blob: 233d5eec7cc40a725ae064df06998bcabc19d1df [file] [log] [blame]
Jarno Lamsa18987a42019-04-24 15:40:43 +03001/* ecc.c - TinyCrypt implementation of common ECC functions */
2
3/*
Simon Butcher92c3d1f2019-09-09 17:25:08 +01004 * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved.
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8/*
Jarno Lamsa18987a42019-04-24 15:40:43 +03009 * Copyright (c) 2014, Kenneth MacKay
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions are met:
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
27 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions are met:
35 *
36 * - Redistributions of source code must retain the above copyright notice,
37 * this list of conditions and the following disclaimer.
38 *
39 * - Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 *
43 * - Neither the name of Intel Corporation nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
48 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
51 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
52 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
53 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
54 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
55 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57 * POSSIBILITY OF SUCH DAMAGE.
58 */
59
Hanno Becker36ae7582019-07-23 15:52:35 +010060#if !defined(MBEDTLS_CONFIG_FILE)
61#include "mbedtls/config.h"
62#else
63#include MBEDTLS_CONFIG_FILE
64#endif
65
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +020066#if defined(MBEDTLS_USE_TINYCRYPT)
Jarno Lamsa18987a42019-04-24 15:40:43 +030067#include <tinycrypt/ecc.h>
Jarno Lamsa18987a42019-04-24 15:40:43 +030068#include <string.h>
69
70/* IMPORTANT: Make sure a cryptographically-secure PRNG is set and the platform
71 * has access to enough entropy in order to feed the PRNG regularly. */
72#if default_RNG_defined
73static uECC_RNG_Function g_rng_function = &default_CSPRNG;
74#else
75static uECC_RNG_Function g_rng_function = 0;
76#endif
77
78void uECC_set_rng(uECC_RNG_Function rng_function)
79{
80 g_rng_function = rng_function;
81}
82
83uECC_RNG_Function uECC_get_rng(void)
84{
85 return g_rng_function;
86}
87
88int uECC_curve_private_key_size(uECC_Curve curve)
89{
90 return BITS_TO_BYTES(curve->num_n_bits);
91}
92
93int uECC_curve_public_key_size(uECC_Curve curve)
94{
95 return 2 * curve->num_bytes;
96}
97
98void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words)
99{
100 wordcount_t i;
101 for (i = 0; i < num_words; ++i) {
102 vli[i] = 0;
103 }
104}
105
106uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words)
107{
108 uECC_word_t bits = 0;
109 wordcount_t i;
110 for (i = 0; i < num_words; ++i) {
111 bits |= vli[i];
112 }
113 return (bits == 0);
114}
115
116uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit)
117{
118 return (vli[bit >> uECC_WORD_BITS_SHIFT] &
119 ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
120}
121
122/* Counts the number of words in vli. */
123static wordcount_t vli_numDigits(const uECC_word_t *vli,
124 const wordcount_t max_words)
125{
126
127 wordcount_t i;
128 /* Search from the end until we find a non-zero digit. We do it in reverse
129 * because we expect that most digits will be nonzero. */
130 for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
131 }
132
133 return (i + 1);
134}
135
136bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
137 const wordcount_t max_words)
138{
139
140 uECC_word_t i;
141 uECC_word_t digit;
142
143 wordcount_t num_digits = vli_numDigits(vli, max_words);
144 if (num_digits == 0) {
145 return 0;
146 }
147
148 digit = vli[num_digits - 1];
149 for (i = 0; digit; ++i) {
150 digit >>= 1;
151 }
152
153 return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
154}
155
156void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
157 wordcount_t num_words)
158{
159 wordcount_t i;
160
161 for (i = 0; i < num_words; ++i) {
162 dest[i] = src[i];
163 }
164}
165
166cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
167 const uECC_word_t *right,
168 wordcount_t num_words)
169{
170 wordcount_t i;
171
172 for (i = num_words - 1; i >= 0; --i) {
173 if (left[i] > right[i]) {
174 return 1;
175 } else if (left[i] < right[i]) {
176 return -1;
177 }
178 }
179 return 0;
180}
181
182uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
183 wordcount_t num_words)
184{
185
186 uECC_word_t diff = 0;
187 wordcount_t i;
188
189 for (i = num_words - 1; i >= 0; --i) {
190 diff |= (left[i] ^ right[i]);
191 }
192 return !(diff == 0);
193}
194
195uECC_word_t cond_set(uECC_word_t p_true, uECC_word_t p_false, unsigned int cond)
196{
197 return (p_true*(cond)) | (p_false*(!cond));
198}
199
200/* Computes result = left - right, returning borrow, in constant time.
