blob: a6214bda987bac4e82746cbe6c5b07bd34a65942 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine43bd07d2022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010024 * SPDX-License-Identifier: Apache-2.0
25 *
26 * Licensed under the Apache License, Version 2.0 (the "License"); you may
27 * not use this file except in compliance with the License.
28 * You may obtain a copy of the License at
29 *
30 * http://www.apache.org/licenses/LICENSE-2.0
31 *
32 * Unless required by applicable law or agreed to in writing, software
33 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
34 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
35 * See the License for the specific language governing permissions and
36 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037 */
38
39#ifndef PSA_CRYPTO_VALUES_H
40#define PSA_CRYPTO_VALUES_H
41
42/** \defgroup error Error codes
43 * @{
44 */
45
David Saadab4ecc272019-02-14 13:48:10 +020046/* PSA error codes */
47
Gilles Peskine43bd07d2022-06-20 18:41:20 +020048/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskinebe059e42022-06-29 14:37:17 +020049 * etc.). Do not change the values in this section or even the expansions
50 * of each macro: it must be possible to `#include` both this header
51 * and some other PSA component's headers in the same C source,
52 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
53 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
54 * to the same sequence of tokens.
55 *
56 * If you must add a new
Gilles Peskine43bd07d2022-06-20 18:41:20 +020057 * value, check with the Arm PSA framework group to pick one that other
58 * domains aren't already using. */
59
Gilles Peskined3ce75c2023-01-04 19:50:27 +010060/* Tell uncrustify not to touch the constant definitions, otherwise
61 * it might change the spacing to something that is not PSA-compliant
62 * (e.g. adding a space after casts).
63 *
64 * *INDENT-OFF*
65 */
66
Gilles Peskinef3b731e2018-12-12 13:38:31 +010067/** The action was completed successfully. */
68#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010069
70/** An error occurred that does not correspond to any defined
71 * failure cause.
72 *
73 * Implementations may use this error code if none of the other standard
74 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** The requested operation or a parameter is not supported
78 * by this implementation.
79 *
80 * Implementations should return this error code when an enumeration
81 * parameter such as a key type, algorithm, etc. is not recognized.
82 * If a combination of parameters is recognized and identified as
83 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020084#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010085
86/** The requested action is denied by a policy.
87 *
88 * Implementations should return this error code when the parameters
89 * are recognized as valid and supported, and a policy explicitly
90 * denies the requested operation.
91 *
92 * If a subset of the parameters of a function call identify a
93 * forbidden operation, and another subset of the parameters are
94 * not valid or not supported, it is unspecified whether the function
95 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
96 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020097#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** An output buffer is too small.
100 *
101 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
102 * description to determine a sufficient buffer size.
103 *
104 * Implementations should preferably return this error code only
105 * in cases when performing the operation with a larger output
106 * buffer would succeed. However implementations may return this
107 * error if a function has invalid or unsupported parameters in addition
108 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +0200109#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100110
David Saadab4ecc272019-02-14 13:48:10 +0200111/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100112 *
David Saadab4ecc272019-02-14 13:48:10 +0200113 * Implementations should return this error, when attempting
114 * to write an item (like a key) that already exists. */
115#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
David Saadab4ecc272019-02-14 13:48:10 +0200117/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100118 *
David Saadab4ecc272019-02-14 13:48:10 +0200119 * Implementations should return this error, if a requested item (like
120 * a key) does not exist. */
121#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122
123/** The requested action cannot be performed in the current state.
124 *
125 * Multipart operations return this error when one of the
126 * functions is called out of sequence. Refer to the function
127 * descriptions for permitted sequencing of functions.
128 *
129 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100130 * that a key either exists or not,
131 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100132 * as applicable.
133 *
134 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200135 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100136 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200137#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100138
139/** The parameters passed to the function are invalid.
140 *
141 * Implementations may return this error any time a parameter or
142 * combination of parameters are recognized as invalid.
143 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100144 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200145 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100146 * instead.
147 */
David Saadab4ecc272019-02-14 13:48:10 +0200148#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100149
150/** There is not enough runtime memory.
151 *
152 * If the action is carried out across multiple security realms, this
153 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200154#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100155
156/** There is not enough persistent storage.
157 *
158 * Functions that modify the key storage return this error code if
159 * there is insufficient storage space on the host media. In addition,
160 * many functions that do not otherwise access storage may return this
161 * error code if the implementation requires a mandatory log entry for
162 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200163#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164
165/** There was a communication failure inside the implementation.
166 *
167 * This can indicate a communication failure between the application
168 * and an external cryptoprocessor or between the cryptoprocessor and
169 * an external volatile or persistent memory. A communication failure
170 * may be transient or permanent depending on the cause.
171 *
172 * \warning If a function returns this error, it is undetermined
173 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200174 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100175 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
176 * if the requested action was completed successfully in an external
177 * cryptoprocessor but there was a breakdown of communication before
178 * the cryptoprocessor could report the status to the application.
179 */
David Saadab4ecc272019-02-14 13:48:10 +0200180#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100181
182/** There was a storage failure that may have led to data loss.
183 *
184 * This error indicates that some persistent storage is corrupted.
185 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200186 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100187 * between the cryptoprocessor and its external storage (use
188 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
189 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
190 *
191 * Note that a storage failure does not indicate that any data that was
192 * previously read is invalid. However this previously read data may no
193 * longer be readable from storage.
194 *
195 * When a storage failure occurs, it is no longer possible to ensure
196 * the global integrity of the keystore. Depending on the global
197 * integrity guarantees offered by the implementation, access to other
198 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100199 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100200 *
201 * Implementations should only use this error code to report a
202 * permanent storage corruption. However application writers should
203 * keep in mind that transient errors while reading the storage may be
204 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200205#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100206
207/** A hardware failure was detected.
208 *
209 * A hardware failure may be transient or permanent depending on the
210 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200211#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100212
213/** A tampering attempt was detected.
214 *
215 * If an application receives this error code, there is no guarantee
216 * that previously accessed or computed data was correct and remains
217 * confidential. Applications should not perform any security function
218 * and should enter a safe failure state.
219 *
220 * Implementations may return this error code if they detect an invalid
221 * state that cannot happen during normal operation and that indicates
222 * that the implementation's security guarantees no longer hold. Depending
223 * on the implementation architecture and on its security and safety goals,
224 * the implementation may forcibly terminate the application.
225 *
226 * This error code is intended as a last resort when a security breach
227 * is detected and it is unsure whether the keystore data is still
228 * protected. Implementations shall only return this error code
229 * to report an alarm from a tampering detector, to indicate that
230 * the confidentiality of stored data can no longer be guaranteed,
231 * or to indicate that the integrity of previously returned data is now
232 * considered compromised. Implementations shall not use this error code
233 * to indicate a hardware failure that merely makes it impossible to
234 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
235 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
236 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
237 * instead).
238 *
239 * This error indicates an attack against the application. Implementations
240 * shall not return this error code as a consequence of the behavior of
241 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200242#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100243
244/** There is not enough entropy to generate random data needed
245 * for the requested action.
246 *
247 * This error indicates a failure of a hardware random generator.
248 * Application writers should note that this error can be returned not
249 * only by functions whose purpose is to generate random data, such
250 * as key, IV or nonce generation, but also by functions that execute
251 * an algorithm with a randomized result, as well as functions that
252 * use randomization of intermediate computations as a countermeasure
253 * to certain attacks.
254 *
255 * Implementations should avoid returning this error after psa_crypto_init()
256 * has succeeded. Implementations should generate sufficient
257 * entropy during initialization and subsequently use a cryptographically
258 * secure pseudorandom generator (PRNG). However implementations may return
259 * this error at any time if a policy requires the PRNG to be reseeded
260 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200261#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100262
263/** The signature, MAC or hash is incorrect.
264 *
265 * Verification functions return this error if the verification
266 * calculations completed successfully, and the value to be verified
267 * was determined to be incorrect.
