blob: 5a903f86abcf3b9f8c8ddef9244a65d18b9055c2 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020036#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037
38/** \defgroup error Error codes
39 * @{
40 */
41
David Saadab4ecc272019-02-14 13:48:10 +020042/* PSA error codes */
43
Gilles Peskinef3b731e2018-12-12 13:38:31 +010044/** The action was completed successfully. */
45#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010046
47/** An error occurred that does not correspond to any defined
48 * failure cause.
49 *
50 * Implementations may use this error code if none of the other standard
51 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020052#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010053
54/** The requested operation or a parameter is not supported
55 * by this implementation.
56 *
57 * Implementations should return this error code when an enumeration
58 * parameter such as a key type, algorithm, etc. is not recognized.
59 * If a combination of parameters is recognized and identified as
60 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020061#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010062
63/** The requested action is denied by a policy.
64 *
65 * Implementations should return this error code when the parameters
66 * are recognized as valid and supported, and a policy explicitly
67 * denies the requested operation.
68 *
69 * If a subset of the parameters of a function call identify a
70 * forbidden operation, and another subset of the parameters are
71 * not valid or not supported, it is unspecified whether the function
72 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
73 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020074#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010075
76/** An output buffer is too small.
77 *
78 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
79 * description to determine a sufficient buffer size.
80 *
81 * Implementations should preferably return this error code only
82 * in cases when performing the operation with a larger output
83 * buffer would succeed. However implementations may return this
84 * error if a function has invalid or unsupported parameters in addition
85 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
David Saadab4ecc272019-02-14 13:48:10 +020088/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010089 *
David Saadab4ecc272019-02-14 13:48:10 +020090 * Implementations should return this error, when attempting
91 * to write an item (like a key) that already exists. */
92#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010093
David Saadab4ecc272019-02-14 13:48:10 +020094/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010095 *
David Saadab4ecc272019-02-14 13:48:10 +020096 * Implementations should return this error, if a requested item (like
97 * a key) does not exist. */
98#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** The requested action cannot be performed in the current state.
101 *
102 * Multipart operations return this error when one of the
103 * functions is called out of sequence. Refer to the function
104 * descriptions for permitted sequencing of functions.
105 *
106 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100107 * that a key either exists or not,
108 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100109 * as applicable.
110 *
111 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200112 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100113 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200114#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100115
116/** The parameters passed to the function are invalid.
117 *
118 * Implementations may return this error any time a parameter or
119 * combination of parameters are recognized as invalid.
120 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200122 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * instead.
124 */
David Saadab4ecc272019-02-14 13:48:10 +0200125#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** There is not enough runtime memory.
128 *
129 * If the action is carried out across multiple security realms, this
130 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200131#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100132
133/** There is not enough persistent storage.
134 *
135 * Functions that modify the key storage return this error code if
136 * there is insufficient storage space on the host media. In addition,
137 * many functions that do not otherwise access storage may return this
138 * error code if the implementation requires a mandatory log entry for
139 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200140#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100141
142/** There was a communication failure inside the implementation.
143 *
144 * This can indicate a communication failure between the application
145 * and an external cryptoprocessor or between the cryptoprocessor and
146 * an external volatile or persistent memory. A communication failure
147 * may be transient or permanent depending on the cause.
148 *
149 * \warning If a function returns this error, it is undetermined
150 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200151 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
153 * if the requested action was completed successfully in an external
154 * cryptoprocessor but there was a breakdown of communication before
155 * the cryptoprocessor could report the status to the application.
156 */
David Saadab4ecc272019-02-14 13:48:10 +0200157#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100158
159/** There was a storage failure that may have led to data loss.
160 *
161 * This error indicates that some persistent storage is corrupted.
162 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200163 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * between the cryptoprocessor and its external storage (use
165 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
166 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
167 *
168 * Note that a storage failure does not indicate that any data that was
169 * previously read is invalid. However this previously read data may no
170 * longer be readable from storage.
171 *
172 * When a storage failure occurs, it is no longer possible to ensure
173 * the global integrity of the keystore. Depending on the global
174 * integrity guarantees offered by the implementation, access to other
175 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100176 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100177 *
178 * Implementations should only use this error code to report a
179 * permanent storage corruption. However application writers should
180 * keep in mind that transient errors while reading the storage may be
181 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200182#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100183
184/** A hardware failure was detected.
185 *
186 * A hardware failure may be transient or permanent depending on the
187 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200188#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189
190/** A tampering attempt was detected.
191 *
192 * If an application receives this error code, there is no guarantee
193 * that previously accessed or computed data was correct and remains
194 * confidential. Applications should not perform any security function
195 * and should enter a safe failure state.
196 *
197 * Implementations may return this error code if they detect an invalid
198 * state that cannot happen during normal operation and that indicates
199 * that the implementation's security guarantees no longer hold. Depending
200 * on the implementation architecture and on its security and safety goals,
201 * the implementation may forcibly terminate the application.
202 *
203 * This error code is intended as a last resort when a security breach
204 * is detected and it is unsure whether the keystore data is still
205 * protected. Implementations shall only return this error code
206 * to report an alarm from a tampering detector, to indicate that
207 * the confidentiality of stored data can no longer be guaranteed,
208 * or to indicate that the integrity of previously returned data is now
209 * considered compromised. Implementations shall not use this error code
210 * to indicate a hardware failure that merely makes it impossible to
211 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
212 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
213 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
214 * instead).
215 *
216 * This error indicates an attack against the application. Implementations
217 * shall not return this error code as a consequence of the behavior of
218 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200219#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100220
221/** There is not enough entropy to generate random data needed
222 * for the requested action.
223 *
224 * This error indicates a failure of a hardware random generator.
225 * Application writers should note that this error can be returned not
226 * only by functions whose purpose is to generate random data, such
227 * as key, IV or nonce generation, but also by functions that execute
228 * an algorithm with a randomized result, as well as functions that
229 * use randomization of intermediate computations as a countermeasure
230 * to certain attacks.
231 *
232 * Implementations should avoid returning this error after psa_crypto_init()
233 * has succeeded. Implementations should generate sufficient
234 * entropy during initialization and subsequently use a cryptographically
235 * secure pseudorandom generator (PRNG). However implementations may return
236 * this error at any time if a policy requires the PRNG to be reseeded
237 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200238#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100239
240/** The signature, MAC or hash is incorrect.
241 *
242 * Verification functions return this error if the verification
243 * calculations completed successfully, and the value to be verified
244 * was determined to be incorrect.
245 *
246 * If the value to verify has an invalid size, implementations may return
247 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200248#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100249
250/** The decrypted padding is incorrect.
251 *
252 * \warning In some protocols, when decrypting data, it is essential that
253 * the behavior of the application does not depend on whether the padding
254 * is correct, down to precise timing. Applications should prefer
255 * protocols that use authenticated encryption rather than plain
256 * encryption. If the application must perform a decryption of
257 * unauthenticated data, the application writer should take care not
258 * to reveal whether the padding is invalid.
259 *
260 * Implementations should strive to make valid and invalid padding
261 * as close as possible to indistinguishable to an external observer.
262 * In particular, the timing of a decryption operation should not
263 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200264#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100265
David Saadab4ecc272019-02-14 13:48:10 +0200266/** Return this error when there's insufficient data when attempting
267 * to read from a resource. */
268#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100269
Ronald Croncf56a0a2020-08-04 09:51:30 +0200270/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271 */
David Saadab4ecc272019-02-14 13:48:10 +0200272#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100274/** Stored data has been corrupted.
275 *
276 * This error indicates that some persistent storage has suffered corruption.
277 * It does not indicate the following situations, which have specific error
278 * codes:
279 *
280 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
281 * - A communication error between the cryptoprocessor and its external
282 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
283 * - When the storage is in a valid state but is full - use
284 * #PSA_ERROR_INSUFFICIENT_STORAGE.
285 * - When the storage fails for other reasons - use
286 * #PSA_ERROR_STORAGE_FAILURE.
287 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
288 *
289 * \note A storage corruption does not indicate that any data that was
290 * previously read is invalid. However this previously read data might no
291 * longer be readable from storage.
