blob: 58cd2f73295b43dceb7f083ccc47f3b19902aa17 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gabor Mezei66669142022-08-03 12:52:26 +020052#define MPI_VALIDATE_RET( cond ) \
53 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
54#define MPI_VALIDATE( cond ) \
55 MBEDTLS_INTERNAL_VALIDATE( cond )
56
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010057#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
58
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050059/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050060static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
61{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050062 mbedtls_platform_zeroize( v, ciL * n );
63}
64
Paul Bakker5121ce52009-01-03 21:22:43 +000065/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000066 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000067 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020068void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000069{
Hanno Becker73d7d792018-12-11 10:35:51 +000070 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000071
Paul Bakker6c591fa2011-05-05 11:49:20 +000072 X->s = 1;
73 X->n = 0;
74 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000075}
76
77/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000078 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000079 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020080void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000081{
Paul Bakker6c591fa2011-05-05 11:49:20 +000082 if( X == NULL )
83 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000084
Paul Bakker6c591fa2011-05-05 11:49:20 +000085 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000086 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020087 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020088 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000089 }
90
Paul Bakker6c591fa2011-05-05 11:49:20 +000091 X->s = 1;
92 X->n = 0;
93 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000094}
95
96/*
97 * Enlarge to the specified number of limbs
98 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020099int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000100{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200101 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000102 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000103
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200104 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200105 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000106
Paul Bakker5121ce52009-01-03 21:22:43 +0000107 if( X->n < nblimbs )
108 {
Simon Butcher29176892016-05-20 00:19:09 +0100109 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200110 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000111
Paul Bakker5121ce52009-01-03 21:22:43 +0000112 if( X->p != NULL )
113 {
114 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200115 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200116 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 }
118
119 X->n = nblimbs;
120 X->p = p;
121 }
122
123 return( 0 );
124}
125
126/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100127 * Resize down as much as possible,
128 * while keeping at least the specified number of limbs
129 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200130int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200132 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100133 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000134 MPI_VALIDATE_RET( X != NULL );
135
136 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
137 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100138
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100139 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100140 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200141 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100142 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143
144 for( i = X->n - 1; i > 0; i-- )
145 if( X->p[i] != 0 )
146 break;
147 i++;
148
149 if( i < nblimbs )
150 i = nblimbs;
151
Simon Butcher29176892016-05-20 00:19:09 +0100152 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200153 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100155 if( X->p != NULL )
156 {
157 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200158 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200159 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100160 }
161
162 X->n = i;
163 X->p = p;
164
165 return( 0 );
166}
167
Gilles Peskineed32b572021-06-02 22:17:52 +0200168/* Resize X to have exactly n limbs and set it to 0. */
169static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
170{
171 if( limbs == 0 )
172 {
173 mbedtls_mpi_free( X );
174 return( 0 );
175 }
176 else if( X->n == limbs )
177 {
178 memset( X->p, 0, limbs * ciL );
179 X->s = 1;
180 return( 0 );
181 }
182 else
183 {
184 mbedtls_mpi_free( X );
185 return( mbedtls_mpi_grow( X, limbs ) );
186 }
187}
188
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100189/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200190 * Copy the contents of Y into X.
191 *
192 * This function is not constant-time. Leading zeros in Y may be removed.
193 *
194 * Ensure that X does not shrink. This is not guaranteed by the public API,
195 * but some code in the bignum module relies on this property, for example
196 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000197 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200198int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000199{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100200 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000201 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000202 MPI_VALIDATE_RET( X != NULL );
203 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000204
205 if( X == Y )
206 return( 0 );
207
Gilles Peskinedb420622020-01-20 21:12:50 +0100208 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200209 {
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200210 if( X->n != 0 )
211 {
212 X->s = 1;
213 memset( X->p, 0, X->n * ciL );
214 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200215 return( 0 );
216 }
217
Paul Bakker5121ce52009-01-03 21:22:43 +0000218 for( i = Y->n - 1; i > 0; i-- )
219 if( Y->p[i] != 0 )
220 break;
221 i++;
222
223 X->s = Y->s;
224
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100225 if( X->n < i )
226 {
227 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
228 }
229 else
230 {
231 memset( X->p + i, 0, ( X->n - i ) * ciL );
232 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000233
Paul Bakker5121ce52009-01-03 21:22:43 +0000234 memcpy( X->p, Y->p, i * ciL );
235
236cleanup:
237
238 return( ret );
239}
240
241/*
242 * Swap the contents of X and Y
243 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200244void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000245{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200246 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000247 MPI_VALIDATE( X != NULL );
248 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000249
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200250 memcpy( &T, X, sizeof( mbedtls_mpi ) );
251 memcpy( X, Y, sizeof( mbedtls_mpi ) );
252 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000253}
254
255/*
256 * Set value from integer
257 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200258int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000259{
Janos Follath24eed8d2019-11-22 13:21:35 +0000260 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000261 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000262
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200263 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000264 memset( X->p, 0, X->n * ciL );
265
266 X->p[0] = ( z < 0 ) ? -z : z;
267 X->s = ( z < 0 ) ? -1 : 1;
268
269cleanup:
270
271 return( ret );
272}
273
274/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000275 * Get a specific bit
276 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200277int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000278{
Hanno Becker73d7d792018-12-11 10:35:51 +0000279 MPI_VALIDATE_RET( X != NULL );
280
Paul Bakker2f5947e2011-05-18 15:47:11 +0000281 if( X->n * biL <= pos )
282 return( 0 );
283
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200284 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285}
286
287/*
288 * Set a bit to a specific value of 0 or 1
289 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200290int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000291{
292 int ret = 0;
293 size_t off = pos / biL;