201 * Can modify in place. */
202uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
203 const uECC_word_t *right, wordcount_t num_words)
204{
205 uECC_word_t borrow = 0;
206 wordcount_t i;
207 for (i = 0; i < num_words; ++i) {
208 uECC_word_t diff = left[i] - right[i] - borrow;
209 uECC_word_t val = (diff > left[i]);
210 borrow = cond_set(val, borrow, (diff != left[i]));
211
212 result[i] = diff;
213 }
214 return borrow;
215}
216
217/* Computes result = left + right, returning carry, in constant time.
218 * Can modify in place. */
219static uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left,
220 const uECC_word_t *right, wordcount_t num_words)
221{
222 uECC_word_t carry = 0;
223 wordcount_t i;
224 for (i = 0; i < num_words; ++i) {
225 uECC_word_t sum = left[i] + right[i] + carry;
226 uECC_word_t val = (sum < left[i]);
227 carry = cond_set(val, carry, (sum != left[i]));
228 result[i] = sum;
229 }
230 return carry;
231}
232
233cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
234 wordcount_t num_words)
235{
236 uECC_word_t tmp[NUM_ECC_WORDS];
237 uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words);
238 uECC_word_t equal = uECC_vli_isZero(tmp, num_words);
239 return (!equal - 2 * neg);
240}
241
242/* Computes vli = vli >> 1. */
243static void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words)
244{
245 uECC_word_t *end = vli;
246 uECC_word_t carry = 0;
247
248 vli += num_words;
249 while (vli-- > end) {
250 uECC_word_t temp = *vli;
251 *vli = (temp >> 1) | carry;
252 carry = temp << (uECC_WORD_BITS - 1);
253 }
254}
255
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200256/* Compute (r2, r1, r0) = a * b + (r1, r0):
257 * [in] a, b: operands to be multiplied
258 * [in] r0, r1: low and high-order words of operand to add
259 * [out] r0, r1: low and high-order words of the result
260 * [out] r2: carry
261 */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300262static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t *r0,
263 uECC_word_t *r1, uECC_word_t *r2)
264{
265
266 uECC_dword_t p = (uECC_dword_t)a * b;
267 uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
268 r01 += p;
269 *r2 += (r01 < p);
270 *r1 = r01 >> uECC_WORD_BITS;
271 *r0 = (uECC_word_t)r01;
272
273}
274
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200275/* State for implementing random delays in uECC_vli_mult_rnd().
276 *
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100277 * The state is initialized by randomizing delays and setting i = 0.
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200278 * Each call to uECC_vli_mult_rnd() uses one byte of delays and increments i.
279 *
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100280 * Randomized vli multiplication is used only for point operations
281 * (XYcZ_add_rnd() * and XYcZ_addC_rnd()) in scalar multiplication
282 * (ECCPoint_mult()). Those go in pair, and each pair does 14 calls to
283 * uECC_vli_mult_rnd() (6 in XYcZ_add_rnd() and 8 in XYcZ_addC_rnd(),
284 * indirectly through uECC_vli_modMult_rnd() or uECC_vli_modSquare_rnd()).
285 *
286 * Considering this, in order to minimize the number of calls to the RNG
287 * (which impact performance) while keeping the size of the structure low,
288 * make room for 14 randomized vli mults, which corresponds to one step in the
289 * scalar multiplication routine.
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200290 */
291typedef struct {
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100292 uint8_t i;
293 uint8_t delays[14];
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200294} wait_state_t;
295
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100296/*
297 * Reset wait_state so that it's ready to be used.
298 */
299void wait_state_reset(wait_state_t *ws)
300{
301 if (ws == NULL)
302 return;
303
304 ws->i = 0;
305 g_rng_function(ws->delays, sizeof(ws->delays));
306}
307
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200308/* Computes result = left * right. Result must be 2 * num_words long.
309 *
310 * As a counter-measure against horizontal attacks, add noise by performing
311 * a random number of extra computations performing random additional accesses
312 * to limbs of the input.
313 *
314 * Each of the two actual computation loops is surrounded by two
315 * similar-looking waiting loops, to make the beginning and end of the actual
316 * computation harder to spot.
317 *
318 * We add 4 waiting loops of between 0 and 3 calls to muladd() each. That
319 * makes an average of 6 extra calls. Compared to the main computation which
320 * makes 64 such calls, this represents an average performance degradation of
321 * less than 10%.
322 *
323 * Compared to the original uECC_vli_mult(), loose the num_words argument as we
324 * know it's always 8. This saves a bit of code size and execution speed.