292 *
293 * When a storage failure occurs, it is no longer possible to ensure the
294 * global integrity of the keystore.
295 */
296#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
297
gabor-mezei-armfe309242020-11-09 17:39:56 +0100298/** Data read from storage is not valid for the implementation.
299 *
300 * This error indicates that some data read from storage does not have a valid
301 * format. It does not indicate the following situations, which have specific
302 * error codes:
303 *
304 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
305 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
306 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
307 *
308 * This error is typically a result of either storage corruption on a
309 * cleartext storage backend, or an attempt to read data that was
310 * written by an incompatible version of the library.
311 */
312#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
313
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100314/**@}*/
315
316/** \defgroup crypto_types Key and algorithm types
317 * @{
318 */
319
320/** An invalid key type value.
321 *
322 * Zero is not the encoding of any key type.
323 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100324#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100325
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100326/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 *
328 * Key types defined by this standard will never have the
329 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
330 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
331 * respect the bitwise structure used by standard encodings whenever practical.
332 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100333#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100334
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100335#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100336#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
337#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
338#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100339#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100341#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100343/** Whether a key type is vendor-defined.
344 *
345 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
346 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
348 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
349
350/** Whether a key type is an unstructured array of bytes.
351 *
352 * This encompasses both symmetric keys and non-key data.
353 */
354#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100355 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
356 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
358/** Whether a key type is asymmetric: either a key pair or a public key. */
359#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
360 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
361 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
362 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
363/** Whether a key type is the public part of a key pair. */
364#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
365 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
366/** Whether a key type is a key pair containing a private part and a public
367 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200368#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
370/** The key pair type corresponding to a public key type.
371 *
372 * You may also pass a key pair type as \p type, it will be left unchanged.
373 *
374 * \param type A public key type or key pair type.
375 *
376 * \return The corresponding key pair type.
377 * If \p type is not a public key or a key pair,
378 * the return value is undefined.
379 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200380#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100381 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
382/** The public key type corresponding to a key pair type.
383 *
384 * You may also pass a key pair type as \p type, it will be left unchanged.
385 *
386 * \param type A public key type or key pair type.
387 *
388 * \return The corresponding public key type.
389 * If \p type is not a public key or a key pair,
390 * the return value is undefined.
391 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200392#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100393 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
394
395/** Raw data.
396 *
397 * A "key" of this type cannot be used for any cryptographic operation.
398 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100399#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
401/** HMAC key.
402 *
403 * The key policy determines which underlying hash algorithm the key can be
404 * used for.
405 *
406 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100407 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100409#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100410
411/** A secret for key derivation.
412 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200413 * This key type is for high-entropy secrets only. For low-entropy secrets,
414 * #PSA_KEY_TYPE_PASSWORD should be used instead.
415 *
416 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
417 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
418 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100419 * The key policy determines which key derivation algorithm the key
420 * can be used for.
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200424/** A low-entropy secret for password hashing or key derivation.
425 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200426 * This key type is suitable for passwords and passphrases which are typically
427 * intended to be memorizable by humans, and have a low entropy relative to
428 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200429 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200430 * for such keys. It is not suitable for passwords with extremely low entropy,
431 * such as numerical PINs.
432 *
433 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
434 * key derivation algorithms. Algorithms that accept such an input were
435 * designed to accept low-entropy secret and are known as password hashing or
436 * key stretching algorithms.
437 *
438 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
439 * key derivation algorithms, as the algorithms that take such an input expect
440 * it to be high-entropy.
441 *
442 * The key policy determines which key derivation algorithm the key can be
443 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200444 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200445#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200446
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200447/** A secret value that can be used to verify a password hash.
448 *
449 * The key policy determines which key derivation algorithm the key
450 * can be used for, among the same permissible subset as for
451 * #PSA_KEY_TYPE_PASSWORD.
452 */
453#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
454
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200455/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200456 *
457 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200458 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200459 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200460#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200461
Gilles Peskine737c6be2019-05-21 16:01:06 +0200462/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100463 *
464 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
465 * 32 bytes (AES-256).
466 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100467#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200469/** Key for a cipher, AEAD or MAC algorithm based on the
470 * ARIA block cipher. */
471#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
472
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100473/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
474 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100475 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
476 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100477 *
478 * Note that single DES and 2-key 3DES are weak and strongly
479 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
480 * is weak and deprecated and should only be used in legacy protocols.
481 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100482#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100483
Gilles Peskine737c6be2019-05-21 16:01:06 +0200484/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100485 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100486#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100487
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200488/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
489 *
490 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
491 *
492 * Implementations must support 12-byte nonces, may support 8-byte nonces,
493 * and should reject other sizes.
494 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100495#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200496
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100497/** RSA public key.
498 *
499 * The size of an RSA key is the bit size of the modulus.
500 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100501#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100502/** RSA key pair (private and public key).
503 *
504 * The size of an RSA key is the bit size of the modulus.
505 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100506#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100507/** Whether a key type is an RSA key (pair or public-only). */
508#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200509 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100510
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100511#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100512#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
513#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100514/** Elliptic curve key pair.
515 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100516 * The size of an elliptic curve key is the bit size associated with the curve,
517 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
518 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
519 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100520 * \param curve A value of type ::psa_ecc_family_t that
521 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100522 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200523#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
524 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100525/** Elliptic curve public key.
526 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100527 * The size of an elliptic curve public key is the same as the corresponding
528 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
529 * `PSA_ECC_FAMILY_xxx` curve families).
530 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100531 * \param curve A value of type ::psa_ecc_family_t that
532 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100533 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100534#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
535 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
536
537/** Whether a key type is an elliptic curve key (pair or public-only). */
538#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200539 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100540 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100541/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200542#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100543 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200544 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100545/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100546#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
547 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
548 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
549
550/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100551#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
552 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100553 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
554 0))
555
Gilles Peskine228abc52019-12-03 17:24:19 +0100556/** SEC Koblitz curves over prime fields.
557 *
558 * This family comprises the following curves:
559 * secp192k1, secp224k1, secp256k1.
560 * They are defined in _Standards for Efficient Cryptography_,
561 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
562 * https://www.secg.org/sec2-v2.pdf
563 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100564#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100565
566/** SEC random curves over prime fields.
567 *
568 * This family comprises the following curves:
569 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
570 * They are defined in _Standards for Efficient Cryptography_,
571 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
572 * https://www.secg.org/sec2-v2.pdf
573 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100574#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100575/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100576#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100577
578/** SEC Koblitz curves over binary fields.
579 *
580 * This family comprises the following curves:
581 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
582 * They are defined in _Standards for Efficient Cryptography_,
583 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
584 * https://www.secg.org/sec2-v2.pdf
585 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100586#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100587
588/** SEC random curves over binary fields.
589 *
590 * This family comprises the following curves:
591 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
592 * They are defined in _Standards for Efficient Cryptography_,
593 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
594 * https://www.secg.org/sec2-v2.pdf
595 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100596#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100597
598/** SEC additional random curves over binary fields.
599 *
600 * This family comprises the following curve:
601 * sect163r2.
602 * It is defined in _Standards for Efficient Cryptography_,
603 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
604 * https://www.secg.org/sec2-v2.pdf
605 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100606#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100607
608/** Brainpool P random curves.
609 *
610 * This family comprises the following curves:
611 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
612 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
613 * It is defined in RFC 5639.
614 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100615#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100616
617/** Curve25519 and Curve448.
618 *
619 * This family comprises the following Montgomery curves:
620 * - 255-bit: Bernstein et al.,
621 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
622 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
623 * - 448-bit: Hamburg,
624 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
625 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
626 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100627#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100628
Gilles Peskine67546802021-02-24 21:49:40 +0100629/** The twisted Edwards curves Ed25519 and Ed448.
630 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100631 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100632 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100633 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100634 *
635 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100636 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100637 * to Curve25519.
638 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
639 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
640 * to Curve448.
641 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
642 */
643#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
644
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100645#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100646#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
647#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100648/** Diffie-Hellman key pair.