294 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000295 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296
297 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200298 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200299
Paul Bakker2f5947e2011-05-18 15:47:11 +0000300 if( X->n * biL <= pos )
301 {
302 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200303 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200305 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000306 }
307
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200308 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
309 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310
311cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200312
Paul Bakker2f5947e2011-05-18 15:47:11 +0000313 return( ret );
314}
315
316/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200317 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000318 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200319size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000320{
Paul Bakker23986e52011-04-24 08:57:21 +0000321 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000322 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000323
324 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000325 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000326 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
327 return( count );
328
329 return( 0 );
330}
331
332/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200333 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000334 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200335size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000336{
Gabor Mezei89e31462022-08-12 15:36:56 +0200337 return( mbedtls_mpi_core_bitlen( X->p, X->n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000338}
339
340/*
341 * Return the total size in bytes
342 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200343size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000344{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200345 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000346}
347
348/*
349 * Convert an ASCII character to digit value
350 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200351static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000352{
353 *d = 255;
354
355 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
356 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
357 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
358
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200359 if( *d >= (mbedtls_mpi_uint) radix )
360 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000361
362 return( 0 );
363}
364
365/*
366 * Import from an ASCII string
367 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200368int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000369{
Janos Follath24eed8d2019-11-22 13:21:35 +0000370 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000371 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200372 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200373 mbedtls_mpi_uint d;
374 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000375 MPI_VALIDATE_RET( X != NULL );
376 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000377
378 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000379 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000380
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200381 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000382
Gilles Peskine7cba8592021-06-08 18:32:34 +0200383 if( s[0] == 0 )
384 {
385 mbedtls_mpi_free( X );
386 return( 0 );
387 }
388
Gilles Peskine80f56732021-04-03 18:26:13 +0200389 if( s[0] == '-' )
390 {
391 ++s;
392 sign = -1;
393 }
394
Paul Bakkerff60ee62010-03-16 21:09:09 +0000395 slen = strlen( s );
396
Paul Bakker5121ce52009-01-03 21:22:43 +0000397 if( radix == 16 )
398 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100399 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200400 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
401
Paul Bakkerff60ee62010-03-16 21:09:09 +0000402 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000403
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200404 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
405 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000406
Paul Bakker23986e52011-04-24 08:57:21 +0000407 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000408 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200409 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200410 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000411 }
412 }
413 else
414 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200415 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000416
Paul Bakkerff60ee62010-03-16 21:09:09 +0000417 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000418 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200419 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
420 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200421 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000422 }
423 }
424
Gilles Peskine80f56732021-04-03 18:26:13 +0200425 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
426 X->s = -1;
427
Paul Bakker5121ce52009-01-03 21:22:43 +0000428cleanup:
429
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200430 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000431
432 return( ret );
433}
434
435/*
Ron Eldora16fa292018-11-20 14:07:01 +0200436 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000437 */
Ron Eldora16fa292018-11-20 14:07:01 +0200438static int mpi_write_hlp( mbedtls_mpi *X, int radix,
439 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000440{
Janos Follath24eed8d2019-11-22 13:21:35 +0000441 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200442 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200443 size_t length = 0;
444 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000445
Ron Eldora16fa292018-11-20 14:07:01 +0200446 do
447 {
448 if( length >= buflen )
449 {
450 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
451 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000452
Ron Eldora16fa292018-11-20 14:07:01 +0200453 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
454 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
455 /*
456 * Write the residue in the current position, as an ASCII character.
457 */
458 if( r < 0xA )
459 *(--p_end) = (char)( '0' + r );
460 else
461 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000462
Ron Eldora16fa292018-11-20 14:07:01 +0200463 length++;
464 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000465
Ron Eldora16fa292018-11-20 14:07:01 +0200466 memmove( *p, p_end, length );
467 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000468
469cleanup:
470
471 return( ret );
472}
473
474/*
475 * Export into an ASCII string
476 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100477int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
478 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000479{
Paul Bakker23986e52011-04-24 08:57:21 +0000480 int ret = 0;
481 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000482 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200483 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000484 MPI_VALIDATE_RET( X != NULL );
485 MPI_VALIDATE_RET( olen != NULL );
486 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000487
488 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000489 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000490
Hanno Becker23cfea02019-02-04 09:45:07 +0000491 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
492 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
493 * `n`. If radix > 4, this might be a strict
494 * overapproximation of the number of
495 * radix-adic digits needed to present `n`. */
496 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
497 * present `n`. */
498
Janos Follath80470622019-03-06 13:43:02 +0000499 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000500 n += 1; /* Compensate for the divisions above, which round down `n`
501 * in case it's not even. */
502 n += 1; /* Potential '-'-sign. */
503 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
504 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000505
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100506 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000507 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100508 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200509 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000510 }
511