268 *
269 * If the value to verify has an invalid size, implementations may return
270 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
273/** The decrypted padding is incorrect.
274 *
275 * \warning In some protocols, when decrypting data, it is essential that
276 * the behavior of the application does not depend on whether the padding
277 * is correct, down to precise timing. Applications should prefer
278 * protocols that use authenticated encryption rather than plain
279 * encryption. If the application must perform a decryption of
280 * unauthenticated data, the application writer should take care not
281 * to reveal whether the padding is invalid.
282 *
283 * Implementations should strive to make valid and invalid padding
284 * as close as possible to indistinguishable to an external observer.
285 * In particular, the timing of a decryption operation should not
286 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200287#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100288
David Saadab4ecc272019-02-14 13:48:10 +0200289/** Return this error when there's insufficient data when attempting
290 * to read from a resource. */
291#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100292
Ronald Croncf56a0a2020-08-04 09:51:30 +0200293/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100294 */
David Saadab4ecc272019-02-14 13:48:10 +0200295#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100296
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100297/** Stored data has been corrupted.
298 *
299 * This error indicates that some persistent storage has suffered corruption.
300 * It does not indicate the following situations, which have specific error
301 * codes:
302 *
303 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
304 * - A communication error between the cryptoprocessor and its external
305 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
306 * - When the storage is in a valid state but is full - use
307 * #PSA_ERROR_INSUFFICIENT_STORAGE.
308 * - When the storage fails for other reasons - use
309 * #PSA_ERROR_STORAGE_FAILURE.
310 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
311 *
312 * \note A storage corruption does not indicate that any data that was
313 * previously read is invalid. However this previously read data might no
314 * longer be readable from storage.
315 *
316 * When a storage failure occurs, it is no longer possible to ensure the
317 * global integrity of the keystore.
318 */
319#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
320
gabor-mezei-armfe309242020-11-09 17:39:56 +0100321/** Data read from storage is not valid for the implementation.
322 *
323 * This error indicates that some data read from storage does not have a valid
324 * format. It does not indicate the following situations, which have specific
325 * error codes:
326 *
327 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
328 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
329 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
330 *
331 * This error is typically a result of either storage corruption on a
332 * cleartext storage backend, or an attempt to read data that was
333 * written by an incompatible version of the library.
334 */
335#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
336
Gilles Peskined3ce75c2023-01-04 19:50:27 +0100337/* *INDENT-ON* */
338
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339/**@}*/
340
341/** \defgroup crypto_types Key and algorithm types
342 * @{
343 */
344
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200345/* Note that key type values, including ECC family and DH group values, are
346 * embedded in the persistent key store, as part of key metadata. As a
347 * consequence, they must not be changed (unless the storage format version
348 * changes).
349 */
350
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100351/** An invalid key type value.
352 *
353 * Zero is not the encoding of any key type.
354 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100355#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100357/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100358 *
359 * Key types defined by this standard will never have the
360 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
361 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
362 * respect the bitwise structure used by standard encodings whenever practical.
363 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100364#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100365
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100366#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
367#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
368#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
369#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
370#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100371
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100372#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100373
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100374/** Whether a key type is vendor-defined.
375 *
376 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
377 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100378#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
379 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
380
381/** Whether a key type is an unstructured array of bytes.
382 *
383 * This encompasses both symmetric keys and non-key data.
384 */
385#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100386 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
387 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100388
389/** Whether a key type is asymmetric: either a key pair or a public key. */
390#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
391 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
392 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
393 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
394/** Whether a key type is the public part of a key pair. */
395#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
396 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
397/** Whether a key type is a key pair containing a private part and a public
398 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200399#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
401/** The key pair type corresponding to a public key type.
402 *
403 * You may also pass a key pair type as \p type, it will be left unchanged.
404 *
405 * \param type A public key type or key pair type.
406 *
407 * \return The corresponding key pair type.
408 * If \p type is not a public key or a key pair,
409 * the return value is undefined.
410 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200411#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100412 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
413/** The public key type corresponding to a key pair type.
414 *
415 * You may also pass a key pair type as \p type, it will be left unchanged.
416 *
417 * \param type A public key type or key pair type.
418 *
419 * \return The corresponding public key type.
420 * If \p type is not a public key or a key pair,
421 * the return value is undefined.
422 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200423#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100424 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
425
426/** Raw data.
427 *
428 * A "key" of this type cannot be used for any cryptographic operation.
429 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100430#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100431
432/** HMAC key.
433 *
434 * The key policy determines which underlying hash algorithm the key can be
435 * used for.
436 *
437 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100438 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100439 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100440#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100441
442/** A secret for key derivation.
443 *
444 * The key policy determines which key derivation algorithm the key
445 * can be used for.
446 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100447#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448
Gilles Peskine737c6be2019-05-21 16:01:06 +0200449/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100450 *
451 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
452 * 32 bytes (AES-256).
453 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100454#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100455
Gilles Peskine8890f642021-09-21 11:59:39 +0200456/** Key for a cipher, AEAD or MAC algorithm based on the
457 * ARIA block cipher. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100458#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
Gilles Peskine8890f642021-09-21 11:59:39 +0200459
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100460/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
461 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100462 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
463 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100464 *
465 * Note that single DES and 2-key 3DES are weak and strongly
466 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
467 * is weak and deprecated and should only be used in legacy protocols.
468 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100469#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100470
Gilles Peskine737c6be2019-05-21 16:01:06 +0200471/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100472 * Camellia block cipher. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100473#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100474
Gilles Peskine500e48f2022-04-22 16:49:30 +0200475/** Key for the ARC4 stream cipher (also known as RC4 or ARCFOUR).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100476 *
Gilles Peskine500e48f2022-04-22 16:49:30 +0200477 * Note that ARC4 is weak and deprecated and should only be used in
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100478 * legacy protocols. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100479#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t) 0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100480
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200481/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
482 *
483 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
484 *
485 * Implementations must support 12-byte nonces, may support 8-byte nonces,
486 * and should reject other sizes.
487 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100488#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200489
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100490/** RSA public key.
491 *
492 * The size of an RSA key is the bit size of the modulus.
493 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100494#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100495/** RSA key pair (private and public key).
496 *
497 * The size of an RSA key is the bit size of the modulus.
498 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100499#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500/** Whether a key type is an RSA key (pair or public-only). */
501#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200502 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100503
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100504#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
505#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
506#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100507/** Elliptic curve key pair.
508 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100509 * The size of an elliptic curve key is the bit size associated with the curve,
510 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
511 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
512 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100513 * \param curve A value of type ::psa_ecc_family_t that
514 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100515 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200516#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
517 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100518/** Elliptic curve public key.
519 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100520 * The size of an elliptic curve public key is the same as the corresponding
521 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
522 * `PSA_ECC_FAMILY_xxx` curve families).
523 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100524 * \param curve A value of type ::psa_ecc_family_t that
525 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100526 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100527#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
528 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
529
530/** Whether a key type is an elliptic curve key (pair or public-only). */
531#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200532 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100533 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100534/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200535#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100536 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200537 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100538/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100539#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
540 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
541 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
542
543/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100544#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
545 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100546 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
547 0))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100548
Gilles Peskine228abc52019-12-03 17:24:19 +0100549/** SEC Koblitz curves over prime fields.
550 *
551 * This family comprises the following curves:
552 * secp192k1, secp224k1, secp256k1.
553 * They are defined in _Standards for Efficient Cryptography_,
554 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
555 * https://www.secg.org/sec2-v2.pdf
556 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100557#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100558
559/** SEC random curves over prime fields.
560 *
561 * This family comprises the following curves:
562 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
563 * They are defined in _Standards for Efficient Cryptography_,
564 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
565 * https://www.secg.org/sec2-v2.pdf
566 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100567#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100568/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100569#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100570
571/** SEC Koblitz curves over binary fields.
572 *
573 * This family comprises the following curves:
574 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
575 * They are defined in _Standards for Efficient Cryptography_,
576 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
577 * https://www.secg.org/sec2-v2.pdf
578 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100579#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100580
581/** SEC random curves over binary fields.