649 *
Paul Elliott75e27032020-06-03 15:17:39 +0100650 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100651 * Diffie-Hellman group to be used.
652 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200653#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
654 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100655/** Diffie-Hellman public key.
656 *
Paul Elliott75e27032020-06-03 15:17:39 +0100657 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100658 * Diffie-Hellman group to be used.
659 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200660#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
661 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
662
663/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
664#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200665 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200666 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
667/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200668#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200669 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200670 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200671/** Whether a key type is a Diffie-Hellman public key. */
672#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
673 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
674 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
675
676/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100677#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
678 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200679 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
680 0))
681
Gilles Peskine228abc52019-12-03 17:24:19 +0100682/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
683 *
684 * This family includes groups with the following key sizes (in bits):
685 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
686 * all of these sizes or only a subset.
687 */
Paul Elliott75e27032020-06-03 15:17:39 +0100688#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100689
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100690#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100691 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100692/** The block size of a block cipher.
693 *
694 * \param type A cipher key type (value of type #psa_key_type_t).
695 *
696 * \return The block size for a block cipher, or 1 for a stream cipher.
697 * The return value is undefined if \p type is not a supported
698 * cipher key type.
699 *
700 * \note It is possible to build stream cipher algorithms on top of a block
701 * cipher, for example CTR mode (#PSA_ALG_CTR).
702 * This macro only takes the key type into account, so it cannot be
703 * used to determine the size of the data that #psa_cipher_update()
704 * might buffer for future processing in general.
705 *
706 * \note This macro returns a compile-time constant if its argument is one.
707 *
708 * \warning This macro may evaluate its argument multiple times.
709 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100710#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100711 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100712 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100713 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100714
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100715/** Vendor-defined algorithm flag.
716 *
717 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
718 * bit set. Vendors who define additional algorithms must use an encoding with
719 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
720 * used by standard encodings whenever practical.
721 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100722#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100723
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100724#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100725#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
726#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100727#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100728#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
729#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
730#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
731#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
732#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100733
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100734/** Whether an algorithm is vendor-defined.
735 *
736 * See also #PSA_ALG_VENDOR_FLAG.
737 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100738#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
739 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
740
741/** Whether the specified algorithm is a hash algorithm.
742 *
743 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
744 *
745 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
746 * This macro may return either 0 or 1 if \p alg is not a supported
747 * algorithm identifier.
748 */
749#define PSA_ALG_IS_HASH(alg) \
750 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
751
752/** Whether the specified algorithm is a MAC algorithm.
753 *
754 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
755 *
756 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
757 * This macro may return either 0 or 1 if \p alg is not a supported
758 * algorithm identifier.
759 */
760#define PSA_ALG_IS_MAC(alg) \
761 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
762
763/** Whether the specified algorithm is a symmetric cipher algorithm.
764 *
765 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
766 *
767 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
768 * This macro may return either 0 or 1 if \p alg is not a supported
769 * algorithm identifier.
770 */
771#define PSA_ALG_IS_CIPHER(alg) \
772 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
773
774/** Whether the specified algorithm is an authenticated encryption
775 * with associated data (AEAD) algorithm.
776 *
777 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
778 *
779 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
780 * This macro may return either 0 or 1 if \p alg is not a supported
781 * algorithm identifier.
782 */
783#define PSA_ALG_IS_AEAD(alg) \
784 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
785
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200786/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200787 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100788 *
789 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
790 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200791 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100792 * This macro may return either 0 or 1 if \p alg is not a supported
793 * algorithm identifier.
794 */
795#define PSA_ALG_IS_SIGN(alg) \
796 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
797
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200798/** Whether the specified algorithm is an asymmetric encryption algorithm,
799 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100800 *
801 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
802 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200803 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100804 * This macro may return either 0 or 1 if \p alg is not a supported
805 * algorithm identifier.
806 */
807#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
808 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
809
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100810/** Whether the specified algorithm is a key agreement algorithm.
811 *
812 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
813 *
814 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
815 * This macro may return either 0 or 1 if \p alg is not a supported
816 * algorithm identifier.
817 */
818#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100819 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100820
821/** Whether the specified algorithm is a key derivation algorithm.
822 *
823 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
824 *
825 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
826 * This macro may return either 0 or 1 if \p alg is not a supported
827 * algorithm identifier.
828 */
829#define PSA_ALG_IS_KEY_DERIVATION(alg) \
830 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
831
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200832/** Whether the specified algorithm is a key stretching / password hashing
833 * algorithm.
834 *
835 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200836 * that is suitable for use with a low-entropy secret such as a password.
837 * Equivalently, it's a key derivation algorithm that uses a
838 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200839 *
840 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
841 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100842 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200843 * otherwise. This macro may return either 0 or 1 if \p alg is not a
844 * supported algorithm identifier.
845 */
846#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
847 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
848 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
849
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200850/** An invalid algorithm identifier value. */
851#define PSA_ALG_NONE ((psa_algorithm_t)0)
852
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100853#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100854/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100855#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100856/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100857#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100858/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100859#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100860/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100861#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100862/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100863#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100865#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100866/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100867#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100868/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100869#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100870/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100871#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100872/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100873#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100874/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100875#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100876/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100877#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100878/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100879#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100880/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100881 *
882 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
883 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
884 * has the same output size and a (theoretically) higher security strength.
885 */
Gilles Peskine27354692021-03-03 17:45:06 +0100886#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100887
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100888/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100889 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100890 * This value may be used to form the algorithm usage field of a policy
891 * for a signature algorithm that is parametrized by a hash. The key
892 * may then be used to perform operations using the same signature
893 * algorithm parametrized with any supported hash.
894 *
895 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200896 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100897 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100898 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100899 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
900 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100901 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200902 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100903 * ```
904 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100905 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100906 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
907 * call to sign or verify a message may use a different hash.
908 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200909 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
910 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
911 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100912 * ```
913 *
914 * This value may not be used to build other algorithms that are
915 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100916 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100917 *
918 * This value may not be used to build an algorithm specification to
919 * perform an operation. It is only valid to build policies.
920 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100921#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100922
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100923#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100924#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100925/** Macro to build an HMAC algorithm.
926 *
927 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
928 *
929 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
930 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
931 *
932 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100933 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100934 * hash algorithm.
935 */
936#define PSA_ALG_HMAC(hash_alg) \
937 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
938
939#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
940 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
941
942/** Whether the specified algorithm is an HMAC algorithm.
943 *
944 * HMAC is a family of MAC algorithms that are based on a hash function.
945 *
946 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
947 *
948 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
949 * This macro may return either 0 or 1 if \p alg is not a supported
950 * algorithm identifier.
951 */
952#define PSA_ALG_IS_HMAC(alg) \
953 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
954 PSA_ALG_HMAC_BASE)
955
956/* In the encoding of a MAC algorithm, the bits corresponding to
957 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
958 * truncated. As an exception, the value 0 means the untruncated algorithm,
959 * whatever its length is. The length is encoded in 6 bits, so it can
960 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
961 * to full length is correctly encoded as 0 and any non-trivial truncation
962 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100963#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
964#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100965
Steven Cooremand927ed72021-02-22 19:59:35 +0100966/* In the encoding of a MAC algorithm, the bit corresponding to
967 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100968 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
969 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100970 * same base class and having a (potentially truncated) MAC length greater or
971 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
972#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
973
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100974/** Macro to build a truncated MAC algorithm.
975 *
976 * A truncated MAC algorithm is identical to the corresponding MAC
977 * algorithm except that the MAC value for the truncated algorithm
978 * consists of only the first \p mac_length bytes of the MAC value
979 * for the untruncated algorithm.
980 *
981 * \note This macro may allow constructing algorithm identifiers that
982 * are not valid, either because the specified length is larger
983 * than the untruncated MAC or because the specified length is
984 * smaller than permitted by the implementation.
985 *
986 * \note It is implementation-defined whether a truncated MAC that
987 * is truncated to the same length as the MAC of the untruncated
988 * algorithm is considered identical to the untruncated algorithm
989 * for policy comparison purposes.
990 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200991 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100992 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100993 * is true). This may be a truncated or untruncated
994 * MAC algorithm.