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100512 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200513 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000514
515 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000516 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000517 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000518 buflen--;
519 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000520
521 if( radix == 16 )
522 {
Paul Bakker23986e52011-04-24 08:57:21 +0000523 int c;
524 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000525
Paul Bakker23986e52011-04-24 08:57:21 +0000526 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000527 {
Paul Bakker23986e52011-04-24 08:57:21 +0000528 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000529 {
Paul Bakker23986e52011-04-24 08:57:21 +0000530 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000531
Paul Bakker6c343d72014-07-10 14:36:19 +0200532 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000533 continue;
534
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000535 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000536 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000537 k = 1;
538 }
539 }
540 }
541 else
542 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200543 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000544
545 if( T.s == -1 )
546 T.s = 1;
547
Ron Eldora16fa292018-11-20 14:07:01 +0200548 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000549 }
550
551 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100552 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000553
554cleanup:
555
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200556 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000557
558 return( ret );
559}
560
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200561#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000562/*
563 * Read X from an opened file
564 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200565int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000566{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200567 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000568 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000569 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000570 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000571 * Buffer should have space for (short) label and decimal formatted MPI,
572 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000573 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200574 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000575
Hanno Becker73d7d792018-12-11 10:35:51 +0000576 MPI_VALIDATE_RET( X != NULL );
577 MPI_VALIDATE_RET( fin != NULL );
578
579 if( radix < 2 || radix > 16 )
580 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
581
Paul Bakker5121ce52009-01-03 21:22:43 +0000582 memset( s, 0, sizeof( s ) );
583 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200584 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000585
586 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000587 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200588 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000589
Hanno Beckerb2034b72017-04-26 11:46:46 +0100590 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
591 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000592
593 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100594 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000595 if( mpi_get_digit( &d, radix, *p ) != 0 )
596 break;
597
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200598 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000599}
600
601/*
602 * Write X into an opened file (or stdout if fout == NULL)
603 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200604int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000605{
Janos Follath24eed8d2019-11-22 13:21:35 +0000606 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000607 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000608 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000609 * Buffer should have space for (short) label and decimal formatted MPI,
610 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000611 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200612 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000613 MPI_VALIDATE_RET( X != NULL );
614
615 if( radix < 2 || radix > 16 )
616 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000617
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100618 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000619
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100620 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000621
622 if( p == NULL ) p = "";
623
624 plen = strlen( p );
625 slen = strlen( s );
626 s[slen++] = '\r';
627 s[slen++] = '\n';
628
629 if( fout != NULL )
630 {
631 if( fwrite( p, 1, plen, fout ) != plen ||
632 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200633 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000634 }
635 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200636 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000637
638cleanup:
639
640 return( ret );
641}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200642#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000643
644/*
Janos Follatha778a942019-02-13 10:28:28 +0000645 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100646 *
647 * This function is guaranteed to return an MPI with exactly the necessary
648 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000649 */
650int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
651 const unsigned char *buf, size_t buflen )
652{
Janos Follath24eed8d2019-11-22 13:21:35 +0000653 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100654 const size_t limbs = CHARS_TO_LIMBS( buflen );
Janos Follatha778a942019-02-13 10:28:28 +0000655
656 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200657 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000658
Janos Follath5f016652022-07-22 16:18:41 +0100659 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_le( X->p, X->n, buf, buflen ) );
Janos Follatha778a942019-02-13 10:28:28 +0000660
661cleanup:
662
Janos Follath171a7ef2019-02-15 16:17:45 +0000663 /*
664 * This function is also used to import keys. However, wiping the buffers
665 * upon failure is not necessary because failure only can happen before any
666 * input is copied.
667 */
Janos Follatha778a942019-02-13 10:28:28 +0000668 return( ret );
669}
670
671/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000672 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100673 *
674 * This function is guaranteed to return an MPI with exactly the necessary
675 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000676 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200677int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000678{
Janos Follath24eed8d2019-11-22 13:21:35 +0000679 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100680 const size_t limbs = CHARS_TO_LIMBS( buflen );
Paul Bakker5121ce52009-01-03 21:22:43 +0000681
Hanno Becker8ce11a32018-12-19 16:18:52 +0000682 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000683 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
684
Hanno Becker073c1992017-10-17 15:17:27 +0100685 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200686 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000687
Janos Follath5f016652022-07-22 16:18:41 +0100688 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000689
690cleanup:
691
Janos Follath171a7ef2019-02-15 16:17:45 +0000692 /*
693 * This function is also used to import keys. However, wiping the buffers
694 * upon failure is not necessary because failure only can happen before any
695 * input is copied.
696 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000697 return( ret );
698}
699
700/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000701 * Export X into unsigned binary data, little endian
702 */
703int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
704 unsigned char *buf, size_t buflen )
705{
Janos Follathca5688e2022-08-19 12:05:28 +0100706 return( mbedtls_mpi_core_write_le( X->p, X->n, buf, buflen ) );
Janos Follathe344d0f2019-02-19 16:17:40 +0000707}
708
709/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000710 * Export X into unsigned binary data, big endian
711 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100712int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
713 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000714{
Janos Follath5f016652022-07-22 16:18:41 +0100715 return( mbedtls_mpi_core_write_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000716}
717
718/*
719 * Left-shift: X <<= count