582 *
583 * This family comprises the following curves:
584 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
585 * They are defined in _Standards for Efficient Cryptography_,
586 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
587 * https://www.secg.org/sec2-v2.pdf
588 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100589#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100590
591/** SEC additional random curves over binary fields.
592 *
593 * This family comprises the following curve:
594 * sect163r2.
595 * It is defined in _Standards for Efficient Cryptography_,
596 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
597 * https://www.secg.org/sec2-v2.pdf
598 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100599#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100600
601/** Brainpool P random curves.
602 *
603 * This family comprises the following curves:
604 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
605 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
606 * It is defined in RFC 5639.
607 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100608#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100609
610/** Curve25519 and Curve448.
611 *
612 * This family comprises the following Montgomery curves:
613 * - 255-bit: Bernstein et al.,
614 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
615 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
616 * - 448-bit: Hamburg,
617 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
618 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
619 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100620#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100621
Gilles Peskine67546802021-02-24 21:49:40 +0100622/** The twisted Edwards curves Ed25519 and Ed448.
623 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100624 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100625 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100626 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100627 *
628 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100629 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100630 * to Curve25519.
631 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
632 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
633 * to Curve448.
634 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
635 */
636#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
637
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100638#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
639#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
640#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100641/** Diffie-Hellman key pair.
642 *
Paul Elliott75e27032020-06-03 15:17:39 +0100643 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100644 * Diffie-Hellman group to be used.
645 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200646#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
647 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100648/** Diffie-Hellman public key.
649 *
Paul Elliott75e27032020-06-03 15:17:39 +0100650 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100651 * Diffie-Hellman group to be used.
652 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200653#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
654 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
655
656/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
657#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200658 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200659 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
660/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200661#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200662 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200663 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200664/** Whether a key type is a Diffie-Hellman public key. */
665#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
666 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
667 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
668
669/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100670#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
671 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100672 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
673 0))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200674
Gilles Peskine228abc52019-12-03 17:24:19 +0100675/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
676 *
677 * This family includes groups with the following key sizes (in bits):
678 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
679 * all of these sizes or only a subset.
680 */
Paul Elliott75e27032020-06-03 15:17:39 +0100681#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100682
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100683#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100684 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100685/** The block size of a block cipher.
686 *
687 * \param type A cipher key type (value of type #psa_key_type_t).
688 *
689 * \return The block size for a block cipher, or 1 for a stream cipher.
690 * The return value is undefined if \p type is not a supported
691 * cipher key type.
692 *
693 * \note It is possible to build stream cipher algorithms on top of a block
694 * cipher, for example CTR mode (#PSA_ALG_CTR).
695 * This macro only takes the key type into account, so it cannot be
696 * used to determine the size of the data that #psa_cipher_update()
697 * might buffer for future processing in general.
698 *
699 * \note This macro returns a compile-time constant if its argument is one.
700 *
701 * \warning This macro may evaluate its argument multiple times.
702 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100703#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100704 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100705 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100706 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100707
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200708/* Note that algorithm values are embedded in the persistent key store,
709 * as part of key metadata. As a consequence, they must not be changed
710 * (unless the storage format version changes).
711 */
712
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100713/** Vendor-defined algorithm flag.
714 *
715 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
716 * bit set. Vendors who define additional algorithms must use an encoding with
717 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
718 * used by standard encodings whenever practical.
719 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100720#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100721
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100722#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
723#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
724#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
725#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
726#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
727#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
728#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
729#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
730#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100732/** Whether an algorithm is vendor-defined.
733 *
734 * See also #PSA_ALG_VENDOR_FLAG.
735 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100736#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
737 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
738
739/** Whether the specified algorithm is a hash algorithm.
740 *
741 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
742 *
743 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
744 * This macro may return either 0 or 1 if \p alg is not a supported
745 * algorithm identifier.
746 */
747#define PSA_ALG_IS_HASH(alg) \
748 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
749
750/** Whether the specified algorithm is a MAC algorithm.
751 *
752 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
753 *
754 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
755 * This macro may return either 0 or 1 if \p alg is not a supported
756 * algorithm identifier.
757 */
758#define PSA_ALG_IS_MAC(alg) \
759 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
760
761/** Whether the specified algorithm is a symmetric cipher algorithm.
762 *
763 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
764 *
765 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
766 * This macro may return either 0 or 1 if \p alg is not a supported
767 * algorithm identifier.
768 */
769#define PSA_ALG_IS_CIPHER(alg) \
770 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
771
772/** Whether the specified algorithm is an authenticated encryption
773 * with associated data (AEAD) algorithm.
774 *
775 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
776 *
777 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
778 * This macro may return either 0 or 1 if \p alg is not a supported
779 * algorithm identifier.
780 */
781#define PSA_ALG_IS_AEAD(alg) \
782 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
783
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200784/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200785 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100786 *
787 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
788 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200789 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100790 * This macro may return either 0 or 1 if \p alg is not a supported
791 * algorithm identifier.
792 */
793#define PSA_ALG_IS_SIGN(alg) \
794 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
795
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200796/** Whether the specified algorithm is an asymmetric encryption algorithm,
797 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100798 *
799 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
800 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200801 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100802 * This macro may return either 0 or 1 if \p alg is not a supported
803 * algorithm identifier.
804 */
805#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
806 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
807
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100808/** Whether the specified algorithm is a key agreement algorithm.
809 *
810 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
811 *
812 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
813 * This macro may return either 0 or 1 if \p alg is not a supported
814 * algorithm identifier.
815 */
816#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100817 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100818
819/** Whether the specified algorithm is a key derivation algorithm.
820 *
821 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
822 *
823 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
824 * This macro may return either 0 or 1 if \p alg is not a supported
825 * algorithm identifier.
826 */
827#define PSA_ALG_IS_KEY_DERIVATION(alg) \
828 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
829
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200830/** An invalid algorithm identifier value. */
Gilles Peskine7f3659a2023-01-04 19:52:38 +0100831/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200832#define PSA_ALG_NONE ((psa_algorithm_t)0)
Gilles Peskine7f3659a2023-01-04 19:52:38 +0100833/* *INDENT-ON* */
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200834
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100835#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100836/** MD2 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100837#define PSA_ALG_MD2 ((psa_algorithm_t) 0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100838/** MD4 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100839#define PSA_ALG_MD4 ((psa_algorithm_t) 0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100840/** MD5 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100841#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100842/** PSA_ALG_RIPEMD160 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100843#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100844/** SHA1 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100845#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100846/** SHA2-224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100847#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100848/** SHA2-256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100849#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100850/** SHA2-384 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100851#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100852/** SHA2-512 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100853#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100854/** SHA2-512/224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100855#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100856/** SHA2-512/256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100857#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100858/** SHA3-224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100859#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100860/** SHA3-256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100861#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100862/** SHA3-384 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100863#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864/** SHA3-512 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100865#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100866/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100867 *
868 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
869 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
870 * has the same output size and a (theoretically) higher security strength.
871 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100872#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100873
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100874/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100875 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100876 * This value may be used to form the algorithm usage field of a policy
877 * for a signature algorithm that is parametrized by a hash. The key
878 * may then be used to perform operations using the same signature
879 * algorithm parametrized with any supported hash.
880 *
881 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine35115f92021-10-04 18:10:38 +0200882 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100883 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100884 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100885 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
886 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100887 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200888 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100889 * ```
890 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100891 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100892 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
893 * call to sign or verify a message may use a different hash.
894 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200895 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
896 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
897 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100898 * ```
899 *
900 * This value may not be used to build other algorithms that are
901 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100902 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100903 *
904 * This value may not be used to build an algorithm specification to
905 * perform an operation. It is only valid to build policies.
906 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100907#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100908
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100909#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
910#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100911/** Macro to build an HMAC algorithm.
912 *
913 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
914 *
915 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
916 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
917 *
918 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100919 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100920 * hash algorithm.