995 * \param mac_length Desired length of the truncated MAC in bytes.
996 * This must be at most the full length of the MAC
997 * and must be at least an implementation-specified
998 * minimum. The implementation-specified minimum
999 * shall not be zero.
1000 *
1001 * \return The corresponding MAC algorithm with the specified
1002 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001003 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001004 * MAC algorithm or if \p mac_length is too small or
1005 * too large for the specified MAC algorithm.
1006 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001007#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1008 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1009 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001010 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1011
1012/** Macro to build the base MAC algorithm corresponding to a truncated
1013 * MAC algorithm.
1014 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001015 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001016 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001017 * is true). This may be a truncated or untruncated
1018 * MAC algorithm.
1019 *
1020 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001021 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001022 * MAC algorithm.
1023 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001024#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1025 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1026 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001027
1028/** Length to which a MAC algorithm is truncated.
1029 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001030 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001031 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001032 * is true).
1033 *
1034 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001035 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1036 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001037 * MAC algorithm.
1038 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001039#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1040 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001041
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001042/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001043 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001044 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001045 * sharing the same base algorithm, and where the (potentially truncated) MAC
1046 * length of the specific algorithm is equal to or larger then the wildcard
1047 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001048 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001049 * \note When setting the minimum required MAC length to less than the
1050 * smallest MAC length allowed by the base algorithm, this effectively
1051 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001052 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001053 * \param mac_alg A MAC algorithm identifier (value of type
1054 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1055 * is true).
1056 * \param min_mac_length Desired minimum length of the message authentication
1057 * code in bytes. This must be at most the untruncated
1058 * length of the MAC and must be at least 1.
1059 *
1060 * \return The corresponding MAC wildcard algorithm with the
1061 * specified minimum length.
1062 * \return Unspecified if \p mac_alg is not a supported MAC
1063 * algorithm or if \p min_mac_length is less than 1 or
1064 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001065 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001066#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1067 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1068 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001069
Bence Szépkútia2945512020-12-03 21:40:17 +01001070#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001071/** The CBC-MAC construction over a block cipher
1072 *
1073 * \warning CBC-MAC is insecure in many cases.
1074 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1075 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001076#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001077/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001078#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001079
1080/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1081 *
1082 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1083 *
1084 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1085 * This macro may return either 0 or 1 if \p alg is not a supported
1086 * algorithm identifier.
1087 */
1088#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1089 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1090 PSA_ALG_CIPHER_MAC_BASE)
1091
1092#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1093#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1094
1095/** Whether the specified algorithm is a stream cipher.
1096 *
1097 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1098 * by applying a bitwise-xor with a stream of bytes that is generated
1099 * from a key.
1100 *
1101 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1102 *
1103 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1104 * This macro may return either 0 or 1 if \p alg is not a supported
1105 * algorithm identifier or if it is not a symmetric cipher algorithm.
1106 */
1107#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1108 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1109 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1110
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001111/** The stream cipher mode of a stream cipher algorithm.
1112 *
1113 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001114 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001115 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001116#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001117
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001118/** The CTR stream cipher mode.
1119 *
1120 * CTR is a stream cipher which is built from a block cipher.
1121 * The underlying block cipher is determined by the key type.
1122 * For example, to use AES-128-CTR, use this algorithm with
1123 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1124 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001125#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001126
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001127/** The CFB stream cipher mode.
1128 *
1129 * The underlying block cipher is determined by the key type.
1130 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001131#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001132
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001133/** The OFB stream cipher mode.
1134 *
1135 * The underlying block cipher is determined by the key type.
1136 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001137#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001138
1139/** The XTS cipher mode.
1140 *
1141 * XTS is a cipher mode which is built from a block cipher. It requires at
1142 * least one full block of input, but beyond this minimum the input
1143 * does not need to be a whole number of blocks.
1144 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001145#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001146
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001147/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1148 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001149 * \warning ECB mode does not protect the confidentiality of the encrypted data
1150 * except in extremely narrow circumstances. It is recommended that applications
1151 * only use ECB if they need to construct an operating mode that the
1152 * implementation does not provide. Implementations are encouraged to provide
1153 * the modes that applications need in preference to supporting direct access
1154 * to ECB.
1155 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001156 * The underlying block cipher is determined by the key type.
1157 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001158 * This symmetric cipher mode can only be used with messages whose lengths are a
1159 * multiple of the block size of the chosen block cipher.
1160 *
1161 * ECB mode does not accept an initialization vector (IV). When using a
1162 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1163 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001164 */
1165#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1166
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001167/** The CBC block cipher chaining mode, with no padding.
1168 *
1169 * The underlying block cipher is determined by the key type.
1170 *
1171 * This symmetric cipher mode can only be used with messages whose lengths
1172 * are whole number of blocks for the chosen block cipher.
1173 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001174#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001175
1176/** The CBC block cipher chaining mode with PKCS#7 padding.
1177 *
1178 * The underlying block cipher is determined by the key type.
1179 *
1180 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1181 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001182#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001183
Gilles Peskine679693e2019-05-06 15:10:16 +02001184#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1185
1186/** Whether the specified algorithm is an AEAD mode on a block cipher.
1187 *
1188 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1189 *
1190 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1191 * a block cipher, 0 otherwise.
1192 * This macro may return either 0 or 1 if \p alg is not a supported
1193 * algorithm identifier.
1194 */
1195#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1196 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1197 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1198
Gilles Peskine9153ec02019-02-15 13:02:02 +01001199/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001200 *
1201 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001202 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001203#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001204
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001205/** The CCM* cipher mode without authentication.
1206 *
1207 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1208 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1209 *
1210 * The underlying block cipher is determined by the key type.
1211 *
1212 * Currently only 13-byte long IV's are supported.
1213 */
1214#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)
1215
Gilles Peskine9153ec02019-02-15 13:02:02 +01001216/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001217 *
1218 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001219 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001220#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001221
1222/** The Chacha20-Poly1305 AEAD algorithm.
1223 *
1224 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001225 *
1226 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1227 * and should reject other sizes.
1228 *
1229 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001230 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001231#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001232
1233/* In the encoding of a AEAD algorithm, the bits corresponding to
1234 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1235 * The constants for default lengths follow this encoding.
1236 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001237#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1238#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001239
Steven Cooremand927ed72021-02-22 19:59:35 +01001240/* In the encoding of an AEAD algorithm, the bit corresponding to
1241 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001242 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1243 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001244 * same base class and having a tag length greater than or equal to the one
1245 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1246#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1247
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001248/** Macro to build a shortened AEAD algorithm.
1249 *
1250 * A shortened AEAD algorithm is similar to the corresponding AEAD
1251 * algorithm, but has an authentication tag that consists of fewer bytes.
1252 * Depending on the algorithm, the tag length may affect the calculation
1253 * of the ciphertext.
1254 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001255 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001256 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001257 * is true).
1258 * \param tag_length Desired length of the authentication tag in bytes.
1259 *
1260 * \return The corresponding AEAD algorithm with the specified
1261 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001262 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001263 * AEAD algorithm or if \p tag_length is not valid
1264 * for the specified AEAD algorithm.
1265 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001266#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001267 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1268 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001269 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1270 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1271
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001272/** Retrieve the tag length of a specified AEAD algorithm
1273 *
1274 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001275 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001276 * is true).
1277 *
1278 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001279 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001280 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001281 */
1282#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1283 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1284 PSA_AEAD_TAG_LENGTH_OFFSET )
1285
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001286/** Calculate the corresponding AEAD algorithm with the default tag length.
1287 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001288 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001289 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001290 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001291 * \return The corresponding AEAD algorithm with the default
1292 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001293 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001294#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001295 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001296 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1297 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1298 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001299 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001300#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1301 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1302 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001303 ref :
1304
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001305/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001306 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001307 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001308 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001309 * algorithm is equal to or larger then the minimum tag length specified by the
1310 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001311 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001312 * \note When setting the minimum required tag length to less than the
1313 * smallest tag length allowed by the base algorithm, this effectively
1314 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001315 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001316 * \param aead_alg An AEAD algorithm identifier (value of type
1317 * #psa_algorithm_t such that
1318 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1319 * \param min_tag_length Desired minimum length of the authentication tag in
1320 * bytes. This must be at least 1 and at most the largest
1321 * allowed tag length of the algorithm.
