blob: f663d6737c77294b8ba9433c77c0d8e39b29a813 [file] [log] [blame]
Janos Follathb0697532016-08-18 12:38:46 +01001/**
Gilles Peskine6a2fb612021-05-24 22:25:04 +02002 * \file ecp_internal_alt.h
Janos Follathb0697532016-08-18 12:38:46 +01003 *
Janos Follath372697b2016-10-28 16:53:11 +01004 * \brief Function declarations for alternative implementation of elliptic curve
5 * point arithmetic.
Darryl Greena40a1012018-01-05 15:33:17 +00006 */
7/*
Bence Szépkúti1e148272020-08-07 13:07:28 +02008 * Copyright The Mbed TLS Contributors
Janos Follathb0697532016-08-18 12:38:46 +01009 * SPDX-License-Identifier: Apache-2.0
10 *
11 * Licensed under the Apache License, Version 2.0 (the "License"); you may
12 * not use this file except in compliance with the License.
13 * You may obtain a copy of the License at
14 *
15 * http://www.apache.org/licenses/LICENSE-2.0
16 *
17 * Unless required by applicable law or agreed to in writing, software
18 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
19 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20 * See the License for the specific language governing permissions and
21 * limitations under the License.
Janos Follathb0697532016-08-18 12:38:46 +010022 */
Janos Follathaab9efb2016-12-02 13:49:21 +000023
24/*
25 * References:
26 *
Janos Follath5634b862016-12-08 16:15:51 +000027 * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
28 * <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
Janos Follathaab9efb2016-12-02 13:49:21 +000029 *
30 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
31 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
32 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
33 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
34 *
35 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
36 * render ECC resistant against Side Channel Attacks. IACR Cryptology
37 * ePrint Archive, 2004, vol. 2004, p. 342.
38 * <http://eprint.iacr.org/2004/342.pdf>
Janos Follath5634b862016-12-08 16:15:51 +000039 *
40 * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
41 * <http://www.secg.org/sec2-v2.pdf>
42 *
43 * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
44 * Curve Cryptography.
45 *
46 * [6] Digital Signature Standard (DSS), FIPS 186-4.
47 * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
48 *
Darryl Green11999bb2018-03-13 15:22:58 +000049 * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
Janos Follath5634b862016-12-08 16:15:51 +000050 * Security (TLS), RFC 4492.
51 * <https://tools.ietf.org/search/rfc4492>
52 *
53 * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
54 *
55 * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
56 * Springer Science & Business Media, 1 Aug 2000
Janos Follathaab9efb2016-12-02 13:49:21 +000057 */
58
Janos Follathc44ab972016-11-18 16:38:23 +000059#ifndef MBEDTLS_ECP_INTERNAL_H
60#define MBEDTLS_ECP_INTERNAL_H
Janos Follathb0697532016-08-18 12:38:46 +010061
Bence Szépkútic662b362021-05-27 11:25:03 +020062#include "mbedtls/build_info.h"
Andrzej Kurekc470b6b2019-01-31 08:20:20 -050063
Janos Follathc44ab972016-11-18 16:38:23 +000064#if defined(MBEDTLS_ECP_INTERNAL_ALT)
Janos Follathb0697532016-08-18 12:38:46 +010065
Janos Follathaab9efb2016-12-02 13:49:21 +000066/**
Janos Follath5634b862016-12-08 16:15:51 +000067 * \brief Indicate if the Elliptic Curve Point module extension can
68 * handle the group.
Janos Follathaab9efb2016-12-02 13:49:21 +000069 *
Janos Follath5634b862016-12-08 16:15:51 +000070 * \param grp The pointer to the elliptic curve group that will be the
71 * basis of the cryptographic computations.
Janos Follathaab9efb2016-12-02 13:49:21 +000072 *
73 * \return Non-zero if successful.
74 */
Gilles Peskine449bd832023-01-11 14:50:10 +010075unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp);
Janos Follathb0697532016-08-18 12:38:46 +010076
Janos Follathaab9efb2016-12-02 13:49:21 +000077/**
Janos Follath5634b862016-12-08 16:15:51 +000078 * \brief Initialise the Elliptic Curve Point module extension.
Janos Follathaab9efb2016-12-02 13:49:21 +000079 *
80 * If mbedtls_internal_ecp_grp_capable returns true for a
81 * group, this function has to be able to initialise the
Janos Follath5634b862016-12-08 16:15:51 +000082 * module for it.
Janos Follathaab9efb2016-12-02 13:49:21 +000083 *
Janos Follath5634b862016-12-08 16:15:51 +000084 * This module can be a driver to a crypto hardware
85 * accelerator, for which this could be an initialise function.
86 *
87 * \param grp The pointer to the group the module needs to be
Janos Follathaab9efb2016-12-02 13:49:21 +000088 * initialised for.