921 */
922#define PSA_ALG_HMAC(hash_alg) \
923 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
924
925#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
926 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
927
928/** Whether the specified algorithm is an HMAC algorithm.
929 *
930 * HMAC is a family of MAC algorithms that are based on a hash function.
931 *
932 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
933 *
934 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
935 * This macro may return either 0 or 1 if \p alg is not a supported
936 * algorithm identifier.
937 */
938#define PSA_ALG_IS_HMAC(alg) \
939 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
940 PSA_ALG_HMAC_BASE)
941
942/* In the encoding of a MAC algorithm, the bits corresponding to
943 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
944 * truncated. As an exception, the value 0 means the untruncated algorithm,
945 * whatever its length is. The length is encoded in 6 bits, so it can
946 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
947 * to full length is correctly encoded as 0 and any non-trivial truncation
948 * is correctly encoded as a value between 1 and 63. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100949#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100950#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100951
Steven Cooremand927ed72021-02-22 19:59:35 +0100952/* In the encoding of a MAC algorithm, the bit corresponding to
953 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100954 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
955 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100956 * same base class and having a (potentially truncated) MAC length greater or
957 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100958#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +0100959
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100960/** Macro to build a truncated MAC algorithm.
961 *
962 * A truncated MAC algorithm is identical to the corresponding MAC
963 * algorithm except that the MAC value for the truncated algorithm
964 * consists of only the first \p mac_length bytes of the MAC value
965 * for the untruncated algorithm.
966 *
967 * \note This macro may allow constructing algorithm identifiers that
968 * are not valid, either because the specified length is larger
969 * than the untruncated MAC or because the specified length is
970 * smaller than permitted by the implementation.
971 *
972 * \note It is implementation-defined whether a truncated MAC that
973 * is truncated to the same length as the MAC of the untruncated
974 * algorithm is considered identical to the untruncated algorithm
975 * for policy comparison purposes.
976 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200977 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100978 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100979 * is true). This may be a truncated or untruncated
980 * MAC algorithm.
981 * \param mac_length Desired length of the truncated MAC in bytes.
982 * This must be at most the full length of the MAC
983 * and must be at least an implementation-specified
984 * minimum. The implementation-specified minimum
985 * shall not be zero.
986 *
987 * \return The corresponding MAC algorithm with the specified
988 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100989 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100990 * MAC algorithm or if \p mac_length is too small or
991 * too large for the specified MAC algorithm.
992 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100993#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
994 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
995 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100996 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
997
998/** Macro to build the base MAC algorithm corresponding to a truncated
999 * MAC algorithm.
1000 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001001 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001002 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001003 * is true). This may be a truncated or untruncated
1004 * MAC algorithm.
1005 *
1006 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001007 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001008 * MAC algorithm.
1009 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001010#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1011 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1012 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001013
1014/** Length to which a MAC algorithm is truncated.
1015 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001016 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001017 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001018 * is true).
1019 *
1020 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001021 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1022 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001023 * MAC algorithm.
1024 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001025#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1026 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001027
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001028/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001029 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001030 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001031 * sharing the same base algorithm, and where the (potentially truncated) MAC
1032 * length of the specific algorithm is equal to or larger then the wildcard
1033 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001034 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001035 * \note When setting the minimum required MAC length to less than the
1036 * smallest MAC length allowed by the base algorithm, this effectively
1037 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001038 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001039 * \param mac_alg A MAC algorithm identifier (value of type
1040 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1041 * is true).
1042 * \param min_mac_length Desired minimum length of the message authentication
1043 * code in bytes. This must be at most the untruncated
1044 * length of the MAC and must be at least 1.
1045 *
1046 * \return The corresponding MAC wildcard algorithm with the
1047 * specified minimum length.
1048 * \return Unspecified if \p mac_alg is not a supported MAC
1049 * algorithm or if \p min_mac_length is less than 1 or
1050 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001051 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001052#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001053 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1054 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001055
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001056#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001057/** The CBC-MAC construction over a block cipher
1058 *
1059 * \warning CBC-MAC is insecure in many cases.
1060 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1061 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001062#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001063/** The CMAC construction over a block cipher */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001064#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001065
1066/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1067 *
1068 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1069 *
1070 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1071 * This macro may return either 0 or 1 if \p alg is not a supported
1072 * algorithm identifier.
1073 */
1074#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1075 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1076 PSA_ALG_CIPHER_MAC_BASE)
1077
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001078#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1079#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001080
1081/** Whether the specified algorithm is a stream cipher.
1082 *
1083 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1084 * by applying a bitwise-xor with a stream of bytes that is generated
1085 * from a key.
1086 *
1087 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1088 *
1089 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1090 * This macro may return either 0 or 1 if \p alg is not a supported
1091 * algorithm identifier or if it is not a symmetric cipher algorithm.
1092 */
1093#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1094 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001095 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001096
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001097/** The stream cipher mode of a stream cipher algorithm.
1098 *
1099 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001100 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1101 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001102 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001103#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001104
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001105/** The CTR stream cipher mode.
1106 *
1107 * CTR is a stream cipher which is built from a block cipher.
1108 * The underlying block cipher is determined by the key type.
1109 * For example, to use AES-128-CTR, use this algorithm with
1110 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1111 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001112#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001113
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001114/** The CFB stream cipher mode.
1115 *
1116 * The underlying block cipher is determined by the key type.
1117 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001118#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001119
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001120/** The OFB stream cipher mode.
1121 *
1122 * The underlying block cipher is determined by the key type.
1123 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001124#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001125
1126/** The XTS cipher mode.
1127 *
1128 * XTS is a cipher mode which is built from a block cipher. It requires at
1129 * least one full block of input, but beyond this minimum the input
1130 * does not need to be a whole number of blocks.
1131 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001132#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001133
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001134/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1135 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001136 * \warning ECB mode does not protect the confidentiality of the encrypted data
1137 * except in extremely narrow circumstances. It is recommended that applications
1138 * only use ECB if they need to construct an operating mode that the
1139 * implementation does not provide. Implementations are encouraged to provide
1140 * the modes that applications need in preference to supporting direct access
1141 * to ECB.
1142 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001143 * The underlying block cipher is determined by the key type.
1144 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001145 * This symmetric cipher mode can only be used with messages whose lengths are a
1146 * multiple of the block size of the chosen block cipher.
1147 *
1148 * ECB mode does not accept an initialization vector (IV). When using a
1149 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1150 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001151 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001152#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001153
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001154/** The CBC block cipher chaining mode, with no padding.
1155 *
1156 * The underlying block cipher is determined by the key type.
1157 *
1158 * This symmetric cipher mode can only be used with messages whose lengths
1159 * are whole number of blocks for the chosen block cipher.
1160 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001161#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001162
1163/** The CBC block cipher chaining mode with PKCS#7 padding.
1164 *
1165 * The underlying block cipher is determined by the key type.
1166 *
1167 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1168 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001169#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001170
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001171#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskine679693e2019-05-06 15:10:16 +02001172
1173/** Whether the specified algorithm is an AEAD mode on a block cipher.
1174 *
1175 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1176 *
1177 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1178 * a block cipher, 0 otherwise.
1179 * This macro may return either 0 or 1 if \p alg is not a supported
1180 * algorithm identifier.
1181 */
1182#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1183 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1184 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1185
Gilles Peskine9153ec02019-02-15 13:02:02 +01001186/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001187 *
1188 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001189 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001190#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001191
1192/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001193 *
1194 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001195 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001196#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001197
1198/** The Chacha20-Poly1305 AEAD algorithm.
1199 *
1200 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001201 *
1202 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1203 * and should reject other sizes.
1204 *
1205 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001206 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001207#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001208
Tom Cosgrove5205c972022-07-28 06:12:08 +01001209/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001210 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1211 * The constants for default lengths follow this encoding.