1322 *
1323 * \return The corresponding AEAD wildcard algorithm with the
1324 * specified minimum length.
1325 * \return Unspecified if \p aead_alg is not a supported
1326 * AEAD algorithm or if \p min_tag_length is less than 1
1327 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001328 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001329#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001330 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1331 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001332
Bence Szépkútia2945512020-12-03 21:40:17 +01001333#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001334/** RSA PKCS#1 v1.5 signature with hashing.
1335 *
1336 * This is the signature scheme defined by RFC 8017
1337 * (PKCS#1: RSA Cryptography Specifications) under the name
1338 * RSASSA-PKCS1-v1_5.
1339 *
1340 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1341 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001342 * This includes #PSA_ALG_ANY_HASH
1343 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001344 *
1345 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001346 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001347 * hash algorithm.
1348 */
1349#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1350 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1351/** Raw PKCS#1 v1.5 signature.
1352 *
1353 * The input to this algorithm is the DigestInfo structure used by
1354 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1355 * steps 3&ndash;6.
1356 */
1357#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1358#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1359 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1360
Bence Szépkútia2945512020-12-03 21:40:17 +01001361#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001362#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001363/** RSA PSS signature with hashing.
1364 *
1365 * This is the signature scheme defined by RFC 8017
1366 * (PKCS#1: RSA Cryptography Specifications) under the name
1367 * RSASSA-PSS, with the message generation function MGF1, and with
1368 * a salt length equal to the length of the hash. The specified
1369 * hash algorithm is used to hash the input message, to create the
1370 * salted hash, and for the mask generation.
1371 *
1372 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1373 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001374 * This includes #PSA_ALG_ANY_HASH
1375 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001376 *
1377 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001378 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001379 * hash algorithm.
1380 */
1381#define PSA_ALG_RSA_PSS(hash_alg) \
1382 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001383
1384/** RSA PSS signature with hashing with relaxed verification.
1385 *
1386 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1387 * but allows an arbitrary salt length (including \c 0) when verifying a
1388 * signature.
1389 *
1390 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1391 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1392 * This includes #PSA_ALG_ANY_HASH
1393 * when specifying the algorithm in a usage policy.
1394 *
1395 * \return The corresponding RSA PSS signature algorithm.
1396 * \return Unspecified if \p hash_alg is not a supported
1397 * hash algorithm.
1398 */
1399#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1400 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1401
1402/** Whether the specified algorithm is RSA PSS with standard salt.
1403 *
1404 * \param alg An algorithm value or an algorithm policy wildcard.
1405 *
1406 * \return 1 if \p alg is of the form
1407 * #PSA_ALG_RSA_PSS(\c hash_alg),
1408 * where \c hash_alg is a hash algorithm or
1409 * #PSA_ALG_ANY_HASH. 0 otherwise.
1410 * This macro may return either 0 or 1 if \p alg is not
1411 * a supported algorithm identifier or policy.
1412 */
1413#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001414 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1415
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001416/** Whether the specified algorithm is RSA PSS with any salt.
1417 *
1418 * \param alg An algorithm value or an algorithm policy wildcard.
1419 *
1420 * \return 1 if \p alg is of the form
1421 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1422 * where \c hash_alg is a hash algorithm or
1423 * #PSA_ALG_ANY_HASH. 0 otherwise.
1424 * This macro may return either 0 or 1 if \p alg is not
1425 * a supported algorithm identifier or policy.
1426 */
1427#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1428 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1429
1430/** Whether the specified algorithm is RSA PSS.
1431 *
1432 * This includes any of the RSA PSS algorithm variants, regardless of the
1433 * constraints on salt length.
1434 *
1435 * \param alg An algorithm value or an algorithm policy wildcard.
1436 *
1437 * \return 1 if \p alg is of the form
1438 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1439 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1440 * where \c hash_alg is a hash algorithm or
1441 * #PSA_ALG_ANY_HASH. 0 otherwise.
1442 * This macro may return either 0 or 1 if \p alg is not
1443 * a supported algorithm identifier or policy.
1444 */
1445#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001446 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1447 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001448
Bence Szépkútia2945512020-12-03 21:40:17 +01001449#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001450/** ECDSA signature with hashing.
1451 *
1452 * This is the ECDSA signature scheme defined by ANSI X9.62,
1453 * with a random per-message secret number (*k*).
1454 *
1455 * The representation of the signature as a byte string consists of
1456 * the concatentation of the signature values *r* and *s*. Each of
1457 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1458 * of the base point of the curve in octets. Each value is represented
1459 * in big-endian order (most significant octet first).
1460 *
1461 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1462 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001463 * This includes #PSA_ALG_ANY_HASH
1464 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001465 *
1466 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001467 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001468 * hash algorithm.
1469 */
1470#define PSA_ALG_ECDSA(hash_alg) \
1471 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1472/** ECDSA signature without hashing.
1473 *
1474 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1475 * without specifying a hash algorithm. This algorithm may only be
1476 * used to sign or verify a sequence of bytes that should be an
1477 * already-calculated hash. Note that the input is padded with
1478 * zeros on the left or truncated on the left as required to fit
1479 * the curve size.
1480 */
1481#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001482#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001483/** Deterministic ECDSA signature with hashing.
1484 *
1485 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1486 *
1487 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1488 *
1489 * Note that when this algorithm is used for verification, signatures
1490 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1491 * same private key are accepted. In other words,
1492 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1493 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1494 *
1495 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1496 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001497 * This includes #PSA_ALG_ANY_HASH
1498 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001499 *
1500 * \return The corresponding deterministic ECDSA signature
1501 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001502 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001503 * hash algorithm.
1504 */
1505#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1506 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001507#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001508#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001509 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001510 PSA_ALG_ECDSA_BASE)
1511#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001512 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001513#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1514 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1515#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1516 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1517
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001518/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1519 * using standard parameters.
1520 *
1521 * Contexts are not supported in the current version of this specification
1522 * because there is no suitable signature interface that can take the
1523 * context as a parameter. A future version of this specification may add
1524 * suitable functions and extend this algorithm to support contexts.
1525 *
1526 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1527 * In this specification, the following curves are supported:
1528 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1529 * in RFC 8032.
1530 * The curve is Edwards25519.
1531 * The hash function used internally is SHA-512.
1532 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1533 * in RFC 8032.
1534 * The curve is Edwards448.
1535 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001536 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001537 *
1538 * This algorithm can be used with psa_sign_message() and
1539 * psa_verify_message(). Since there is no prehashing, it cannot be used
1540 * with psa_sign_hash() or psa_verify_hash().
1541 *
1542 * The signature format is the concatenation of R and S as defined by
1543 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1544 * string for Ed448).
1545 */
1546#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1547
1548#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1549#define PSA_ALG_IS_HASH_EDDSA(alg) \
1550 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1551
1552/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001553 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001554 *
1555 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1556 *
1557 * This algorithm is Ed25519 as specified in RFC 8032.
1558 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001559 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001560 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001561 *
1562 * This is a hash-and-sign algorithm: to calculate a signature,
1563 * you can either:
1564 * - call psa_sign_message() on the message;
1565 * - or calculate the SHA-512 hash of the message
1566 * with psa_hash_compute()
1567 * or with a multi-part hash operation started with psa_hash_setup(),
1568 * using the hash algorithm #PSA_ALG_SHA_512,
1569 * then sign the calculated hash with psa_sign_hash().
1570 * Verifying a signature is similar, using psa_verify_message() or
1571 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001572 */
1573#define PSA_ALG_ED25519PH \
1574 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1575
1576/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1577 * using SHAKE256 and the Edwards448 curve.
1578 *
1579 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1580 *
1581 * This algorithm is Ed448 as specified in RFC 8032.