720 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200721int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000722{
Janos Follath24eed8d2019-11-22 13:21:35 +0000723 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000724 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200725 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000726 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000727
728 v0 = count / (biL );
729 t1 = count & (biL - 1);
730
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200731 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000732
Paul Bakkerf9688572011-05-05 10:00:45 +0000733 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200734 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000735
736 ret = 0;
737
738 /*
739 * shift by count / limb_size
740 */
741 if( v0 > 0 )
742 {
Paul Bakker23986e52011-04-24 08:57:21 +0000743 for( i = X->n; i > v0; i-- )
744 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000745
Paul Bakker23986e52011-04-24 08:57:21 +0000746 for( ; i > 0; i-- )
747 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000748 }
749
750 /*
751 * shift by count % limb_size
752 */
753 if( t1 > 0 )
754 {
755 for( i = v0; i < X->n; i++ )
756 {
757 r1 = X->p[i] >> (biL - t1);
758 X->p[i] <<= t1;
759 X->p[i] |= r0;
760 r0 = r1;
761 }
762 }
763
764cleanup:
765
766 return( ret );
767}
768
769/*
770 * Right-shift: X >>= count
771 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200772int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000773{
Gilles Peskine66414202022-09-21 15:36:16 +0200774 MPI_VALIDATE_RET( X != NULL );
775 if( X->n != 0 )
776 mbedtls_mpi_core_shift_r( X->p, X->n, count );
777 return( 0 );
778}
779
Paul Bakker5121ce52009-01-03 21:22:43 +0000780/*
781 * Compare unsigned values
782 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200783int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000784{
Paul Bakker23986e52011-04-24 08:57:21 +0000785 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000786 MPI_VALIDATE_RET( X != NULL );
787 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000788
Paul Bakker23986e52011-04-24 08:57:21 +0000789 for( i = X->n; i > 0; i-- )
790 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000791 break;
792
Paul Bakker23986e52011-04-24 08:57:21 +0000793 for( j = Y->n; j > 0; j-- )
794 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000795 break;
796
Paul Bakker23986e52011-04-24 08:57:21 +0000797 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000798 return( 0 );
799
800 if( i > j ) return( 1 );
801 if( j > i ) return( -1 );
802
Paul Bakker23986e52011-04-24 08:57:21 +0000803 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000804 {
Paul Bakker23986e52011-04-24 08:57:21 +0000805 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
806 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000807 }
808
809 return( 0 );
810}
811
812/*
813 * Compare signed values
814 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200815int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000816{
Paul Bakker23986e52011-04-24 08:57:21 +0000817 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000818 MPI_VALIDATE_RET( X != NULL );
819 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000820
Paul Bakker23986e52011-04-24 08:57:21 +0000821 for( i = X->n; i > 0; i-- )
822 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000823 break;
824
Paul Bakker23986e52011-04-24 08:57:21 +0000825 for( j = Y->n; j > 0; j-- )
826 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000827 break;
828
Paul Bakker23986e52011-04-24 08:57:21 +0000829 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000830 return( 0 );
831
832 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +0000833 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000834
835 if( X->s > 0 && Y->s < 0 ) return( 1 );
836 if( Y->s > 0 && X->s < 0 ) return( -1 );
837
Paul Bakker23986e52011-04-24 08:57:21 +0000838 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000839 {
Paul Bakker23986e52011-04-24 08:57:21 +0000840 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
841 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000842 }
843
844 return( 0 );
845}
846
Janos Follathee6abce2019-09-05 14:47:19 +0100847/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000848 * Compare signed values
849 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200850int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000851{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200852 mbedtls_mpi Y;
853 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +0000854 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000855
856 *p = ( z < 0 ) ? -z : z;
857 Y.s = ( z < 0 ) ? -1 : 1;
858 Y.n = 1;
859 Y.p = p;
860
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200861 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000862}
863
864/*
865 * Unsigned addition: X = |A| + |B| (HAC 14.7)
866 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200867int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000868{
Janos Follath24eed8d2019-11-22 13:21:35 +0000869 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000870 size_t i, j;
Janos Follath6c922682015-10-30 17:43:11 +0100871 mbedtls_mpi_uint *o, *p, c, tmp;
Hanno Becker73d7d792018-12-11 10:35:51 +0000872 MPI_VALIDATE_RET( X != NULL );
873 MPI_VALIDATE_RET( A != NULL );
874 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000875
876 if( X == B )
877 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200878 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000879 }
880
881 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200882 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +0200883
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000884 /*
885 * X should always be positive as a result of unsigned additions.
886 */
887 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000888
Paul Bakker23986e52011-04-24 08:57:21 +0000889 for( j = B->n; j > 0; j-- )
890 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000891 break;
892
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200893 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000894
895 o = B->p; p = X->p; c = 0;
896
Janos Follath6c922682015-10-30 17:43:11 +0100897 /*
898 * tmp is used because it might happen that p == o
899 */
Paul Bakker23986e52011-04-24 08:57:21 +0000900 for( i = 0; i < j; i++, o++, p++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000901 {
Janos Follath6c922682015-10-30 17:43:11 +0100902 tmp= *o;
Paul Bakker5121ce52009-01-03 21:22:43 +0000903 *p += c; c = ( *p < c );
Janos Follath6c922682015-10-30 17:43:11 +0100904 *p += tmp; c += ( *p < tmp );
Paul Bakker5121ce52009-01-03 21:22:43 +0000905 }
906
907 while( c != 0 )
908 {
909 if( i >= X->n )
910 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200911 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000912 p = X->p + i;
913 }
914
Paul Bakker2d319fd2012-09-16 21:34:26 +0000915 *p += c; c = ( *p < c ); i++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000916 }
917
918cleanup:
919
920 return( ret );
921}
922
Paul Bakker5121ce52009-01-03 21:22:43 +0000923/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200924 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000925 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200926int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000927{
Janos Follath24eed8d2019-11-22 13:21:35 +0000928 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000929 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200930 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +0000931 MPI_VALIDATE_RET( X != NULL );
932 MPI_VALIDATE_RET( A != NULL );
933 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000934
Paul Bakker23986e52011-04-24 08:57:21 +0000935 for( n = B->n; n > 0; n-- )
936 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000937 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +0100938 if( n > A->n )
939 {
940 /* B >= (2^ciL)^n > A */
941 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
942 goto cleanup;
943 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000944
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200945 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
946
947 /* Set the high limbs of X to match A. Don't touch the lower limbs
948 * because X might be aliased to B, and we must not overwrite the
949 * significant digits of B. */
950 if( A->n > n )
951 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
952 if( X->n > A->n )
953 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
954
Tom Cosgrove7e655f72022-07-20 14:02:11 +0100955 carry = mbedtls_mpi_core_sub( X->p, A->p, B->p, n );