1212 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001213#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001214#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001215
Steven Cooremand927ed72021-02-22 19:59:35 +01001216/* In the encoding of an AEAD algorithm, the bit corresponding to
1217 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001218 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1219 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001220 * same base class and having a tag length greater than or equal to the one
1221 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001222#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001223
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001224/** Macro to build a shortened AEAD algorithm.
1225 *
1226 * A shortened AEAD algorithm is similar to the corresponding AEAD
1227 * algorithm, but has an authentication tag that consists of fewer bytes.
1228 * Depending on the algorithm, the tag length may affect the calculation
1229 * of the ciphertext.
1230 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001231 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001232 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001233 * is true).
1234 * \param tag_length Desired length of the authentication tag in bytes.
1235 *
1236 * \return The corresponding AEAD algorithm with the specified
1237 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001238 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001239 * AEAD algorithm or if \p tag_length is not valid
1240 * for the specified AEAD algorithm.
1241 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001242#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001243 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1244 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001245 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001246 PSA_ALG_AEAD_TAG_LENGTH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001247
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001248/** Retrieve the tag length of a specified AEAD algorithm
1249 *
1250 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001251 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001252 * is true).
1253 *
1254 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001255 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001256 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001257 */
1258#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1259 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001260 PSA_AEAD_TAG_LENGTH_OFFSET)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001261
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001262/** Calculate the corresponding AEAD algorithm with the default tag length.
1263 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001264 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001265 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001266 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001267 * \return The corresponding AEAD algorithm with the default
1268 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001269 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001270#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001271 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001272 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1273 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1274 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001275 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001276#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1277 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1278 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001279 ref :
1280
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001281/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001282 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001283 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001284 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001285 * algorithm is equal to or larger then the minimum tag length specified by the
1286 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001287 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001288 * \note When setting the minimum required tag length to less than the
1289 * smallest tag length allowed by the base algorithm, this effectively
1290 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001291 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001292 * \param aead_alg An AEAD algorithm identifier (value of type
1293 * #psa_algorithm_t such that
1294 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1295 * \param min_tag_length Desired minimum length of the authentication tag in
1296 * bytes. This must be at least 1 and at most the largest
1297 * allowed tag length of the algorithm.
1298 *
1299 * \return The corresponding AEAD wildcard algorithm with the
1300 * specified minimum length.
1301 * \return Unspecified if \p aead_alg is not a supported
1302 * AEAD algorithm or if \p min_tag_length is less than 1
1303 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001304 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001305#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001306 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1307 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001308
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001309#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001310/** RSA PKCS#1 v1.5 signature with hashing.
1311 *
1312 * This is the signature scheme defined by RFC 8017
1313 * (PKCS#1: RSA Cryptography Specifications) under the name
1314 * RSASSA-PKCS1-v1_5.
1315 *
1316 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1317 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001318 * This includes #PSA_ALG_ANY_HASH
1319 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001320 *
1321 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001322 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001323 * hash algorithm.
1324 */
1325#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1326 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1327/** Raw PKCS#1 v1.5 signature.
1328 *
1329 * The input to this algorithm is the DigestInfo structure used by
1330 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1331 * steps 3&ndash;6.
1332 */
1333#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1334#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1335 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1336
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001337#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1338#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001339/** RSA PSS signature with hashing.
1340 *
1341 * This is the signature scheme defined by RFC 8017
1342 * (PKCS#1: RSA Cryptography Specifications) under the name
1343 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu54bc05d2022-06-17 10:25:05 +01001344 * a salt length equal to the length of the hash, or the largest
1345 * possible salt length for the algorithm and key size if that is
1346 * smaller than the hash length. The specified hash algorithm is
1347 * used to hash the input message, to create the salted hash, and
1348 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001349 *
1350 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1351 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001352 * This includes #PSA_ALG_ANY_HASH
1353 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001354 *
1355 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001356 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001357 * hash algorithm.
1358 */
1359#define PSA_ALG_RSA_PSS(hash_alg) \
1360 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine35115f92021-10-04 18:10:38 +02001361
1362/** RSA PSS signature with hashing with relaxed verification.
1363 *
1364 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1365 * but allows an arbitrary salt length (including \c 0) when verifying a
1366 * signature.
1367 *
1368 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1369 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1370 * This includes #PSA_ALG_ANY_HASH
1371 * when specifying the algorithm in a usage policy.
1372 *
1373 * \return The corresponding RSA PSS signature algorithm.
1374 * \return Unspecified if \p hash_alg is not a supported
1375 * hash algorithm.
1376 */
1377#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1378 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1379
1380/** Whether the specified algorithm is RSA PSS with standard salt.
1381 *
1382 * \param alg An algorithm value or an algorithm policy wildcard.
1383 *
1384 * \return 1 if \p alg is of the form
1385 * #PSA_ALG_RSA_PSS(\c hash_alg),
1386 * where \c hash_alg is a hash algorithm or
1387 * #PSA_ALG_ANY_HASH. 0 otherwise.
1388 * This macro may return either 0 or 1 if \p alg is not
1389 * a supported algorithm identifier or policy.
1390 */
1391#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001392 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1393
Gilles Peskine35115f92021-10-04 18:10:38 +02001394/** Whether the specified algorithm is RSA PSS with any salt.
1395 *
1396 * \param alg An algorithm value or an algorithm policy wildcard.
1397 *
1398 * \return 1 if \p alg is of the form
1399 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1400 * where \c hash_alg is a hash algorithm or
1401 * #PSA_ALG_ANY_HASH. 0 otherwise.
1402 * This macro may return either 0 or 1 if \p alg is not
1403 * a supported algorithm identifier or policy.
1404 */
1405#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1406 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1407
1408/** Whether the specified algorithm is RSA PSS.
1409 *
1410 * This includes any of the RSA PSS algorithm variants, regardless of the
1411 * constraints on salt length.
1412 *
1413 * \param alg An algorithm value or an algorithm policy wildcard.
1414 *
1415 * \return 1 if \p alg is of the form
1416 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1417 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1418 * where \c hash_alg is a hash algorithm or
1419 * #PSA_ALG_ANY_HASH. 0 otherwise.
1420 * This macro may return either 0 or 1 if \p alg is not
1421 * a supported algorithm identifier or policy.
1422 */
1423#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef8362ca2021-10-08 16:28:32 +02001424 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1425 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskine35115f92021-10-04 18:10:38 +02001426
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001427#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001428/** ECDSA signature with hashing.
1429 *
1430 * This is the ECDSA signature scheme defined by ANSI X9.62,
1431 * with a random per-message secret number (*k*).
1432 *
1433 * The representation of the signature as a byte string consists of
Shaun Case0e7791f2021-12-20 21:14:10 -08001434 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001435 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1436 * of the base point of the curve in octets. Each value is represented
1437 * in big-endian order (most significant octet first).
1438 *
1439 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1440 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001441 * This includes #PSA_ALG_ANY_HASH
1442 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001443 *
1444 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001445 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001446 * hash algorithm.
1447 */
1448#define PSA_ALG_ECDSA(hash_alg) \
1449 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1450/** ECDSA signature without hashing.
1451 *
1452 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1453 * without specifying a hash algorithm. This algorithm may only be
1454 * used to sign or verify a sequence of bytes that should be an
1455 * already-calculated hash. Note that the input is padded with
1456 * zeros on the left or truncated on the left as required to fit
1457 * the curve size.
1458 */
1459#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001460#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001461/** Deterministic ECDSA signature with hashing.
1462 *
1463 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1464 *
1465 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1466 *
1467 * Note that when this algorithm is used for verification, signatures
1468 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1469 * same private key are accepted. In other words,
1470 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1471 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1472 *
1473 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1474 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001475 * This includes #PSA_ALG_ANY_HASH
1476 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001477 *
1478 * \return The corresponding deterministic ECDSA signature
1479 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001480 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001481 * hash algorithm.
1482 */
1483#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1484 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001485#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001486#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001487 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001488 PSA_ALG_ECDSA_BASE)
1489#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001490 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001491#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1492 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1493#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1494 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1495
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001496/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1497 * using standard parameters.