1582 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001583 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001584 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001585 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001586 *
1587 * This is a hash-and-sign algorithm: to calculate a signature,
1588 * you can either:
1589 * - call psa_sign_message() on the message;
1590 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1591 * with psa_hash_compute()
1592 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001593 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001594 * then sign the calculated hash with psa_sign_hash().
1595 * Verifying a signature is similar, using psa_verify_message() or
1596 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001597 */
1598#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001599 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001600
Gilles Peskine6d400852021-02-24 21:39:52 +01001601/* Default definition, to be overridden if the library is extended with
1602 * more hash-and-sign algorithms that we want to keep out of this header
1603 * file. */
1604#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1605
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001606/** Whether the specified algorithm is a signature algorithm that can be used
1607 * with psa_sign_hash() and psa_verify_hash().
1608 *
1609 * This encompasses all strict hash-and-sign algorithms categorized by
1610 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1611 * paradigm more loosely:
1612 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1613 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1614 *
1615 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1616 *
1617 * \return 1 if alg is a signature algorithm that can be used to sign a
1618 * hash. 0 if alg is a signature algorithm that can only be used
1619 * to sign a message. 0 if alg is not a signature algorithm.
1620 * This macro can return either 0 or 1 if alg is not a
1621 * supported algorithm identifier.
1622 */
1623#define PSA_ALG_IS_SIGN_HASH(alg) \
1624 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1625 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1626 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1627
1628/** Whether the specified algorithm is a signature algorithm that can be used
1629 * with psa_sign_message() and psa_verify_message().
1630 *
1631 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1632 *
1633 * \return 1 if alg is a signature algorithm that can be used to sign a
1634 * message. 0 if \p alg is a signature algorithm that can only be used
1635 * to sign an already-calculated hash. 0 if \p alg is not a signature
1636 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1637 * supported algorithm identifier.
1638 */
1639#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1640 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
1641
Gilles Peskined35b4892019-01-14 16:02:15 +01001642/** Whether the specified algorithm is a hash-and-sign algorithm.
1643 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001644 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1645 * structured in two parts: first the calculation of a hash in a way that
1646 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001647 * hash value and the key. Hash-and-sign algorithms encode the hash
1648 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1649 * to extract this algorithm.
1650 *
1651 * Thus, for a hash-and-sign algorithm,
1652 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1653 * ```
1654 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1655 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1656 * ```
1657 * Most usefully, separating the hash from the signature allows the hash
1658 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1659 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1660 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001661 *
1662 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1663 *
1664 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1665 * This macro may return either 0 or 1 if \p alg is not a supported
1666 * algorithm identifier.
1667 */
1668#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001669 (PSA_ALG_IS_SIGN_HASH(alg) && \
1670 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001671
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001672/** Get the hash used by a hash-and-sign signature algorithm.
1673 *
1674 * A hash-and-sign algorithm is a signature algorithm which is
1675 * composed of two phases: first a hashing phase which does not use
1676 * the key and produces a hash of the input message, then a signing
1677 * phase which only uses the hash and the key and not the message
1678 * itself.
1679 *
1680 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1681 * #PSA_ALG_IS_SIGN(\p alg) is true).
1682 *
1683 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1684 * algorithm.
1685 * \return 0 if \p alg is a signature algorithm that does not
1686 * follow the hash-and-sign structure.
1687 * \return Unspecified if \p alg is not a signature algorithm or
1688 * if it is not supported by the implementation.
1689 */
1690#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001691 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001692 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1693 0)
1694
1695/** RSA PKCS#1 v1.5 encryption.
1696 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001697#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001698
Bence Szépkútia2945512020-12-03 21:40:17 +01001699#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001700/** RSA OAEP encryption.
1701 *
1702 * This is the encryption scheme defined by RFC 8017
1703 * (PKCS#1: RSA Cryptography Specifications) under the name
1704 * RSAES-OAEP, with the message generation function MGF1.
1705 *
1706 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1707 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1708 * for MGF1.
1709 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001710 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001711 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001712 * hash algorithm.
1713 */
1714#define PSA_ALG_RSA_OAEP(hash_alg) \
1715 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1716#define PSA_ALG_IS_RSA_OAEP(alg) \
1717 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1718#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1719 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1720 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1721 0)
1722
Bence Szépkútia2945512020-12-03 21:40:17 +01001723#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001724/** Macro to build an HKDF algorithm.
1725 *
1726 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1727 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001728 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001729 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001730 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001731 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1732 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1733 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1734 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001735 * starting to generate output.
1736 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001737 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1738 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1739 *
1740 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001741 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001742 * hash algorithm.
1743 */
1744#define PSA_ALG_HKDF(hash_alg) \
1745 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1746/** Whether the specified algorithm is an HKDF algorithm.
1747 *
1748 * HKDF is a family of key derivation algorithms that are based on a hash
1749 * function and the HMAC construction.
1750 *
1751 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1752 *
1753 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1754 * This macro may return either 0 or 1 if \c alg is not a supported
1755 * key derivation algorithm identifier.
1756 */
1757#define PSA_ALG_IS_HKDF(alg) \
1758 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1759#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1760 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1761
Bence Szépkútia2945512020-12-03 21:40:17 +01001762#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001763/** Macro to build a TLS-1.2 PRF algorithm.
1764 *
1765 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1766 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1767 * used with either SHA-256 or SHA-384.
1768 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001769 * This key derivation algorithm uses the following inputs, which must be
1770 * passed in the order given here:
1771 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001772 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1773 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001774 *
1775 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001776 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001777 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001778 *
1779 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1780 * TLS 1.2 PRF using HMAC-SHA-256.
1781 *
1782 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1783 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1784 *
1785 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001786 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001787 * hash algorithm.
1788 */
1789#define PSA_ALG_TLS12_PRF(hash_alg) \
1790 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1791
1792/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1793 *
1794 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1795 *
1796 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1797 * This macro may return either 0 or 1 if \c alg is not a supported
1798 * key derivation algorithm identifier.
1799 */
1800#define PSA_ALG_IS_TLS12_PRF(alg) \
1801 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1802#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1803 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1804
Bence Szépkútia2945512020-12-03 21:40:17 +01001805#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001806/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1807 *
1808 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1809 * from the PreSharedKey (PSK) through the application of padding
1810 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1811 * The latter is based on HMAC and can be used with either SHA-256
1812 * or SHA-384.
1813 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001814 * This key derivation algorithm uses the following inputs, which must be
1815 * passed in the order given here:
1816 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001817 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1818 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001819 *
1820 * For the application to TLS-1.2, the seed (which is
1821 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1822 * ClientHello.Random + ServerHello.Random,
1823 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001824 *
1825 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1826 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1827 *
1828 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1829 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1830 *
1831 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001832 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001833 * hash algorithm.
1834 */
1835#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1836 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1837
1838/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1839 *
1840 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1841 *
1842 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1843 * This macro may return either 0 or 1 if \c alg is not a supported
1844 * key derivation algorithm identifier.
1845 */
1846#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1847 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1848#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1849 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1850
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001851/* This flag indicates whether the key derivation algorithm is suitable for
1852 * use on low-entropy secrets such as password - these algorithms are also
1853 * known as key stretching or password hashing schemes. These are also the
1854 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001855 *
1856 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001857 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001858#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001859
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001860#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001861/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001862 *
1863 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001864 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1865 * HMAC with the specified hash.
1866 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1867 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001868 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001869 * This key derivation algorithm uses the following inputs, which must be
1870 * provided in the following order:
1871 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001872 * This input step must be used exactly once.
1873 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1874 * This input step must be used one or more times; if used several times, the
1875 * inputs will be concatenated. This can be used to build the final salt
1876 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001877 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001878 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001879 *
1880 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1881 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1882 *
1883 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1884 * \return Unspecified if \p hash_alg is not a supported
1885 * hash algorithm.
1886 */
1887#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1888 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1889
1890/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1891 *
1892 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1893 *
1894 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1895 * This macro may return either 0 or 1 if \c alg is not a supported
1896 * key derivation algorithm identifier.