325 */
326static void uECC_vli_mult_rnd(uECC_word_t *result, const uECC_word_t *left,
327 const uECC_word_t *right, wait_state_t *s)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300328{
329
330 uECC_word_t r0 = 0;
331 uECC_word_t r1 = 0;
332 uECC_word_t r2 = 0;
333 wordcount_t i, k;
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200334 const uint8_t num_words = 8;
335
336 /* Fetch 8 bit worth of delay from the state; 0 if we have no state */
337 uint8_t delays = s ? s->delays[s->i++] : 0;
338 uECC_word_t rr0 = 0, rr1 = 0;
339 volatile uECC_word_t r;
340
341 /* Mimic start of next loop: k in [0, 3] */
342 k = 0 + (delays & 0x03);
343 delays >>= 2;
344 /* k = 0 -> i in [1, 0] -> 0 extra muladd;
345 * k = 3 -> i in [1, 3] -> 3 extra muladd */
346 for (i = 0; i <= k; ++i) {
347 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
348 }
349 r = rr0;
350 rr0 = rr1;
351 rr1 = r2;
352 r2 = 0;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300353
354 /* Compute each digit of result in sequence, maintaining the carries. */
355 for (k = 0; k < num_words; ++k) {
356
357 for (i = 0; i <= k; ++i) {
358 muladd(left[i], right[k - i], &r0, &r1, &r2);
359 }
360
361 result[k] = r0;
362 r0 = r1;
363 r1 = r2;
364 r2 = 0;
365 }
366
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200367 /* Mimic end of previous loop: k in [4, 7] */
368 k = 4 + (delays & 0x03);
369 delays >>= 2;
370 /* k = 4 -> i in [5, 4] -> 0 extra muladd;
371 * k = 7 -> i in [5, 7] -> 3 extra muladd */
372 for (i = 5; i <= k; ++i) {
373 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
374 }
375 r = rr0;
376 rr0 = rr1;
377 rr1 = r2;
378 r2 = 0;
379
380 /* Mimic start of next loop: k in [8, 11] */
381 k = 11 - (delays & 0x03);
382 delays >>= 2;
383 /* k = 8 -> i in [5, 7] -> 3 extra muladd;
384 * k = 11 -> i in [8, 7] -> 0 extra muladd */
385 for (i = (k + 5) - num_words; i < num_words; ++i) {
386 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
387 }
388 r = rr0;
389 rr0 = rr1;
390 rr1 = r2;
391 r2 = 0;
392
Jarno Lamsa18987a42019-04-24 15:40:43 +0300393 for (k = num_words; k < num_words * 2 - 1; ++k) {
394
395 for (i = (k + 1) - num_words; i < num_words; ++i) {
396 muladd(left[i], right[k - i], &r0, &r1, &r2);
397 }
398 result[k] = r0;
399 r0 = r1;
400 r1 = r2;
401 r2 = 0;
402 }
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200403
Jarno Lamsa18987a42019-04-24 15:40:43 +0300404 result[num_words * 2 - 1] = r0;
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200405
406 /* Mimic end of previous loop: k in [12, 15] */
407 k = 15 - (delays & 0x03);
408 delays >>= 2;
409 /* k = 12 -> i in [5, 7] -> 3 extra muladd;
410 * k = 15 -> i in [8, 7] -> 0 extra muladd */
411 for (i = (k + 1) - num_words; i < num_words; ++i) {
412 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
413 }
414 r = rr0;
415 rr0 = rr1;
416 rr1 = r2;
417 r2 = 0;
418
419 /* avoid warning that r is set but not used */
420 (void) r;
421}
422
423/* Computes result = left * right. Result must be 2 * num_words long. */
424static void uECC_vli_mult(uECC_word_t *result, const uECC_word_t *left,
425 const uECC_word_t *right, wordcount_t num_words)
426{
427 (void) num_words;
428 uECC_vli_mult_rnd(result, left, right, NULL);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300429}
430
431void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
432 const uECC_word_t *right, const uECC_word_t *mod,
433 wordcount_t num_words)
434{
435 uECC_word_t carry = uECC_vli_add(result, left, right, num_words);
436 if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) {
437 /* result > mod (result = mod + remainder), so subtract mod to get
438 * remainder. */
439 uECC_vli_sub(result, result, mod, num_words);
440 }
441}
442
443void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
444 const uECC_word_t *right, const uECC_word_t *mod,
445 wordcount_t num_words)
446{
447 uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words);
448 if (l_borrow) {
449 /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
450 * we can get the correct result from result + mod (with overflow). */
451 uECC_vli_add(result, result, mod, num_words);
452 }
453}
454
455/* Computes result = product % mod, where product is 2N words long. */
456/* Currently only designed to work for curve_p or curve_n. */
457void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
458 const uECC_word_t *mod, wordcount_t num_words)
459{
460 uECC_word_t mod_multiple[2 * NUM_ECC_WORDS];
461 uECC_word_t tmp[2 * NUM_ECC_WORDS];