1498 *
1499 * Contexts are not supported in the current version of this specification
1500 * because there is no suitable signature interface that can take the
1501 * context as a parameter. A future version of this specification may add
1502 * suitable functions and extend this algorithm to support contexts.
1503 *
1504 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1505 * In this specification, the following curves are supported:
1506 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1507 * in RFC 8032.
1508 * The curve is Edwards25519.
1509 * The hash function used internally is SHA-512.
1510 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1511 * in RFC 8032.
1512 * The curve is Edwards448.
1513 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001514 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001515 *
1516 * This algorithm can be used with psa_sign_message() and
1517 * psa_verify_message(). Since there is no prehashing, it cannot be used
1518 * with psa_sign_hash() or psa_verify_hash().
1519 *
1520 * The signature format is the concatenation of R and S as defined by
1521 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1522 * string for Ed448).
1523 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001524#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001525
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001526#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001527#define PSA_ALG_IS_HASH_EDDSA(alg) \
1528 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1529
1530/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001531 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001532 *
1533 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1534 *
1535 * This algorithm is Ed25519 as specified in RFC 8032.
1536 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001537 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001538 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001539 *
1540 * This is a hash-and-sign algorithm: to calculate a signature,
1541 * you can either:
1542 * - call psa_sign_message() on the message;
1543 * - or calculate the SHA-512 hash of the message
1544 * with psa_hash_compute()
1545 * or with a multi-part hash operation started with psa_hash_setup(),
1546 * using the hash algorithm #PSA_ALG_SHA_512,
1547 * then sign the calculated hash with psa_sign_hash().
1548 * Verifying a signature is similar, using psa_verify_message() or
1549 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001550 */
1551#define PSA_ALG_ED25519PH \
1552 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1553
1554/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1555 * using SHAKE256 and the Edwards448 curve.
1556 *
1557 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1558 *
1559 * This algorithm is Ed448 as specified in RFC 8032.
1560 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001561 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001562 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001563 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001564 *
1565 * This is a hash-and-sign algorithm: to calculate a signature,
1566 * you can either:
1567 * - call psa_sign_message() on the message;
1568 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1569 * with psa_hash_compute()
1570 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001571 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001572 * then sign the calculated hash with psa_sign_hash().
1573 * Verifying a signature is similar, using psa_verify_message() or
1574 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001575 */
1576#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001577 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001578
Gilles Peskine6d400852021-02-24 21:39:52 +01001579/* Default definition, to be overridden if the library is extended with
1580 * more hash-and-sign algorithms that we want to keep out of this header
1581 * file. */
1582#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1583
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001584/** Whether the specified algorithm is a signature algorithm that can be used
1585 * with psa_sign_hash() and psa_verify_hash().
1586 *
1587 * This encompasses all strict hash-and-sign algorithms categorized by
1588 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1589 * paradigm more loosely:
1590 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1591 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1592 *
1593 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1594 *
1595 * \return 1 if alg is a signature algorithm that can be used to sign a
1596 * hash. 0 if alg is a signature algorithm that can only be used
1597 * to sign a message. 0 if alg is not a signature algorithm.
1598 * This macro can return either 0 or 1 if alg is not a
1599 * supported algorithm identifier.
1600 */
1601#define PSA_ALG_IS_SIGN_HASH(alg) \
1602 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1603 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1604 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1605
1606/** Whether the specified algorithm is a signature algorithm that can be used
1607 * with psa_sign_message() and psa_verify_message().
1608 *
1609 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1610 *
1611 * \return 1 if alg is a signature algorithm that can be used to sign a
1612 * message. 0 if \p alg is a signature algorithm that can only be used
1613 * to sign an already-calculated hash. 0 if \p alg is not a signature
1614 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1615 * supported algorithm identifier.
1616 */
1617#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001618 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001619
Gilles Peskined35b4892019-01-14 16:02:15 +01001620/** Whether the specified algorithm is a hash-and-sign algorithm.
1621 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001622 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1623 * structured in two parts: first the calculation of a hash in a way that
1624 * does not depend on the key, then the calculation of a signature from the
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001625 * hash value and the key. Hash-and-sign algorithms encode the hash
1626 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1627 * to extract this algorithm.
1628 *
1629 * Thus, for a hash-and-sign algorithm,
1630 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1631 * ```
1632 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1633 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1634 * ```
1635 * Most usefully, separating the hash from the signature allows the hash
1636 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1637 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1638 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001639 *
1640 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1641 *
1642 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1643 * This macro may return either 0 or 1 if \p alg is not a supported
1644 * algorithm identifier.
1645 */
1646#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001647 (PSA_ALG_IS_SIGN_HASH(alg) && \
1648 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001649
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001650/** Get the hash used by a hash-and-sign signature algorithm.
1651 *
1652 * A hash-and-sign algorithm is a signature algorithm which is
1653 * composed of two phases: first a hashing phase which does not use
1654 * the key and produces a hash of the input message, then a signing
1655 * phase which only uses the hash and the key and not the message
1656 * itself.
1657 *
1658 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1659 * #PSA_ALG_IS_SIGN(\p alg) is true).
1660 *
1661 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1662 * algorithm.
1663 * \return 0 if \p alg is a signature algorithm that does not
1664 * follow the hash-and-sign structure.
1665 * \return Unspecified if \p alg is not a signature algorithm or
1666 * if it is not supported by the implementation.
1667 */
1668#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001669 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001670 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1671 0)
1672
1673/** RSA PKCS#1 v1.5 encryption.
1674 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001675#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001676
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001677#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001678/** RSA OAEP encryption.
1679 *
1680 * This is the encryption scheme defined by RFC 8017
1681 * (PKCS#1: RSA Cryptography Specifications) under the name
1682 * RSAES-OAEP, with the message generation function MGF1.
1683 *
1684 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1685 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1686 * for MGF1.
1687 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001688 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001689 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001690 * hash algorithm.
1691 */
1692#define PSA_ALG_RSA_OAEP(hash_alg) \
1693 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1694#define PSA_ALG_IS_RSA_OAEP(alg) \
1695 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1696#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1697 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1698 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1699 0)
1700
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001701#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001702/** Macro to build an HKDF algorithm.
1703 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001704 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001705 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001706 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001707 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001708 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001709 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1710 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1711 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1712 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001713 * starting to generate output.
1714 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001715 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1716 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1717 *
1718 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001719 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001720 * hash algorithm.
1721 */
1722#define PSA_ALG_HKDF(hash_alg) \
1723 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1724/** Whether the specified algorithm is an HKDF algorithm.
1725 *
1726 * HKDF is a family of key derivation algorithms that are based on a hash
1727 * function and the HMAC construction.
1728 *
1729 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1730 *
1731 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1732 * This macro may return either 0 or 1 if \c alg is not a supported
1733 * key derivation algorithm identifier.
1734 */
1735#define PSA_ALG_IS_HKDF(alg) \
1736 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1737#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1738 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1739
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001740#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001741/** Macro to build a TLS-1.2 PRF algorithm.
1742 *
1743 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1744 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1745 * used with either SHA-256 or SHA-384.
1746 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001747 * This key derivation algorithm uses the following inputs, which must be
1748 * passed in the order given here:
1749 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001750 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1751 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001752 *
1753 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001754 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001755 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001756 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001757 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001758 * TLS 1.2 PRF using HMAC-SHA-256.
1759 *
1760 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1761 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1762 *
1763 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001764 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001765 * hash algorithm.
1766 */
1767#define PSA_ALG_TLS12_PRF(hash_alg) \
1768 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1769
1770/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1771 *
1772 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1773 *
1774 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1775 * This macro may return either 0 or 1 if \c alg is not a supported
1776 * key derivation algorithm identifier.
1777 */
1778#define PSA_ALG_IS_TLS12_PRF(alg) \
1779 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1780#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1781 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1782
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001783#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001784/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1785 *
1786 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1787 * from the PreSharedKey (PSK) through the application of padding
1788 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1789 * The latter is based on HMAC and can be used with either SHA-256
1790 * or SHA-384.