1897 */
1898#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
1899 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001900
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001901/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1902 *
1903 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1904 * This macro specifies the PBKDF2 algorithm constructed using the
1905 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1906 *
1907 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02001908 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001909 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001910#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001911
Bence Szépkútia2945512020-12-03 21:40:17 +01001912#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1913#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001914
Gilles Peskine6843c292019-01-18 16:44:49 +01001915/** Macro to build a combined algorithm that chains a key agreement with
1916 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001917 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001918 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1919 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1920 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1921 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001922 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001923 * \return The corresponding key agreement and derivation
1924 * algorithm.
1925 * \return Unspecified if \p ka_alg is not a supported
1926 * key agreement algorithm or \p kdf_alg is not a
1927 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001928 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001929#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1930 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001931
1932#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1933 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1934
Gilles Peskine6843c292019-01-18 16:44:49 +01001935#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1936 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001937
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001938/** Whether the specified algorithm is a raw key agreement algorithm.
1939 *
1940 * A raw key agreement algorithm is one that does not specify
1941 * a key derivation function.
1942 * Usually, raw key agreement algorithms are constructed directly with
1943 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001944 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001945 *
1946 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1947 *
1948 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1949 * This macro may return either 0 or 1 if \p alg is not a supported
1950 * algorithm identifier.
1951 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001952#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001953 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1954 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001955
1956#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1957 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1958
1959/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001960 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001961 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001962 * `g^{ab}` in big-endian format.
1963 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1964 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001965 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001966#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001967
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001968/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1969 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001970 * This includes the raw finite field Diffie-Hellman algorithm as well as
1971 * finite-field Diffie-Hellman followed by any supporter key derivation
1972 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001973 *
1974 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1975 *
1976 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1977 * This macro may return either 0 or 1 if \c alg is not a supported
1978 * key agreement algorithm identifier.
1979 */
1980#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001981 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001982
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001983/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1984 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001985 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001986 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1987 * `m` is the bit size associated with the curve, i.e. the bit size of the
1988 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1989 * the byte containing the most significant bit of the shared secret
1990 * is padded with zero bits. The byte order is either little-endian
1991 * or big-endian depending on the curve type.
1992 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001993 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001994 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1995 * in little-endian byte order.
1996 * The bit size is 448 for Curve448 and 255 for Curve25519.
1997 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001998 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001999 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2000 * in big-endian byte order.
2001 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2002 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002003 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002004 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2005 * in big-endian byte order.
2006 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002007 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002008#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002009
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002010/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2011 * algorithm.
2012 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002013 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2014 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2015 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002016 *
2017 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2018 *
2019 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2020 * 0 otherwise.
2021 * This macro may return either 0 or 1 if \c alg is not a supported
2022 * key agreement algorithm identifier.
2023 */
2024#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002025 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002026
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002027/** Whether the specified algorithm encoding is a wildcard.
2028 *
2029 * Wildcard values may only be used to set the usage algorithm field in
2030 * a policy, not to perform an operation.
2031 *
2032 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2033 *
2034 * \return 1 if \c alg is a wildcard algorithm encoding.
2035 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2036 * an operation).
2037 * \return This macro may return either 0 or 1 if \c alg is not a supported
2038 * algorithm identifier.
2039 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002040#define PSA_ALG_IS_WILDCARD(alg) \
2041 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2042 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2043 PSA_ALG_IS_MAC(alg) ? \
2044 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2045 PSA_ALG_IS_AEAD(alg) ? \
2046 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002047 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002048
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002049/** Get the hash used by a composite algorithm.
2050 *
2051 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2052 *
2053 * \return The underlying hash algorithm if alg is a composite algorithm that
2054 * uses a hash algorithm.
2055 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002056 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002057 */
2058#define PSA_ALG_GET_HASH(alg) \
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002059 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002060
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002061/**@}*/
2062
2063/** \defgroup key_lifetimes Key lifetimes
2064 * @{
2065 */
2066
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002067/** The default lifetime for volatile keys.
2068 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002069 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002070 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002071 *
2072 * A key with this lifetime is typically stored in the RAM area of the
2073 * PSA Crypto subsystem. However this is an implementation choice.
2074 * If an implementation stores data about the key in a non-volatile memory,
2075 * it must release all the resources associated with the key and erase the
2076 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002077 */
2078#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
2079
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002080/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002081 *
2082 * A persistent key remains in storage until it is explicitly destroyed or
2083 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002084 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002085 * provide their own mechanism (for example to perform a factory reset,
2086 * to prepare for device refurbishment, or to uninstall an application).
2087 *
2088 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002089 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002090 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002091 */
2092#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
2093
Gilles Peskineaff11812020-05-04 19:03:10 +02002094/** The persistence level of volatile keys.
2095 *
2096 * See ::psa_key_persistence_t for more information.
2097 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002098#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002099
2100/** The default persistence level for persistent keys.
2101 *
2102 * See ::psa_key_persistence_t for more information.
2103 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002104#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002105
2106/** A persistence level indicating that a key is never destroyed.
2107 *
2108 * See ::psa_key_persistence_t for more information.
2109 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002110#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002111
2112#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002113 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002114
2115#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002116 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002117
2118/** Whether a key lifetime indicates that the key is volatile.
2119 *
2120 * A volatile key is automatically destroyed by the implementation when
2121 * the application instance terminates. In particular, a volatile key
2122 * is automatically destroyed on a power reset of the device.
2123 *
2124 * A key that is not volatile is persistent. Persistent keys are
2125 * preserved until the application explicitly destroys them or until an
2126 * implementation-specific device management event occurs (for example,
2127 * a factory reset).
2128 *
2129 * \param lifetime The lifetime value to query (value of type
2130 * ::psa_key_lifetime_t).
2131 *
2132 * \return \c 1 if the key is volatile, otherwise \c 0.
2133 */
2134#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2135 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002136 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002137
Gilles Peskined133bb22021-04-21 20:05:59 +02002138/** Whether a key lifetime indicates that the key is read-only.
2139 *
2140 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2141 * They must be created through platform-specific means that bypass the API.
2142 *
2143 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002144 * consider a platform with multiple levels of privilege, where a
2145 * low-privilege application can use a key but is not allowed to destroy
2146 * it, and the platform exposes the key to the application with a read-only
2147 * lifetime. High-privilege code can destroy the key even though the
2148 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002149 *
2150 * \param lifetime The lifetime value to query (value of type
2151 * ::psa_key_lifetime_t).
2152 *
2153 * \return \c 1 if the key is read-only, otherwise \c 0.
2154 */
2155#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2156 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2157 PSA_KEY_PERSISTENCE_READ_ONLY)
2158
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002159/** Construct a lifetime from a persistence level and a location.
2160 *
2161 * \param persistence The persistence level
2162 * (value of type ::psa_key_persistence_t).
2163 * \param location The location indicator
2164 * (value of type ::psa_key_location_t).
2165 *
2166 * \return The constructed lifetime value.
2167 */
2168#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2169 ((location) << 8 | (persistence))
2170
Gilles Peskineaff11812020-05-04 19:03:10 +02002171/** The local storage area for persistent keys.
2172 *
2173 * This storage area is available on all systems that can store persistent
2174 * keys without delegating the storage to a third-party cryptoprocessor.
2175 *
2176 * See ::psa_key_location_t for more information.
2177 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002178#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002179
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002180#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002181
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002182/** The null key identifier.
2183 */
2184#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002185/** The minimum value for a key identifier chosen by the application.
2186 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002187#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002188/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002189 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002190#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002191/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002192 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002193#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002194/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002195 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002196#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002197
Ronald Cron7424f0d2020-09-14 16:17:41 +02002198
2199#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2200
2201#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2202#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2203#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2204
2205/** Utility to initialize a key identifier at runtime.
2206 *
2207 * \param unused Unused parameter.
2208 * \param key_id Identifier of the key.
2209 */
2210static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2211 unsigned int unused, psa_key_id_t key_id )
2212{
2213 (void)unused;
2214
2215 return( key_id );
2216}
2217
2218/** Compare two key identifiers.
2219 *
2220 * \param id1 First key identifier.
2221 * \param id2 Second key identifier.
2222 *
2223 * \return Non-zero if the two key identifier are equal, zero otherwise.