462 uECC_word_t *v[2] = {tmp, product};
463 uECC_word_t index;
464
465 /* Shift mod so its highest set bit is at the maximum position. */
466 bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) -
467 uECC_vli_numBits(mod, num_words);
468 wordcount_t word_shift = shift / uECC_WORD_BITS;
469 wordcount_t bit_shift = shift % uECC_WORD_BITS;
470 uECC_word_t carry = 0;
471 uECC_vli_clear(mod_multiple, word_shift);
472 if (bit_shift > 0) {
473 for(index = 0; index < (uECC_word_t)num_words; ++index) {
474 mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry;
475 carry = mod[index] >> (uECC_WORD_BITS - bit_shift);
476 }
477 } else {
478 uECC_vli_set(mod_multiple + word_shift, mod, num_words);
479 }
480
481 for (index = 1; shift >= 0; --shift) {
482 uECC_word_t borrow = 0;
483 wordcount_t i;
484 for (i = 0; i < num_words * 2; ++i) {
485 uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow;
486 if (diff != v[index][i]) {
487 borrow = (diff > v[index][i]);
488 }
489 v[1 - index][i] = diff;
490 }
491 /* Swap the index if there was no borrow */
492 index = !(index ^ borrow);
493 uECC_vli_rshift1(mod_multiple, num_words);
494 mod_multiple[num_words - 1] |= mod_multiple[num_words] <<
495 (uECC_WORD_BITS - 1);
496 uECC_vli_rshift1(mod_multiple + num_words, num_words);
497 }
498 uECC_vli_set(result, v[index], num_words);
499}
500
501void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
502 const uECC_word_t *right, const uECC_word_t *mod,
503 wordcount_t num_words)
504{
505 uECC_word_t product[2 * NUM_ECC_WORDS];
506 uECC_vli_mult(product, left, right, num_words);
507 uECC_vli_mmod(result, product, mod, num_words);
508}
509
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100510static void uECC_vli_modMult_rnd(uECC_word_t *result, const uECC_word_t *left,
511 const uECC_word_t *right, wait_state_t *s)
512{
513 uECC_word_t product[2 * NUM_ECC_WORDS];
514 uECC_vli_mult_rnd(product, left, right, s);
515
516 vli_mmod_fast_secp256r1(result, product);
517}
518
Jarno Lamsa18987a42019-04-24 15:40:43 +0300519void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
520 const uECC_word_t *right, uECC_Curve curve)
521{
522 uECC_word_t product[2 * NUM_ECC_WORDS];
523 uECC_vli_mult(product, left, right, curve->num_words);
524
525 curve->mmod_fast(result, product);
526}
527
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100528static void uECC_vli_modSquare_rnd(uECC_word_t *result,
529 const uECC_word_t *left,
530 wait_state_t *s)
531{
532 uECC_vli_modMult_rnd(result, left, left, s);
533}
534
Jarno Lamsa18987a42019-04-24 15:40:43 +0300535static void uECC_vli_modSquare_fast(uECC_word_t *result,
536 const uECC_word_t *left,
537 uECC_Curve curve)
538{
539 uECC_vli_modMult_fast(result, left, left, curve);
540}
541
542
543#define EVEN(vli) (!(vli[0] & 1))
544
545static void vli_modInv_update(uECC_word_t *uv,
546 const uECC_word_t *mod,
547 wordcount_t num_words)
548{
549
550 uECC_word_t carry = 0;
551
552 if (!EVEN(uv)) {
553 carry = uECC_vli_add(uv, uv, mod, num_words);
554 }
555 uECC_vli_rshift1(uv, num_words);
556 if (carry) {
557 uv[num_words - 1] |= HIGH_BIT_SET;
558 }
559}
560
561void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
562 const uECC_word_t *mod, wordcount_t num_words)
563{
564 uECC_word_t a[NUM_ECC_WORDS], b[NUM_ECC_WORDS];
565 uECC_word_t u[NUM_ECC_WORDS], v[NUM_ECC_WORDS];
566 cmpresult_t cmpResult;
567
568 if (uECC_vli_isZero(input, num_words)) {
569 uECC_vli_clear(result, num_words);
570 return;
571 }
572
573 uECC_vli_set(a, input, num_words);
574 uECC_vli_set(b, mod, num_words);
575 uECC_vli_clear(u, num_words);
576 u[0] = 1;
577 uECC_vli_clear(v, num_words);
578 while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) {
579 if (EVEN(a)) {
580 uECC_vli_rshift1(a, num_words);
581 vli_modInv_update(u, mod, num_words);
582 } else if (EVEN(b)) {
583 uECC_vli_rshift1(b, num_words);
584 vli_modInv_update(v, mod, num_words);
585 } else if (cmpResult > 0) {
586 uECC_vli_sub(a, a, b, num_words);
587 uECC_vli_rshift1(a, num_words);
588 if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) {
589 uECC_vli_add(u, u, mod, num_words);
590 }
591 uECC_vli_sub(u, u, v, num_words);
592 vli_modInv_update(u, mod, num_words);
593 } else {
594 uECC_vli_sub(b, b, a, num_words);
595 uECC_vli_rshift1(b, num_words);
596 if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) {
597 uECC_vli_add(v, v, mod, num_words);
598 }
599 uECC_vli_sub(v, v, u, num_words);
600 vli_modInv_update(v, mod, num_words);
601 }
602 }