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200956 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200957 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200958 /* Propagate the carry to the first nonzero limb of X. */
959 for( ; n < X->n && X->p[n] == 0; n++ )
960 --X->p[n];
961 /* If we ran out of space for the carry, it means that the result
962 * is negative. */
963 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +0200964 {
965 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
966 goto cleanup;
967 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200968 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200969 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000970
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200971 /* X should always be positive as a result of unsigned subtractions. */
972 X->s = 1;
973
Paul Bakker5121ce52009-01-03 21:22:43 +0000974cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +0000975 return( ret );
976}
977
978/*
979 * Signed addition: X = A + B
980 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200981int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000982{
Hanno Becker73d7d792018-12-11 10:35:51 +0000983 int ret, s;
984 MPI_VALIDATE_RET( X != NULL );
985 MPI_VALIDATE_RET( A != NULL );
986 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000987
Hanno Becker73d7d792018-12-11 10:35:51 +0000988 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +0000989 if( A->s * B->s < 0 )
990 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200991 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000992 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200993 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000994 X->s = s;
995 }
996 else
997 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200998 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000999 X->s = -s;
1000 }
1001 }
1002 else
1003 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001004 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001005 X->s = s;
1006 }
1007
1008cleanup:
1009
1010 return( ret );
1011}
1012
1013/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001014 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001015 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001016int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001017{
Hanno Becker73d7d792018-12-11 10:35:51 +00001018 int ret, s;
1019 MPI_VALIDATE_RET( X != NULL );
1020 MPI_VALIDATE_RET( A != NULL );
1021 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001022
Hanno Becker73d7d792018-12-11 10:35:51 +00001023 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001024 if( A->s * B->s > 0 )
1025 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001026 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001027 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001028 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001029 X->s = s;
1030 }
1031 else
1032 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001033 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001034 X->s = -s;
1035 }
1036 }
1037 else
1038 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001039 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001040 X->s = s;
1041 }
1042
1043cleanup:
1044
1045 return( ret );
1046}
1047
1048/*
1049 * Signed addition: X = A + b
1050 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001051int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001052{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001053 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001054 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001055 MPI_VALIDATE_RET( X != NULL );
1056 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001057
1058 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001059 B.s = ( b < 0 ) ? -1 : 1;
1060 B.n = 1;
1061 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001062
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001063 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001064}
1065
1066/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001067 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001068 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001069int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001070{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001071 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001072 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001073 MPI_VALIDATE_RET( X != NULL );
1074 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001075
1076 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001077 B.s = ( b < 0 ) ? -1 : 1;
1078 B.n = 1;
1079 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001080
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001081 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001082}
1083
Paul Bakker5121ce52009-01-03 21:22:43 +00001084/*
1085 * Baseline multiplication: X = A * B (HAC 14.12)
1086 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001087int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001088{
Janos Follath24eed8d2019-11-22 13:21:35 +00001089 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001090 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001091 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001092 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001093 MPI_VALIDATE_RET( X != NULL );
1094 MPI_VALIDATE_RET( A != NULL );
1095 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001096
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001097 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001098
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001099 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1100 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001101
Hanno Beckerda763de2022-04-13 06:50:02 +01001102 for( i = A->n; i > 0; i-- )
1103 if( A->p[i - 1] != 0 )
1104 break;
1105 if( i == 0 )
1106 result_is_zero = 1;
1107
1108 for( j = B->n; j > 0; j-- )
1109 if( B->p[j - 1] != 0 )
1110 break;
1111 if( j == 0 )
1112 result_is_zero = 1;
1113
1114 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001115 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001116
Hanno Becker1772e052022-04-13 06:51:40 +01001117 for( size_t k = 0; k < j; k++ )
Hanno Beckerfee261a2022-04-06 06:20:22 +01001118 {
1119 /* We know that there cannot be any carry-out since we're
1120 * iterating from bottom to top. */
Hanno Beckerda763de2022-04-13 06:50:02 +01001121 (void) mbedtls_mpi_core_mla( X->p + k, i + 1,
1122 A->p, i,
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001123 B->p[k] );
Hanno Beckerfee261a2022-04-06 06:20:22 +01001124 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001125
Hanno Beckerda763de2022-04-13 06:50:02 +01001126 /* If the result is 0, we don't shortcut the operation, which reduces
1127 * but does not eliminate side channels leaking the zero-ness. We do
1128 * need to take care to set the sign bit properly since the library does
1129 * not fully support an MPI object with a value of 0 and s == -1. */
1130 if( result_is_zero )
1131 X->s = 1;
1132 else
1133 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001134
1135cleanup:
1136
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001137 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001138
1139 return( ret );
1140}
1141
1142/*
1143 * Baseline multiplication: X = A * b
1144 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001145int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001146{
Hanno Becker73d7d792018-12-11 10:35:51 +00001147 MPI_VALIDATE_RET( X != NULL );
1148 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001149
Hanno Becker35771312022-04-14 11:52:11 +01001150 size_t n = A->n;
1151 while( n > 0 && A->p[n - 1] == 0 )
1152 --n;
1153
Hanno Becker74a11a32022-04-06 06:27:00 +01001154 /* The general method below doesn't work if b==0. */
Hanno Becker35771312022-04-14 11:52:11 +01001155 if( b == 0 || n == 0 )
Paul Elliott986b55a2021-04-20 21:46:29 +01001156 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001157
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001158 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001159 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001160 /* In general, A * b requires 1 limb more than b. If
1161 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1162 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001163 * copy() will take care of the growth if needed. However, experimentally,
1164 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001165 * calls to calloc() in ECP code, presumably because it reuses the
1166 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001167 * grow to its final size.