89 *
90 * \return 0 if successful.
91 */
Gilles Peskine449bd832023-01-11 14:50:10 +010092int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp);
Janos Follathb0697532016-08-18 12:38:46 +010093
Janos Follathaab9efb2016-12-02 13:49:21 +000094/**
Janos Follath5634b862016-12-08 16:15:51 +000095 * \brief Frees and deallocates the Elliptic Curve Point module
96 * extension.
Janos Follathaab9efb2016-12-02 13:49:21 +000097 *
Janos Follath5634b862016-12-08 16:15:51 +000098 * \param grp The pointer to the group the module was initialised for.
Janos Follathaab9efb2016-12-02 13:49:21 +000099 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100100void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp);
Janos Follathb0697532016-08-18 12:38:46 +0100101
Gilles Peskinee8c04fe2018-09-14 17:44:21 +0200102#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
Janos Follathaab9efb2016-12-02 13:49:21 +0000103
Janos Follathb0697532016-08-18 12:38:46 +0100104#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
Janos Follathaab9efb2016-12-02 13:49:21 +0000105/**
106 * \brief Randomize jacobian coordinates:
107 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
108 *
Janos Follathaab9efb2016-12-02 13:49:21 +0000109 * \param grp Pointer to the group representing the curve.
110 *
111 * \param pt The point on the curve to be randomised, given with Jacobian
112 * coordinates.
113 *
114 * \param f_rng A function pointer to the random number generator.
115 *
116 * \param p_rng A pointer to the random number generator state.
117 *
118 * \return 0 if successful.
119 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100120int mbedtls_internal_ecp_randomize_jac(const mbedtls_ecp_group *grp,
121 mbedtls_ecp_point *pt, int (*f_rng)(void *,
122 unsigned char *,
123 size_t),
124 void *p_rng);
Janos Follathb0697532016-08-18 12:38:46 +0100125#endif
126
127#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
Janos Follathaab9efb2016-12-02 13:49:21 +0000128/**
129 * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
130 *
131 * The coordinates of Q must be normalized (= affine),
132 * but those of P don't need to. R is not normalized.
133 *
Janos Follath5634b862016-12-08 16:15:51 +0000134 * This function is used only as a subrutine of
135 * ecp_mul_comb().
136 *
Janos Follathaab9efb2016-12-02 13:49:21 +0000137 * Special cases: (1) P or Q is zero, (2) R is zero,
138 * (3) P == Q.
139 * None of these cases can happen as intermediate step in
140 * ecp_mul_comb():
141 * - at each step, P, Q and R are multiples of the base
142 * point, the factor being less than its order, so none of
143 * them is zero;
144 * - Q is an odd multiple of the base point, P an even
145 * multiple, due to the choice of precomputed points in the
146 * modified comb method.
147 * So branches for these cases do not leak secret information.
148 *
149 * We accept Q->Z being unset (saving memory in tables) as
150 * meaning 1.
151 *
Janos Follath5634b862016-12-08 16:15:51 +0000152 * Cost in field operations if done by [5] 3.22:
Janos Follathaab9efb2016-12-02 13:49:21 +0000153 * 1A := 8M + 3S
154 *
155 * \param grp Pointer to the group representing the curve.
156 *
157 * \param R Pointer to a point structure to hold the result.
158 *
159 * \param P Pointer to the first summand, given with Jacobian
160 * coordinates
161 *
162 * \param Q Pointer to the second summand, given with affine
163 * coordinates.
164 *
165 * \return 0 if successful.
166 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100167int mbedtls_internal_ecp_add_mixed(const mbedtls_ecp_group *grp,
168 mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
169 const mbedtls_ecp_point *Q);
Janos Follathb0697532016-08-18 12:38:46 +0100170#endif
171
Janos Follathaab9efb2016-12-02 13:49:21 +0000172/**
173 * \brief Point doubling R = 2 P, Jacobian coordinates.
174 *
175 * Cost: 1D := 3M + 4S (A == 0)
176 * 4M + 4S (A == -3)
177 * 3M + 6S + 1a otherwise
Janos Follath5634b862016-12-08 16:15:51 +0000178 * when the implementation is based on the "dbl-1998-cmo-2"
179 * doubling formulas in [8] and standard optimizations are
180 * applied when curve parameter A is one of { 0, -3 }.
Janos Follathaab9efb2016-12-02 13:49:21 +0000181 *
182 * \param grp Pointer to the group representing the curve.
183 *
184 * \param R Pointer to a point structure to hold the result.
185 *
186 * \param P Pointer to the point that has to be doubled, given with
187 * Jacobian coordinates.
188 *
189 * \return 0 if successful.