603 uECC_vli_set(result, u, num_words);
604}
605
606/* ------ Point operations ------ */
607
608void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
609 uECC_word_t * Z1, uECC_Curve curve)
610{
611 /* t1 = X, t2 = Y, t3 = Z */
612 uECC_word_t t4[NUM_ECC_WORDS];
613 uECC_word_t t5[NUM_ECC_WORDS];
614 wordcount_t num_words = curve->num_words;
615
616 if (uECC_vli_isZero(Z1, num_words)) {
617 return;
618 }
619
620 uECC_vli_modSquare_fast(t4, Y1, curve); /* t4 = y1^2 */
621 uECC_vli_modMult_fast(t5, X1, t4, curve); /* t5 = x1*y1^2 = A */
622 uECC_vli_modSquare_fast(t4, t4, curve); /* t4 = y1^4 */
623 uECC_vli_modMult_fast(Y1, Y1, Z1, curve); /* t2 = y1*z1 = z3 */
624 uECC_vli_modSquare_fast(Z1, Z1, curve); /* t3 = z1^2 */
625
626 uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = x1 + z1^2 */
627 uECC_vli_modAdd(Z1, Z1, Z1, curve->p, num_words); /* t3 = 2*z1^2 */
628 uECC_vli_modSub(Z1, X1, Z1, curve->p, num_words); /* t3 = x1 - z1^2 */
629 uECC_vli_modMult_fast(X1, X1, Z1, curve); /* t1 = x1^2 - z1^4 */
630
631 uECC_vli_modAdd(Z1, X1, X1, curve->p, num_words); /* t3 = 2*(x1^2 - z1^4) */
632 uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = 3*(x1^2 - z1^4) */
633 if (uECC_vli_testBit(X1, 0)) {
634 uECC_word_t l_carry = uECC_vli_add(X1, X1, curve->p, num_words);
635 uECC_vli_rshift1(X1, num_words);
636 X1[num_words - 1] |= l_carry << (uECC_WORD_BITS - 1);
637 } else {
638 uECC_vli_rshift1(X1, num_words);
639 }
640
641 /* t1 = 3/2*(x1^2 - z1^4) = B */
642 uECC_vli_modSquare_fast(Z1, X1, curve); /* t3 = B^2 */
643 uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - A */
644 uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - 2A = x3 */
645 uECC_vli_modSub(t5, t5, Z1, curve->p, num_words); /* t5 = A - x3 */
646 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = B * (A - x3) */
647 /* t4 = B * (A - x3) - y1^4 = y3: */
648 uECC_vli_modSub(t4, X1, t4, curve->p, num_words);
649
650 uECC_vli_set(X1, Z1, num_words);
651 uECC_vli_set(Z1, Y1, num_words);
652 uECC_vli_set(Y1, t4, num_words);
653}
654
655void x_side_default(uECC_word_t *result,
656 const uECC_word_t *x,
657 uECC_Curve curve)
658{
659 uECC_word_t _3[NUM_ECC_WORDS] = {3}; /* -a = 3 */
660 wordcount_t num_words = curve->num_words;
661
662 uECC_vli_modSquare_fast(result, x, curve); /* r = x^2 */
663 uECC_vli_modSub(result, result, _3, curve->p, num_words); /* r = x^2 - 3 */
664 uECC_vli_modMult_fast(result, result, x, curve); /* r = x^3 - 3x */
665 /* r = x^3 - 3x + b: */
666 uECC_vli_modAdd(result, result, curve->b, curve->p, num_words);
667}
668
669uECC_Curve uECC_secp256r1(void)
670{
671 return &curve_secp256r1;
672}
673
674void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int*product)
675{
676 unsigned int tmp[NUM_ECC_WORDS];
677 int carry;
678
679 /* t */
680 uECC_vli_set(result, product, NUM_ECC_WORDS);
681
682 /* s1 */
683 tmp[0] = tmp[1] = tmp[2] = 0;
684 tmp[3] = product[11];
685 tmp[4] = product[12];
686 tmp[5] = product[13];
687 tmp[6] = product[14];
688 tmp[7] = product[15];
689 carry = uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
690 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
691
692 /* s2 */
693 tmp[3] = product[12];
694 tmp[4] = product[13];
695 tmp[5] = product[14];
696 tmp[6] = product[15];
697 tmp[7] = 0;
698 carry += uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
699 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
700
701 /* s3 */
702 tmp[0] = product[8];
703 tmp[1] = product[9];
704 tmp[2] = product[10];
705 tmp[3] = tmp[4] = tmp[5] = 0;
706 tmp[6] = product[14];
707 tmp[7] = product[15];
708 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
709
710 /* s4 */
711 tmp[0] = product[9];
712 tmp[1] = product[10];
713 tmp[2] = product[11];
714 tmp[3] = product[13];
715 tmp[4] = product[14];
716 tmp[5] = product[15];
717 tmp[6] = product[13];
718 tmp[7] = product[8];
719 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
720
721 /* d1 */
722 tmp[0] = product[11];
723 tmp[1] = product[12];
724 tmp[2] = product[13];
725 tmp[3] = tmp[4] = tmp[5] = 0;
726 tmp[6] = product[8];
727 tmp[7] = product[10];
728 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
729
730 /* d2 */
731 tmp[0] = product[12];
732 tmp[1] = product[13];
733 tmp[2] = product[14];
734 tmp[3] = product[15];
735 tmp[4] = tmp[5] = 0;
736 tmp[6] = product[9];
737 tmp[7] = product[11];
738 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
739
740 /* d3 */
741 tmp[0] = product[13];
742 tmp[1] = product[14];
743 tmp[2] = product[15];