1791 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001792 * This key derivation algorithm uses the following inputs, which must be
1793 * passed in the order given here:
1794 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001795 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1796 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001797 *
1798 * For the application to TLS-1.2, the seed (which is
1799 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1800 * ClientHello.Random + ServerHello.Random,
1801 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001802 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001803 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001804 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1805 *
1806 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1807 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1808 *
1809 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001810 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001811 * hash algorithm.
1812 */
1813#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1814 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1815
1816/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1817 *
1818 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1819 *
1820 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1821 * This macro may return either 0 or 1 if \c alg is not a supported
1822 * key derivation algorithm identifier.
1823 */
1824#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1825 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1826#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1827 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1828
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001829#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
1830#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001831
Gilles Peskine6843c292019-01-18 16:44:49 +01001832/** Macro to build a combined algorithm that chains a key agreement with
1833 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001834 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001835 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1836 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1837 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1838 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001839 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001840 * \return The corresponding key agreement and derivation
1841 * algorithm.
1842 * \return Unspecified if \p ka_alg is not a supported
1843 * key agreement algorithm or \p kdf_alg is not a
1844 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001845 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001846#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1847 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001848
1849#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1850 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1851
Gilles Peskine6843c292019-01-18 16:44:49 +01001852#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1853 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001854
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001855/** Whether the specified algorithm is a raw key agreement algorithm.
1856 *
1857 * A raw key agreement algorithm is one that does not specify
1858 * a key derivation function.
1859 * Usually, raw key agreement algorithms are constructed directly with
1860 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001861 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001862 *
1863 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1864 *
1865 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1866 * This macro may return either 0 or 1 if \p alg is not a supported
1867 * algorithm identifier.
1868 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001869#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001870 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1871 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001872
1873#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1874 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1875
1876/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001877 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001878 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001879 * `g^{ab}` in big-endian format.
1880 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1881 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001882 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001883#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001884
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001885/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1886 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001887 * This includes the raw finite field Diffie-Hellman algorithm as well as
1888 * finite-field Diffie-Hellman followed by any supporter key derivation
1889 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001890 *
1891 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1892 *
1893 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1894 * This macro may return either 0 or 1 if \c alg is not a supported
1895 * key agreement algorithm identifier.
1896 */
1897#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001898 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001899
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001900/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1901 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001902 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001903 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1904 * `m` is the bit size associated with the curve, i.e. the bit size of the
1905 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1906 * the byte containing the most significant bit of the shared secret
1907 * is padded with zero bits. The byte order is either little-endian
1908 * or big-endian depending on the curve type.
1909 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001910 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001911 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1912 * in little-endian byte order.
1913 * The bit size is 448 for Curve448 and 255 for Curve25519.
1914 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001915 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001916 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1917 * in big-endian byte order.
1918 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1919 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001920 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001921 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1922 * in big-endian byte order.
1923 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001924 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001925#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001926
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001927/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1928 * algorithm.
1929 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001930 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1931 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1932 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001933 *
1934 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1935 *
1936 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1937 * 0 otherwise.
1938 * This macro may return either 0 or 1 if \c alg is not a supported
1939 * key agreement algorithm identifier.
1940 */
1941#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001942 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001943
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001944/** Whether the specified algorithm encoding is a wildcard.
1945 *
1946 * Wildcard values may only be used to set the usage algorithm field in
1947 * a policy, not to perform an operation.
1948 *
1949 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1950 *
1951 * \return 1 if \c alg is a wildcard algorithm encoding.
1952 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1953 * an operation).
1954 * \return This macro may return either 0 or 1 if \c alg is not a supported
1955 * algorithm identifier.
1956 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001957#define PSA_ALG_IS_WILDCARD(alg) \
1958 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1959 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1960 PSA_ALG_IS_MAC(alg) ? \
1961 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1962 PSA_ALG_IS_AEAD(alg) ? \
1963 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001964 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001965
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001966/**@}*/
1967
1968/** \defgroup key_lifetimes Key lifetimes
1969 * @{
1970 */
1971
Gilles Peskine43bd07d2022-06-20 18:41:20 +02001972/* Note that location and persistence level values are embedded in the
1973 * persistent key store, as part of key metadata. As a consequence, they
1974 * must not be changed (unless the storage format version changes).
1975 */
1976
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001977/** The default lifetime for volatile keys.
1978 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001979 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001980 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001981 *
1982 * A key with this lifetime is typically stored in the RAM area of the
1983 * PSA Crypto subsystem. However this is an implementation choice.
1984 * If an implementation stores data about the key in a non-volatile memory,
1985 * it must release all the resources associated with the key and erase the
1986 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001987 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001988#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001989
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001990/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001991 *
1992 * A persistent key remains in storage until it is explicitly destroyed or
1993 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001994 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001995 * provide their own mechanism (for example to perform a factory reset,
1996 * to prepare for device refurbishment, or to uninstall an application).
1997 *
1998 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001999 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002000 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002001 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002002#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002003
Gilles Peskineaff11812020-05-04 19:03:10 +02002004/** The persistence level of volatile keys.
2005 *
2006 * See ::psa_key_persistence_t for more information.
2007 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002008#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002009
2010/** The default persistence level for persistent keys.
2011 *
2012 * See ::psa_key_persistence_t for more information.
2013 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002014#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002015
2016/** A persistence level indicating that a key is never destroyed.
2017 *
2018 * See ::psa_key_persistence_t for more information.
2019 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002020#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002021
2022#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002023 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002024
2025#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002026 ((psa_key_location_t) ((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002027
2028/** Whether a key lifetime indicates that the key is volatile.
2029 *
2030 * A volatile key is automatically destroyed by the implementation when
2031 * the application instance terminates. In particular, a volatile key
2032 * is automatically destroyed on a power reset of the device.
2033 *
2034 * A key that is not volatile is persistent. Persistent keys are
2035 * preserved until the application explicitly destroys them or until an
2036 * implementation-specific device management event occurs (for example,
2037 * a factory reset).
2038 *
2039 * \param lifetime The lifetime value to query (value of type
2040 * ::psa_key_lifetime_t).
2041 *
2042 * \return \c 1 if the key is volatile, otherwise \c 0.
2043 */
2044#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2045 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002046 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002047
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002048/** Whether a key lifetime indicates that the key is read-only.
2049 *
2050 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2051 * They must be created through platform-specific means that bypass the API.
2052 *
2053 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine11794b32021-06-07 23:21:50 +02002054 * consider a platform with multiple levels of privilege, where a
2055 * low-privilege application can use a key but is not allowed to destroy
2056 * it, and the platform exposes the key to the application with a read-only
2057 * lifetime. High-privilege code can destroy the key even though the
2058 * application sees the key as read-only.
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002059 *
2060 * \param lifetime The lifetime value to query (value of type
2061 * ::psa_key_lifetime_t).
2062 *
2063 * \return \c 1 if the key is read-only, otherwise \c 0.
2064 */
2065#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2066 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2067 PSA_KEY_PERSISTENCE_READ_ONLY)
2068
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002069/** Construct a lifetime from a persistence level and a location.
2070 *
2071 * \param persistence The persistence level
2072 * (value of type ::psa_key_persistence_t).
2073 * \param location The location indicator
2074 * (value of type ::psa_key_location_t).
2075 *
2076 * \return The constructed lifetime value.
2077 */
2078#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2079 ((location) << 8 | (persistence))
2080
Gilles Peskineaff11812020-05-04 19:03:10 +02002081/** The local storage area for persistent keys.
2082 *
2083 * This storage area is available on all systems that can store persistent
2084 * keys without delegating the storage to a third-party cryptoprocessor.
2085 *
2086 * See ::psa_key_location_t for more information.
2087 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002088#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002089
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002090#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002091
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002092/* Note that key identifier values are embedded in the
2093 * persistent key store, as part of key metadata. As a consequence, they
2094 * must not be changed (unless the storage format version changes).