190 */
Janos Follathb0697532016-08-18 12:38:46 +0100191#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100192int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp,
193 mbedtls_ecp_point *R, const mbedtls_ecp_point *P);
Janos Follathb0697532016-08-18 12:38:46 +0100194#endif
195
Janos Follathaab9efb2016-12-02 13:49:21 +0000196/**
197 * \brief Normalize jacobian coordinates of an array of (pointers to)
198 * points.
199 *
200 * Using Montgomery's trick to perform only one inversion mod P
201 * the cost is:
202 * 1N(t) := 1I + (6t - 3)M + 1S
Janos Follath5634b862016-12-08 16:15:51 +0000203 * (See for example Algorithm 10.3.4. in [9])
204 *
205 * This function is used only as a subrutine of
206 * ecp_mul_comb().
Janos Follathaab9efb2016-12-02 13:49:21 +0000207 *
208 * Warning: fails (returning an error) if one of the points is
209 * zero!
210 * This should never happen, see choice of w in ecp_mul_comb().
211 *
212 * \param grp Pointer to the group representing the curve.
213 *
214 * \param T Array of pointers to the points to normalise.
215 *
216 * \param t_len Number of elements in the array.
217 *
218 * \return 0 if successful,
219 * an error if one of the points is zero.
220 */
Janos Follathb0697532016-08-18 12:38:46 +0100221#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100222int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
223 mbedtls_ecp_point *T[], size_t t_len);
Janos Follathb0697532016-08-18 12:38:46 +0100224#endif
225
Janos Follathaab9efb2016-12-02 13:49:21 +0000226/**
227 * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
228 *
Janos Follath5634b862016-12-08 16:15:51 +0000229 * Cost in field operations if done by [5] 3.2.1:
Janos Follathaab9efb2016-12-02 13:49:21 +0000230 * 1N := 1I + 3M + 1S
231 *
232 * \param grp Pointer to the group representing the curve.
233 *
234 * \param pt pointer to the point to be normalised. This is an
235 * input/output parameter.
236 *
237 * \return 0 if successful.
238 */
Janos Follathb0697532016-08-18 12:38:46 +0100239#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100240int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp,
241 mbedtls_ecp_point *pt);
Janos Follathb0697532016-08-18 12:38:46 +0100242#endif
243
Gilles Peskinee8c04fe2018-09-14 17:44:21 +0200244#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
Janos Follathaab9efb2016-12-02 13:49:21 +0000245
Gilles Peskinee8c04fe2018-09-14 17:44:21 +0200246#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
Janos Follathaab9efb2016-12-02 13:49:21 +0000247
Janos Follathb0697532016-08-18 12:38:46 +0100248#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100249int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp,
250 mbedtls_ecp_point *R,
251 mbedtls_ecp_point *S,
252 const mbedtls_ecp_point *P,
253 const mbedtls_ecp_point *Q,
254 const mbedtls_mpi *d);
Janos Follathb0697532016-08-18 12:38:46 +0100255#endif
256
Janos Follathaab9efb2016-12-02 13:49:21 +0000257/**
258 * \brief Randomize projective x/z coordinates:
259 * (X, Z) -> (l X, l Z) for random l
Janos Follathaab9efb2016-12-02 13:49:21 +0000260 *
261 * \param grp pointer to the group representing the curve
262 *
263 * \param P the point on the curve to be randomised given with
264 * projective coordinates. This is an input/output parameter.
265 *
266 * \param f_rng a function pointer to the random number generator
267 *
268 * \param p_rng a pointer to the random number generator state
269 *
270 * \return 0 if successful
271 */
Janos Follathb0697532016-08-18 12:38:46 +0100272#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100273int mbedtls_internal_ecp_randomize_mxz(const mbedtls_ecp_group *grp,
274 mbedtls_ecp_point *P, int (*f_rng)(void *,
275 unsigned char *,
276 size_t),
277 void *p_rng);
Janos Follathb0697532016-08-18 12:38:46 +0100278#endif
279
Janos Follathaab9efb2016-12-02 13:49:21 +0000280/**
281 * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
282 *
283 * \param grp pointer to the group representing the curve
284 *
285 * \param P pointer to the point to be normalised. This is an
286 * input/output parameter.
287 *
288 * \return 0 if successful
289 */
Janos Follathb0697532016-08-18 12:38:46 +0100290#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100291int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp,
292 mbedtls_ecp_point *P);
Janos Follathb0697532016-08-18 12:38:46 +0100293#endif
294
Gilles Peskinee8c04fe2018-09-14 17:44:21 +0200295#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
Janos Follathaab9efb2016-12-02 13:49:21 +0000296
Janos Follathc44ab972016-11-18 16:38:23 +0000297#endif /* MBEDTLS_ECP_INTERNAL_ALT */
Janos Follathb0697532016-08-18 12:38:46 +0100298
Gilles Peskine6a2fb612021-05-24 22:25:04 +0200299#endif /* ecp_internal_alt.h */