744 tmp[3] = product[8];
745 tmp[4] = product[9];
746 tmp[5] = product[10];
747 tmp[6] = 0;
748 tmp[7] = product[12];
749 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
750
751 /* d4 */
752 tmp[0] = product[14];
753 tmp[1] = product[15];
754 tmp[2] = 0;
755 tmp[3] = product[9];
756 tmp[4] = product[10];
757 tmp[5] = product[11];
758 tmp[6] = 0;
759 tmp[7] = product[13];
760 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
761
762 if (carry < 0) {
763 do {
764 carry += uECC_vli_add(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
765 }
766 while (carry < 0);
767 } else {
768 while (carry ||
769 uECC_vli_cmp_unsafe(curve_secp256r1.p, result, NUM_ECC_WORDS) != 1) {
770 carry -= uECC_vli_sub(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
771 }
772 }
773}
774
775uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve)
776{
777 return uECC_vli_isZero(point, curve->num_words * 2);
778}
779
780void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z,
781 uECC_Curve curve)
782{
783 uECC_word_t t1[NUM_ECC_WORDS];
784
785 uECC_vli_modSquare_fast(t1, Z, curve); /* z^2 */
786 uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
787 uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */
788 uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
789}
790
791/* P = (x1, y1) => 2P, (x2, y2) => P' */
792static void XYcZ_initial_double(uECC_word_t * X1, uECC_word_t * Y1,
793 uECC_word_t * X2, uECC_word_t * Y2,
794 const uECC_word_t * const initial_Z,
795 uECC_Curve curve)
796{
797 uECC_word_t z[NUM_ECC_WORDS];
798 wordcount_t num_words = curve->num_words;
799 if (initial_Z) {
800 uECC_vli_set(z, initial_Z, num_words);
801 } else {
802 uECC_vli_clear(z, num_words);
803 z[0] = 1;
804 }
805
806 uECC_vli_set(X2, X1, num_words);
807 uECC_vli_set(Y2, Y1, num_words);
808
809 apply_z(X1, Y1, z, curve);
810 curve->double_jacobian(X1, Y1, z, curve);
811 apply_z(X2, Y2, z, curve);
812}
813
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100814static void XYcZ_add_rnd(uECC_word_t * X1, uECC_word_t * Y1,
815 uECC_word_t * X2, uECC_word_t * Y2,
816 wait_state_t *s)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300817{
818 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
819 uECC_word_t t5[NUM_ECC_WORDS];
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100820 const uECC_Curve curve = &curve_secp256r1;
821 const wordcount_t num_words = 8;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300822
823 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100824 uECC_vli_modSquare_rnd(t5, t5, s); /* t5 = (x2 - x1)^2 = A */
825 uECC_vli_modMult_rnd(X1, X1, t5, s); /* t1 = x1*A = B */
826 uECC_vli_modMult_rnd(X2, X2, t5, s); /* t3 = x2*A = C */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300827 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100828 uECC_vli_modSquare_rnd(t5, Y2, s); /* t5 = (y2 - y1)^2 = D */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300829
830 uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
831 uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
832 uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100833 uECC_vli_modMult_rnd(Y1, Y1, X2, s); /* t2 = y1*(C - B) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300834 uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100835 uECC_vli_modMult_rnd(Y2, Y2, X2, s); /* t4 = (y2 - y1)*(B - x3) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300836 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
837
838 uECC_vli_set(X2, t5, num_words);
839}
840
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100841void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1,
842 uECC_word_t * X2, uECC_word_t * Y2,
843 uECC_Curve curve)
844{
845 (void) curve;
846 XYcZ_add_rnd(X1, Y1, X2, Y2, NULL);
847}
848
Jarno Lamsa18987a42019-04-24 15:40:43 +0300849/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
850 Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
851 or P => P - Q, Q => P + Q
852 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100853static void XYcZ_addC_rnd(uECC_word_t * X1, uECC_word_t * Y1,
854 uECC_word_t * X2, uECC_word_t * Y2,
855 wait_state_t *s)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300856{
857 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
858 uECC_word_t t5[NUM_ECC_WORDS];
859 uECC_word_t t6[NUM_ECC_WORDS];
860 uECC_word_t t7[NUM_ECC_WORDS];
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100861 const uECC_Curve curve = &curve_secp256r1;