2095 */
2096
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002097/** The null key identifier.
2098 */
Gilles Peskine7f3659a2023-01-04 19:52:38 +01002099/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002100#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine7f3659a2023-01-04 19:52:38 +01002101/* *INDENT-ON* */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002102/** The minimum value for a key identifier chosen by the application.
2103 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002104#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002105/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002106 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002107#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002108/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002109 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002110#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002111/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002112 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002113#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002114
Ronald Cron7424f0d2020-09-14 16:17:41 +02002115
2116#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2117
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002118#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2119#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2120#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002121
2122/** Utility to initialize a key identifier at runtime.
2123 *
2124 * \param unused Unused parameter.
2125 * \param key_id Identifier of the key.
2126 */
2127static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002128 unsigned int unused, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002129{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002130 (void) unused;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002131
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002132 return key_id;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002133}
2134
2135/** Compare two key identifiers.
2136 *
2137 * \param id1 First key identifier.
2138 * \param id2 Second key identifier.
2139 *
2140 * \return Non-zero if the two key identifier are equal, zero otherwise.
2141 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002142static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2143 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002144{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002145 return id1 == id2;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002146}
2147
Ronald Cronc4d1b512020-07-31 11:26:37 +02002148/** Check whether a key identifier is null.
2149 *
2150 * \param key Key identifier.
2151 *
2152 * \return Non-zero if the key identifier is null, zero otherwise.
2153 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002154static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002155{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002156 return key == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002157}
2158
Ronald Cron7424f0d2020-09-14 16:17:41 +02002159#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2160
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002161#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2162#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).key_id)
2163#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).owner)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002164
2165/** Utility to initialize a key identifier at runtime.
2166 *
2167 * \param owner_id Identifier of the key owner.
2168 * \param key_id Identifier of the key.
2169 */
2170static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002171 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002172{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002173 return (mbedtls_svc_key_id_t){ .key_id = key_id,
2174 .owner = owner_id };
Ronald Cron7424f0d2020-09-14 16:17:41 +02002175}
2176
2177/** Compare two key identifiers.
2178 *
2179 * \param id1 First key identifier.
2180 * \param id2 Second key identifier.
2181 *
2182 * \return Non-zero if the two key identifier are equal, zero otherwise.
2183 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002184static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2185 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002186{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002187 return (id1.key_id == id2.key_id) &&
2188 mbedtls_key_owner_id_equal(id1.owner, id2.owner);
Ronald Cron7424f0d2020-09-14 16:17:41 +02002189}
2190
Ronald Cronc4d1b512020-07-31 11:26:37 +02002191/** Check whether a key identifier is null.
2192 *
2193 * \param key Key identifier.
2194 *
2195 * \return Non-zero if the key identifier is null, zero otherwise.
2196 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002197static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002198{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002199 return key.key_id == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002200}
2201
Ronald Cron7424f0d2020-09-14 16:17:41 +02002202#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002203
2204/**@}*/
2205
2206/** \defgroup policy Key policies
2207 * @{
2208 */
2209
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002210/* Note that key usage flags are embedded in the
2211 * persistent key store, as part of key metadata. As a consequence, they
2212 * must not be changed (unless the storage format version changes).
2213 */
2214
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002215/** Whether the key may be exported.
2216 *
2217 * A public key or the public part of a key pair may always be exported
2218 * regardless of the value of this permission flag.
2219 *
2220 * If a key does not have export permission, implementations shall not
2221 * allow the key to be exported in plain form from the cryptoprocessor,
2222 * whether through psa_export_key() or through a proprietary interface.
2223 * The key may however be exportable in a wrapped form, i.e. in a form
2224 * where it is encrypted by another key.
2225 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002226#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002227
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002228/** Whether the key may be copied.
2229 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002230 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002231 * with the same policy or a more restrictive policy.
2232 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002233 * For lifetimes for which the key is located in a secure element which
2234 * enforce the non-exportability of keys, copying a key outside the secure
2235 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2236 * Copying the key inside the secure element is permitted with just
2237 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2238 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002239 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2240 * is sufficient to permit the copy.
2241 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002242#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002243
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002244/** Whether the key may be used to encrypt a message.
2245 *
2246 * This flag allows the key to be used for a symmetric encryption operation,
2247 * for an AEAD encryption-and-authentication operation,
2248 * or for an asymmetric encryption operation,
2249 * if otherwise permitted by the key's type and policy.
2250 *
2251 * For a key pair, this concerns the public key.
2252 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002253#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002254
2255/** Whether the key may be used to decrypt a message.
2256 *
2257 * This flag allows the key to be used for a symmetric decryption operation,
2258 * for an AEAD decryption-and-verification operation,
2259 * or for an asymmetric decryption operation,
2260 * if otherwise permitted by the key's type and policy.
2261 *
2262 * For a key pair, this concerns the private key.
2263 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002264#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002265
2266/** Whether the key may be used to sign a message.
2267 *
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002268 * This flag allows the key to be used for a MAC calculation operation or for
2269 * an asymmetric message signature operation, if otherwise permitted by the
2270 * key’s type and policy.
2271 *
2272 * For a key pair, this concerns the private key.
2273 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002274#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002275
2276/** Whether the key may be used to verify a message.
2277 *
2278 * This flag allows the key to be used for a MAC verification operation or for
2279 * an asymmetric message signature verification operation, if otherwise
2280 * permitted by the key’s type and policy.
2281 *
2282 * For a key pair, this concerns the public key.
2283 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002284#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002285
2286/** Whether the key may be used to sign a message.
2287 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002288 * This flag allows the key to be used for a MAC calculation operation
2289 * or for an asymmetric signature operation,
2290 * if otherwise permitted by the key's type and policy.
2291 *
2292 * For a key pair, this concerns the private key.
2293 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002294#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002295
2296/** Whether the key may be used to verify a message signature.
2297 *
2298 * This flag allows the key to be used for a MAC verification operation
2299 * or for an asymmetric signature verification operation,
2300 * if otherwise permitted by by the key's type and policy.
2301 *
2302 * For a key pair, this concerns the public key.
2303 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002304#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002305
2306/** Whether the key may be used to derive other keys.
2307 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002308#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002309
2310/**@}*/
2311
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002312/** \defgroup derivation Key derivation
2313 * @{
2314 */
2315
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002316/* Key input steps are not embedded in the persistent storage, so you can
2317 * change them if needed: it's only an ABI change. */
2318
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002319/** A secret input for key derivation.
2320 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002321 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2322 * (passed to psa_key_derivation_input_key())
2323 * or the shared secret resulting from a key agreement
2324 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002325 *
2326 * The secret can also be a direct input (passed to
2327 * key_derivation_input_bytes()). In this case, the derivation operation
2328 * may not be used to derive keys: the operation will only allow
2329 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002330 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002331#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002332
2333/** A label for key derivation.
2334 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002335 * This should be a direct input.
2336 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002337 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002338#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002339
2340/** A salt for key derivation.
2341 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002342 * This should be a direct input.
2343 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002344 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002345#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002346
2347/** An information string for key derivation.
2348 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002349 * This should be a direct input.
2350 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002351 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002352#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002353
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002354/** A seed for key derivation.
2355 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002356 * This should be a direct input.
2357 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002358 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002359#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002360
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002361/**@}*/
2362
Bence Szépkútib639d432021-04-21 10:33:54 +02002363/** \defgroup helper_macros Helper macros
2364 * @{
2365 */
2366
2367/* Helper macros */
2368
2369/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2370 * regardless of the tag length they encode.
2371 *
2372 * \param aead_alg_1 An AEAD algorithm identifier.
2373 * \param aead_alg_2 An AEAD algorithm identifier.
2374 *
2375 * \return 1 if both identifiers refer to the same AEAD algorithm,
2376 * 0 otherwise.
2377 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2378 * a supported AEAD algorithm.
2379 */
2380#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2381 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2382 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2383
2384/**@}*/
2385
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002386#endif /* PSA_CRYPTO_VALUES_H */