 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002638#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002639
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002640/** Whether the key may be used to verify the result of a key derivation,
2641 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002642 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002643 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002644 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002645 * This flag allows the key to be used in a key derivation operation, if
Tom Cosgrove1797b052022-12-04 17:19:59 +00002646 * otherwise permitted by the key's type and policy.
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002647 *
2648 * If this flag is present on all keys used in calls to
2649 * psa_key_derivation_input_key() for a key derivation operation, then it
2650 * permits calling psa_key_derivation_verify_bytes() or
2651 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002652 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002653#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t) 0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002654
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002655/**@}*/
2656
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002657/** \defgroup derivation Key derivation
2658 * @{
2659 */
2660
Gilles Peskine79733992022-06-20 18:41:20 +02002661/* Key input steps are not embedded in the persistent storage, so you can
2662 * change them if needed: it's only an ABI change. */
2663
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002664/** A secret input for key derivation.
2665 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002666 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2667 * (passed to psa_key_derivation_input_key())
2668 * or the shared secret resulting from a key agreement
2669 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002670 *
2671 * The secret can also be a direct input (passed to
2672 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002673 * may not be used to derive keys: the operation will only allow
2674 * psa_key_derivation_output_bytes(),
2675 * psa_key_derivation_verify_bytes(), or
2676 * psa_key_derivation_verify_key(), but not
2677 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002678 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002679#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002680
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002681/** A low-entropy secret input for password hashing / key stretching.
2682 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002683 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2684 * psa_key_derivation_input_key()) or a direct input (passed to
2685 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2686 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2687 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002688 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002689 * The secret can also be a direct input (passed to
2690 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002691 * may not be used to derive keys: the operation will only allow
2692 * psa_key_derivation_output_bytes(),
2693 * psa_key_derivation_verify_bytes(), or
2694 * psa_key_derivation_verify_key(), but not
2695 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002696 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002697#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t) 0x0102)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002698
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002699/** A high-entropy additional secret input for key derivation.
2700 *
2701 * This is typically the shared secret resulting from a key agreement obtained
2702 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2703 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2704 * a direct input passed to `psa_key_derivation_input_bytes()`.
2705 */
2706#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
Gilles Peskine449bd832023-01-11 14:50:10 +01002707 ((psa_key_derivation_step_t) 0x0103)
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002708
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002709/** A label for key derivation.
2710 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002711 * This should be a direct input.
2712 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002713 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002714#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002715
2716/** A salt for key derivation.
2717 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002718 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002719 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2720 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002721 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002722#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002723
2724/** An information string for key derivation.
2725 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002726 * This should be a direct input.
2727 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002728 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002729#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002730
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002731/** A seed for key derivation.
2732 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002733 * This should be a direct input.
2734 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002735 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002736#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002737
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002738/** A cost parameter for password hashing / key stretching.
2739 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002740 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002741 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002742#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t) 0x0205)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002743
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002744/**@}*/
2745
Bence Szépkútib639d432021-04-21 10:33:54 +02002746/** \defgroup helper_macros Helper macros
2747 * @{
2748 */
2749
2750/* Helper macros */
2751
2752/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2753 * regardless of the tag length they encode.
2754 *
2755 * \param aead_alg_1 An AEAD algorithm identifier.
2756 * \param aead_alg_2 An AEAD algorithm identifier.
2757 *
2758 * \return 1 if both identifiers refer to the same AEAD algorithm,
2759 * 0 otherwise.
2760 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2761 * a supported AEAD algorithm.
2762 */
2763#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2764 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2765 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2766
2767/**@}*/
2768
Paul Elliott1265f002022-09-09 17:15:43 +01002769/**@}*/
2770
2771/** \defgroup interruptible Interruptible operations
2772 * @{
2773 */
2774
2775/** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
2776 * the maximum number of ops allowed to be executed by an interruptible
2777 * function in a single call.
2778 */
Paul Elliottab7c5c82023-02-03 15:49:42 +00002779#define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
Paul Elliott1265f002022-09-09 17:15:43 +01002780
2781/**@}*/
2782
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002783#endif /* PSA_CRYPTO_VALUES_H */