862 const wordcount_t num_words = 8;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300863
864 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100865 uECC_vli_modSquare_rnd(t5, t5, s); /* t5 = (x2 - x1)^2 = A */
866 uECC_vli_modMult_rnd(X1, X1, t5, s); /* t1 = x1*A = B */
867 uECC_vli_modMult_rnd(X2, X2, t5, s); /* t3 = x2*A = C */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300868 uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
869 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
870
871 uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100872 uECC_vli_modMult_rnd(Y1, Y1, t6, s); /* t2 = y1 * (C - B) = E */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300873 uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100874 uECC_vli_modSquare_rnd(X2, Y2, s); /* t3 = (y2 - y1)^2 = D */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300875 uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */
876
877 uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100878 uECC_vli_modMult_rnd(Y2, Y2, t7, s); /* t4 = (y2 - y1)*(B - x3) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300879 /* t4 = (y2 - y1)*(B - x3) - E = y3: */
880 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words);
881
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100882 uECC_vli_modSquare_rnd(t7, t5, s); /* t7 = (y2 + y1)^2 = F */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300883 uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */
884 uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100885 uECC_vli_modMult_rnd(t6, t6, t5, s); /* t6 = (y2+y1)*(x3' - B) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300886 /* t2 = (y2+y1)*(x3' - B) - E = y3': */
887 uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words);
888
889 uECC_vli_set(X1, t7, num_words);
890}
891
892void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point,
893 const uECC_word_t * scalar,
894 const uECC_word_t * initial_Z,
895 bitcount_t num_bits, uECC_Curve curve)
896{
897 /* R0 and R1 */
898 uECC_word_t Rx[2][NUM_ECC_WORDS];
899 uECC_word_t Ry[2][NUM_ECC_WORDS];
900 uECC_word_t z[NUM_ECC_WORDS];
901 bitcount_t i;
902 uECC_word_t nb;
903 wordcount_t num_words = curve->num_words;
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100904 wait_state_t wait_state;
905 wait_state_t * const ws = g_rng_function ? &wait_state : NULL;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300906
907 uECC_vli_set(Rx[1], point, num_words);
908 uECC_vli_set(Ry[1], point + num_words, num_words);
909
910 XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);
911
912 for (i = num_bits - 2; i > 0; --i) {
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100913 wait_state_reset(ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300914 nb = !uECC_vli_testBit(scalar, i);
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100915 XYcZ_addC_rnd(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], ws);
916 XYcZ_add_rnd(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300917 }
918
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100919 wait_state_reset(ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300920 nb = !uECC_vli_testBit(scalar, 0);
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100921 XYcZ_addC_rnd(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300922
923 /* Find final 1/Z value. */
924 uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
925 uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */
926 uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */
927 uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0))*/
928 /* yP / (xP * Yb * (X1 - X0)) */
929 uECC_vli_modMult_fast(z, z, point + num_words, curve);
930 /* Xb * yP / (xP * Yb * (X1 - X0)) */
931 uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve);
932 /* End 1/Z calculation */
933
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100934 XYcZ_add_rnd(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300935 apply_z(Rx[0], Ry[0], z, curve);
936
937 uECC_vli_set(result, Rx[0], num_words);
938 uECC_vli_set(result + num_words, Ry[0], num_words);
939}
940
941uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
942 uECC_word_t *k1, uECC_Curve curve)
943{
944
945 wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
946
947 bitcount_t num_n_bits = curve->num_n_bits;
948
949 uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) ||
950 (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) &&
951 uECC_vli_testBit(k0, num_n_bits));
952