1168 *
1169 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1170 * A,X can be the same. */
Hanno Becker35771312022-04-14 11:52:11 +01001171 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001172 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Hanno Becker35771312022-04-14 11:52:11 +01001173 mbedtls_mpi_core_mla( X->p, X->n, A->p, n, b - 1 );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001174
1175cleanup:
1176 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001177}
1178
1179/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001180 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1181 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001182 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001183static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1184 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001185{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001186#if defined(MBEDTLS_HAVE_UDBL)
1187 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001188#else
Simon Butcher9803d072016-01-03 00:24:34 +00001189 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1190 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001191 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1192 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001193 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001194#endif
1195
Simon Butcher15b15d12015-11-26 19:35:03 +00001196 /*
1197 * Check for overflow
1198 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001199 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001200 {
Simon Butcherf5ba0452015-12-27 23:01:55 +00001201 if (r != NULL) *r = ~0;
Simon Butcher15b15d12015-11-26 19:35:03 +00001202
Simon Butcherf5ba0452015-12-27 23:01:55 +00001203 return ( ~0 );
Simon Butcher15b15d12015-11-26 19:35:03 +00001204 }
1205
1206#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001207 dividend = (mbedtls_t_udbl) u1 << biL;
1208 dividend |= (mbedtls_t_udbl) u0;
1209 quotient = dividend / d;
1210 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1211 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1212
1213 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001214 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001215
1216 return (mbedtls_mpi_uint) quotient;
1217#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001218
1219 /*
1220 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1221 * Vol. 2 - Seminumerical Algorithms, Knuth
1222 */
1223
1224 /*
1225 * Normalize the divisor, d, and dividend, u0, u1
1226 */
Janos Follath4670f882022-07-21 18:25:42 +01001227 s = mbedtls_mpi_core_clz( d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001228 d = d << s;
1229
1230 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001231 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001232 u0 = u0 << s;
1233
1234 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001235 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001236
1237 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001238 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001239
1240 /*
1241 * Find the first quotient and remainder
1242 */
1243 q1 = u1 / d1;
1244 r0 = u1 - d1 * q1;
1245
1246 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1247 {
1248 q1 -= 1;
1249 r0 += d1;
1250
1251 if ( r0 >= radix ) break;
1252 }
1253
Simon Butcherf5ba0452015-12-27 23:01:55 +00001254 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001255 q0 = rAX / d1;
1256 r0 = rAX - q0 * d1;
1257
1258 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1259 {
1260 q0 -= 1;
1261 r0 += d1;
1262
1263 if ( r0 >= radix ) break;
1264 }
1265
1266 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001267 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001268
1269 quotient = q1 * radix + q0;
1270
1271 return quotient;
1272#endif
1273}
1274
1275/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001276 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001277 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001278int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1279 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001280{
Janos Follath24eed8d2019-11-22 13:21:35 +00001281 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001282 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001283 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001284 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001285 MPI_VALIDATE_RET( A != NULL );
1286 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001287
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001288 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1289 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001290
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001291 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001292 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001293 /*
1294 * Avoid dynamic memory allocations for constant-size T2.
1295 *
1296 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1297 * so nobody increase the size of the MPI and we're safe to use an on-stack
1298 * buffer.
1299 */
Alexander K35d6d462019-10-31 14:46:45 +03001300 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001301 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1302 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001303
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001304 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001305 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001306 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1307 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001308 return( 0 );
1309 }
1310
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001311 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1312 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001313 X.s = Y.s = 1;
1314
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001315 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1316 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001317 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001318
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001319 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001320 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001321 {
1322 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001323 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1324 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001325 }
1326 else k = 0;
1327
1328 n = X.n - 1;
1329 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001330 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001331
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001332 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001333 {
1334 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001335 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001336 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001337 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001338
1339 for( i = n; i > t ; i-- )
1340 {
1341 if( X.p[i] >= Y.p[t] )
1342 Z.p[i - t - 1] = ~0;
1343 else
1344 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001345 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1346 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001347 }
1348
Alexander K35d6d462019-10-31 14:46:45 +03001349 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1350 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1351 T2.p[2] = X.p[i];
1352
Paul Bakker5121ce52009-01-03 21:22:43 +00001353 Z.p[i - t - 1]++;
1354 do
1355 {
1356 Z.p[i - t - 1]--;
1357
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001358 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001359 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001360 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001361 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001362 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001363 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001364
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001365 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1366 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1367 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001368
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001369 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001370 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001371 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1372 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1373 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001374 Z.p[i - t - 1]--;
1375 }
1376 }
1377
1378 if( Q != NULL )
1379 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001380 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001381 Q->s = A->s * B->s;
1382 }
1383
1384 if( R != NULL )
1385 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001386 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001387 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001388 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001389
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001390 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001391 R->s = 1;
1392 }
1393
1394cleanup:
1395
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001396 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001397 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001398 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001399
1400 return( ret );
1401}
1402
1403/*
1404 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001405 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001406int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1407 const mbedtls_mpi *A,
1408 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001409{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001410 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001411 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001412 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001413
1414 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001415 B.s = ( b < 0 ) ? -1 : 1;
1416 B.n = 1;
1417 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001418
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001419 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001420}
1421
1422/*
1423 * Modulo: R = A mod B
1424 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001425int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001426{
Janos Follath24eed8d2019-11-22 13:21:35 +00001427 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001428 MPI_VALIDATE_RET( R != NULL );
1429 MPI_VALIDATE_RET( A != NULL );
1430 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001431
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001432 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1433 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001434
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001435 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001436
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001437 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1438 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001439
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001440 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1441 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001442
1443cleanup:
1444
1445 return( ret );
1446}
1447
1448/*
1449 * Modulo: r = A mod b
1450 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001451int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001452{
Paul Bakker23986e52011-04-24 08:57:21 +00001453 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001454 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001455 MPI_VALIDATE_RET( r != NULL );
1456 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001457
1458 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001459 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001460
1461 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001462 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001463
1464 /*
1465 * handle trivial cases
1466 */
Gilles Peskineae25bb02022-06-09 19:32:46 +02001467 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001468 {
1469 *r = 0;
1470 return( 0 );
1471 }
1472
1473 if( b == 2 )
1474 {
1475 *r = A->p[0] & 1;
1476 return( 0 );
1477 }
1478
1479 /*
1480 * general case
1481 */
Paul Bakker23986e52011-04-24 08:57:21 +00001482 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001483 {
Paul Bakker23986e52011-04-24 08:57:21 +00001484 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001485 y = ( y << biH ) | ( x >> biH );
1486 z = y / b;
1487 y -= z * b;
1488
1489 x <<= biH;
1490 y = ( y << biH ) | ( x >> biH );
1491 z = y / b;
1492 y -= z * b;
1493 }
1494
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001495 /*
1496 * If A is negative, then the current y represents a negative value.