2224 */
2225static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2226 mbedtls_svc_key_id_t id2 )
2227{
2228 return( id1 == id2 );
2229}
2230
Ronald Cronc4d1b512020-07-31 11:26:37 +02002231/** Check whether a key identifier is null.
2232 *
2233 * \param key Key identifier.
2234 *
2235 * \return Non-zero if the key identifier is null, zero otherwise.
2236 */
2237static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2238{
2239 return( key == 0 );
2240}
2241
Ronald Cron7424f0d2020-09-14 16:17:41 +02002242#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2243
2244#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2245#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2246#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2247
2248/** Utility to initialize a key identifier at runtime.
2249 *
2250 * \param owner_id Identifier of the key owner.
2251 * \param key_id Identifier of the key.
2252 */
2253static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2254 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2255{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002256 return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2257 .MBEDTLS_PRIVATE(owner) = owner_id } );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002258}
2259
2260/** Compare two key identifiers.
2261 *
2262 * \param id1 First key identifier.
2263 * \param id2 Second key identifier.
2264 *
2265 * \return Non-zero if the two key identifier are equal, zero otherwise.
2266 */
2267static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2268 mbedtls_svc_key_id_t id2 )
2269{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002270 return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
2271 mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002272}
2273
Ronald Cronc4d1b512020-07-31 11:26:37 +02002274/** Check whether a key identifier is null.
2275 *
2276 * \param key Key identifier.
2277 *
2278 * \return Non-zero if the key identifier is null, zero otherwise.
2279 */
2280static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2281{
Gilles Peskine52bb83e2021-05-28 12:59:49 +02002282 return( key.MBEDTLS_PRIVATE(key_id) == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002283}
2284
Ronald Cron7424f0d2020-09-14 16:17:41 +02002285#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002286
2287/**@}*/
2288
2289/** \defgroup policy Key policies
2290 * @{
2291 */
2292
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002293/** Whether the key may be exported.
2294 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002295 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002296 * regardless of the value of this permission flag.
2297 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002298 * If a key does not have export permission, implementations shall not
2299 * allow the key to be exported in plain form from the cryptoprocessor,
2300 * whether through psa_export_key() or through a proprietary interface.
2301 * The key may however be exportable in a wrapped form, i.e. in a form
2302 * where it is encrypted by another key.
2303 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002304#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2305
2306/** Whether the key may be copied.
2307 *
2308 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002309 * with the same policy or a more restrictive policy.
2310 *
2311 * For lifetimes for which the key is located in a secure element which
2312 * enforce the non-exportability of keys, copying a key outside the secure
2313 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2314 * Copying the key inside the secure element is permitted with just
2315 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2316 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2317 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2318 * is sufficient to permit the copy.
2319 */
2320#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2321
2322/** Whether the key may be used to encrypt a message.
2323 *
2324 * This flag allows the key to be used for a symmetric encryption operation,
2325 * for an AEAD encryption-and-authentication operation,
2326 * or for an asymmetric encryption operation,
2327 * if otherwise permitted by the key's type and policy.
2328 *
2329 * For a key pair, this concerns the public key.
2330 */
2331#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2332
2333/** Whether the key may be used to decrypt a message.
2334 *
2335 * This flag allows the key to be used for a symmetric decryption operation,
2336 * for an AEAD decryption-and-verification operation,
2337 * or for an asymmetric decryption operation,
2338 * if otherwise permitted by the key's type and policy.
2339 *
2340 * For a key pair, this concerns the private key.
2341 */
2342#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2343
2344/** Whether the key may be used to sign a message.
2345 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002346 * This flag allows the key to be used for a MAC calculation operation or for
2347 * an asymmetric message signature operation, if otherwise permitted by the
2348 * key’s type and policy.
2349 *
2350 * For a key pair, this concerns the private key.
2351 */
2352#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2353
2354/** Whether the key may be used to verify a message.
2355 *
2356 * This flag allows the key to be used for a MAC verification operation or for
2357 * an asymmetric message signature verification operation, if otherwise
2358 * permitted by the key’s type and policy.
2359 *
2360 * For a key pair, this concerns the public key.
2361 */
2362#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2363
2364/** Whether the key may be used to sign a message.
2365 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002366 * This flag allows the key to be used for a MAC calculation operation
2367 * or for an asymmetric signature operation,
2368 * if otherwise permitted by the key's type and policy.
2369 *
2370 * For a key pair, this concerns the private key.
2371 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002372#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002373
2374/** Whether the key may be used to verify a message signature.
2375 *
2376 * This flag allows the key to be used for a MAC verification operation
2377 * or for an asymmetric signature verification operation,
2378 * if otherwise permitted by by the key's type and policy.
2379 *
2380 * For a key pair, this concerns the public key.
2381 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002382#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002383
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002384/** Whether the key may be used to derive other keys or produce a password
2385 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002386 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002387 * This flag allows the key to be used for a key derivation operation or for
2388 * a key agreement operation, if otherwise permitted by by the key's type and
2389 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002390 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002391 * If this flag is present on all keys used in calls to
2392 * psa_key_derivation_input_key() for a key derivation operation, then it
2393 * permits calling psa_key_derivation_output_bytes() or
2394 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002395 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002396#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002397
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002398/** Whether the key may be used to verify the result of a key derivation,
2399 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002400 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002401 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002402 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002403 * This flag allows the key to be used in a key derivation operation, if
2404 * otherwise permitted by by the key's type and policy.
2405 *
2406 * If this flag is present on all keys used in calls to
2407 * psa_key_derivation_input_key() for a key derivation operation, then it
2408 * permits calling psa_key_derivation_verify_bytes() or
2409 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002410 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002411#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002412
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002413/**@}*/
2414
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002415/** \defgroup derivation Key derivation
2416 * @{
2417 */
2418
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002419/** A secret input for key derivation.
2420 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002421 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2422 * (passed to psa_key_derivation_input_key())
2423 * or the shared secret resulting from a key agreement
2424 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002425 *
2426 * The secret can also be a direct input (passed to
2427 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002428 * may not be used to derive keys: the operation will only allow
2429 * psa_key_derivation_output_bytes(),
2430 * psa_key_derivation_verify_bytes(), or
2431 * psa_key_derivation_verify_key(), but not
2432 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002433 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002434#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002435
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002436/** A low-entropy secret input for password hashing / key stretching.
2437 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002438 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2439 * psa_key_derivation_input_key()) or a direct input (passed to
2440 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2441 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2442 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002443 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002444 * The secret can also be a direct input (passed to
2445 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002446 * may not be used to derive keys: the operation will only allow
2447 * psa_key_derivation_output_bytes(),
2448 * psa_key_derivation_verify_bytes(), or
2449 * psa_key_derivation_verify_key(), but not
2450 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002451 */
2452#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2453
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002454/** A label for key derivation.
2455 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002456 * This should be a direct input.
2457 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002458 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002459#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002460
2461/** A salt for key derivation.
2462 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002463 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002464 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2465 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002466 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002467#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002468
2469/** An information string for key derivation.
2470 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002471 * This should be a direct input.
2472 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002473 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002474#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002475
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002476/** A seed for key derivation.
2477 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002478 * This should be a direct input.
2479 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002480 */
2481#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2482
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002483/** A cost parameter for password hashing / key stretching.
2484 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002485 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002486 */
2487#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2488
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002489/**@}*/
2490
Bence Szépkútib639d432021-04-21 10:33:54 +02002491/** \defgroup helper_macros Helper macros
2492 * @{
2493 */
2494
2495/* Helper macros */
2496
2497/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2498 * regardless of the tag length they encode.
2499 *
2500 * \param aead_alg_1 An AEAD algorithm identifier.
2501 * \param aead_alg_2 An AEAD algorithm identifier.
2502 *
2503 * \return 1 if both identifiers refer to the same AEAD algorithm,
2504 * 0 otherwise.
2505 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2506 * a supported AEAD algorithm.
2507 */
2508#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2509 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2510 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2511
2512/**@}*/
2513
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002514#endif /* PSA_CRYPTO_VALUES_H */