953 uECC_vli_add(k1, k0, curve->n, num_n_words);
954
955 return carry;
956}
957
958uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
959 uECC_word_t *private_key,
960 uECC_Curve curve)
961{
962
963 uECC_word_t tmp1[NUM_ECC_WORDS];
964 uECC_word_t tmp2[NUM_ECC_WORDS];
965 uECC_word_t *p2[2] = {tmp1, tmp2};
966 uECC_word_t carry;
967
968 /* Regularize the bitcount for the private key so that attackers cannot
969 * use a side channel attack to learn the number of leading zeros. */
970 carry = regularize_k(private_key, tmp1, tmp2, curve);
971
972 EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve);
973
974 if (EccPoint_isZero(result, curve)) {
975 return 0;
976 }
977 return 1;
978}
979
980/* Converts an integer in uECC native format to big-endian bytes. */
981void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
982 const unsigned int *native)
983{
984 wordcount_t i;
985 for (i = 0; i < num_bytes; ++i) {
986 unsigned b = num_bytes - 1 - i;
987 bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE));
988 }
989}
990
991/* Converts big-endian bytes to an integer in uECC native format. */
992void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
993 int num_bytes)
994{
995 wordcount_t i;
996 uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE);
997 for (i = 0; i < num_bytes; ++i) {
998 unsigned b = num_bytes - 1 - i;
999 native[b / uECC_WORD_SIZE] |=
1000 (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE));
1001 }
1002}
1003
1004int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
1005 wordcount_t num_words)
1006{
1007 uECC_word_t mask = (uECC_word_t)-1;
1008 uECC_word_t tries;
1009 bitcount_t num_bits = uECC_vli_numBits(top, num_words);
1010
1011 if (!g_rng_function) {
1012 return 0;
1013 }
1014
1015 for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
1016 if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) {
1017 return 0;
1018 }
1019 random[num_words - 1] &=
1020 mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits));
1021 if (!uECC_vli_isZero(random, num_words) &&
1022 uECC_vli_cmp(top, random, num_words) == 1) {
1023 return 1;
1024 }
1025 }
1026 return 0;
1027}
1028
1029
1030int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve)
1031{
1032 uECC_word_t tmp1[NUM_ECC_WORDS];
1033 uECC_word_t tmp2[NUM_ECC_WORDS];
1034 wordcount_t num_words = curve->num_words;
1035
1036 /* The point at infinity is invalid. */
1037 if (EccPoint_isZero(point, curve)) {
1038 return -1;
1039 }
1040
1041 /* x and y must be smaller than p. */
1042 if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
1043 uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
1044 return -2;
1045 }
1046
1047 uECC_vli_modSquare_fast(tmp1, point + num_words, curve);
1048 curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
1049
1050 /* Make sure that y^2 == x^3 + ax + b */
1051 if (uECC_vli_equal(tmp1, tmp2, num_words) != 0)
1052 return -3;
1053
1054 return 0;
1055}
1056
1057int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve)
1058{
1059
1060 uECC_word_t _public[NUM_ECC_WORDS * 2];
1061
1062 uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
1063 uECC_vli_bytesToNative(
1064 _public + curve->num_words,
1065 public_key + curve->num_bytes,
1066 curve->num_bytes);
1067
1068 if (uECC_vli_cmp_unsafe(_public, curve->G, NUM_ECC_WORDS * 2) == 0) {
1069 return -4;
1070 }
1071
1072 return uECC_valid_point(_public, curve);
1073}
1074
1075int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
1076 uECC_Curve curve)
1077{
1078
1079 uECC_word_t _private[NUM_ECC_WORDS];
1080 uECC_word_t _public[NUM_ECC_WORDS * 2];
1081
1082 uECC_vli_bytesToNative(
1083 _private,
1084 private_key,
1085 BITS_TO_BYTES(curve->num_n_bits));
1086
1087 /* Make sure the private key is in the range [1, n-1]. */
1088 if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) {
1089 return 0;
1090 }
1091
1092 if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) {
1093 return 0;
1094 }
1095
1096 /* Compute public key. */
1097 if (!EccPoint_compute_public_key(_public, _private, curve)) {
1098 return 0;
1099 }
1100
1101 uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
1102 uECC_vli_nativeToBytes(
1103 public_key +
1104 curve->num_bytes, curve->num_bytes, _public + curve->num_words);
1105 return 1;
1106}
Jarno Lamsa46132202019-04-29 14:29:52 +03001107#else
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +02001108typedef int mbedtls_dummy_tinycrypt_def;
1109#endif /* MBEDTLS_USE_TINYCRYPT */
Jarno Lamsa18987a42019-04-24 15:40:43 +03001110