1497 * Flipping it to the positive side.
1498 */
1499 if( A->s < 0 && y != 0 )
1500 y = b - y;
1501
Paul Bakker5121ce52009-01-03 21:22:43 +00001502 *r = y;
1503
1504 return( 0 );
1505}
1506
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001507static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001508{
Tom Cosgroveb7438d12022-09-15 15:05:59 +01001509 *mm = mbedtls_mpi_core_montmul_init( N->p );
Paul Bakker5121ce52009-01-03 21:22:43 +00001510}
1511
Tom Cosgrove93842842022-08-05 16:59:43 +01001512/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1513 *
1514 * \param[in,out] A One of the numbers to multiply.
1515 * It must have at least as many limbs as N
1516 * (A->n >= N->n), and any limbs beyond n are ignored.
1517 * On successful completion, A contains the result of
1518 * the multiplication A * B * R^-1 mod N where
1519 * R = (2^ciL)^n.
1520 * \param[in] B One of the numbers to multiply.
1521 * It must be nonzero and must not have more limbs than N
1522 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001523 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001524 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1525 * This is -N^-1 mod 2^ciL.
1526 * \param[in,out] T A bignum for temporary storage.
1527 * It must be at least twice the limb size of N plus 1
1528 * (T->n >= 2 * N->n + 1).
1529 * Its initial content is unused and
1530 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001531 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001532 */
1533static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B,
1534 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Tom Cosgrovef88b47e2022-08-17 08:42:58 +01001535 mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001536{
Tom Cosgrove93842842022-08-05 16:59:43 +01001537 mbedtls_mpi_core_montmul( A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p );
Paul Bakker5121ce52009-01-03 21:22:43 +00001538}
1539
1540/*
1541 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001542 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001543 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001544 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001545static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
Tom Cosgrovef88b47e2022-08-17 08:42:58 +01001546 mbedtls_mpi_uint mm, mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001547{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001548 mbedtls_mpi_uint z = 1;
1549 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001550
Paul Bakker8ddb6452013-02-27 14:56:33 +01001551 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001552 U.p = &z;
1553
Tom Cosgrove93842842022-08-05 16:59:43 +01001554 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001555}
1556
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001557/**
1558 * Select an MPI from a table without leaking the index.
1559 *
1560 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1561 * reads the entire table in order to avoid leaking the value of idx to an
1562 * attacker able to observe memory access patterns.
1563 *
1564 * \param[out] R Where to write the selected MPI.
1565 * \param[in] T The table to read from.
1566 * \param[in] T_size The number of elements in the table.
1567 * \param[in] idx The index of the element to select;
1568 * this must satisfy 0 <= idx < T_size.
1569 *
1570 * \return \c 0 on success, or a negative error code.
1571 */
1572static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1573{
1574 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1575
1576 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001577 {
1578 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei90437e32021-10-20 11:59:27 +02001579 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001580 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001581
1582cleanup:
1583 return( ret );
1584}
1585
Paul Bakker5121ce52009-01-03 21:22:43 +00001586/*
1587 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1588 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001589int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
1590 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano538a0cb2021-07-14 10:20:09 +01001591 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00001592{
Janos Follath24eed8d2019-11-22 13:21:35 +00001593 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001594 size_t wbits, wsize, one = 1;
1595 size_t i, j, nblimbs;
1596 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001597 mbedtls_mpi_uint ei, mm, state;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001598 mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001599 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001600
Hanno Becker73d7d792018-12-11 10:35:51 +00001601 MPI_VALIDATE_RET( X != NULL );
1602 MPI_VALIDATE_RET( A != NULL );
1603 MPI_VALIDATE_RET( E != NULL );
1604 MPI_VALIDATE_RET( N != NULL );
1605
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01001606 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001607 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001608
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001609 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
1610 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001611
Chris Jones9246d042020-11-25 15:12:39 +00001612 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
1613 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
1614 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1615
Paul Bakkerf6198c12012-05-16 08:02:29 +00001616 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001617 * Init temps and window size
1618 */
1619 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001620 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
1621 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001622 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00001623 memset( W, 0, sizeof( W ) );
1624
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001625 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00001626
1627 wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
1628 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
1629
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001630#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001631 if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
1632 wsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001633#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001634
Paul Bakker5121ce52009-01-03 21:22:43 +00001635 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001636 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001637 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1638 * large enough, and later we'll grow other W[i] to the same length.
1639 * They must not be shrunk midway through this function!
1640 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001641 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
1642 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
1643 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001644
1645 /*
Paul Bakker50546922012-05-19 08:40:49 +00001646 * Compensate for negative A (and correct at the end)
1647 */
1648 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00001649 if( neg )
1650 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001651 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00001652 Apos.s = 1;
1653 A = &Apos;
1654 }
1655
1656 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001657 * If 1st call, pre-compute R^2 mod N
1658 */
Yuto Takano538a0cb2021-07-14 10:20:09 +01001659 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00001660 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001661 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
1662 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
1663 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001664
Yuto Takano538a0cb2021-07-14 10:20:09 +01001665 if( prec_RR != NULL )
1666 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001667 }
1668 else
Yuto Takano538a0cb2021-07-14 10:20:09 +01001669 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001670
1671 /*
1672 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1673 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001674 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001675 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001676 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001677 /* This should be a no-op because W[1] is already that large before
1678 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001679 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine2aa3f162021-06-15 21:22:48 +02001680 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001681 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01001682 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001683 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001684
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001685 /* Note that this is safe because W[1] always has at least N->n limbs
1686 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Tom Cosgrove93842842022-08-05 16:59:43 +01001687 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001688
1689 /*
1690 * X = R^2 * R^-1 mod N = R mod N
1691 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001692 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
Gilles Peskine4e91d472020-06-04 20:55:15 +02001693 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001694
1695 if( wsize > 1 )
1696 {
1697 /*
1698 * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
1699 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001700 j = one << ( wsize - 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001701
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001702 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
1703 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001704
1705 for( i = 0; i < wsize - 1; i++ )
Tom Cosgrove93842842022-08-05 16:59:43 +01001706 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01001707
Paul Bakker5121ce52009-01-03 21:22:43 +00001708 /*
1709 * W[i] = W[i - 1] * W[1]
1710 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001711 for( i = j + 1; i < ( one << wsize ); i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001712 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001713 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
1714 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001715
Tom Cosgrove93842842022-08-05 16:59:43 +01001716 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001717 }
1718 }
1719
1720 nblimbs = E->n;
1721 bufsize = 0;
1722 nbits = 0;
1723 wbits = 0;
1724 state = 0;
1725
1726 while( 1 )
1727 {
1728 if( bufsize == 0 )
1729 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01001730 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001731 break;
1732
Paul Bakker0d7702c2013-10-29 16:18:35 +01001733 nblimbs--;
1734
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001735 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001736 }
1737
1738 bufsize--;
1739
1740 ei = (E->p[nblimbs] >> bufsize) & 1;
1741
1742 /*
1743 * skip leading 0s
1744 */
1745 if( ei == 0 && state == 0 )
1746 continue;
1747
1748 if( ei == 0 && state == 1 )
1749 {
1750 /*
1751 * out of window, square X
1752 */
Tom Cosgrove93842842022-08-05 16:59:43 +01001753 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001754 continue;
1755 }
1756
1757 /*
1758 * add ei to current window
1759 */
1760 state = 2;
1761
1762 nbits++;
Paul Bakker66d5d072014-06-17 16:39:18 +02001763 wbits |= ( ei << ( wsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001764
1765 if( nbits == wsize )
1766 {
1767 /*
1768 * X = X^wsize R^-1 mod N
1769 */
1770 for( i = 0; i < wsize; i++ )
Tom Cosgrove93842842022-08-05 16:59:43 +01001771 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001772
1773 /*
1774 * X = X * W[wbits] R^-1 mod N
1775 */
Manuel Pégourié-Gonnarde22176e2021-06-10 09:34:00 +02001776 MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
Tom Cosgrove93842842022-08-05 16:59:43 +01001777 mpi_montmul( X, &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001778
1779 state--;
1780 nbits = 0;
1781 wbits = 0;
1782 }
1783 }
1784
1785 /*
1786 * process the remaining bits
1787 */
1788 for( i = 0; i < nbits; i++ )
1789 {
Tom Cosgrove93842842022-08-05 16:59:43 +01001790 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001791
1792 wbits <<= 1;
1793
Paul Bakker66d5d072014-06-17 16:39:18 +02001794 if( ( wbits & ( one << wsize ) ) != 0 )
Tom Cosgrove93842842022-08-05 16:59:43 +01001795 mpi_montmul( X, &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001796 }
1797
1798 /*
1799 * X = A^E * R * R^-1 mod N = A^E mod N
1800 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001801 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001802
Hanno Beckera4af1c42017-04-18 09:07:45 +01001803 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00001804 {
1805 X->s = -1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001806 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001807 }
1808
Paul Bakker5121ce52009-01-03 21:22:43 +00001809cleanup:
1810
Paul Bakker66d5d072014-06-17 16:39:18 +02001811 for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001812 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001813
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001814 mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001815 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00001816
Yuto Takano538a0cb2021-07-14 10:20:09 +01001817 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001818 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00001819
1820 return( ret );
1821}
1822
Paul Bakker5121ce52009-01-03 21:22:43 +00001823/*
1824 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1825 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001826int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001827{
Janos Follath24eed8d2019-11-22 13:21:35 +00001828 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001829 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001830 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001831
Hanno Becker73d7d792018-12-11 10:35:51 +00001832 MPI_VALIDATE_RET( G != NULL );
1833 MPI_VALIDATE_RET( A != NULL );
1834 MPI_VALIDATE_RET( B != NULL );
1835
Alexander Ke8ad49f2019-08-16 16:16:07 +03001836 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001837
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001838 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
1839 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001840
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001841 lz = mbedtls_mpi_lsb( &TA );
1842 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001843
Gilles Peskine27253bc2021-06-09 13:26:43 +02001844 /* The loop below gives the correct result when A==0 but not when B==0.
1845 * So have a special case for B==0. Leverage the fact that we just
1846 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1847 * slightly more efficient than cmp_int(). */
1848 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
1849 {
1850 ret = mbedtls_mpi_copy( G, A );
1851 goto cleanup;
1852 }
1853
Paul Bakker66d5d072014-06-17 16:39:18 +02001854 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001855 lz = lzt;
1856
Paul Bakker5121ce52009-01-03 21:22:43 +00001857 TA.s = TB.s = 1;
1858
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001859 /* We mostly follow the procedure described in HAC 14.54, but with some
1860 * minor differences:
1861 * - Sequences of multiplications or divisions by 2 are grouped into a
1862 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001863 * - The procedure in HAC assumes that 0 < TB <= TA.
1864 * - The condition TB <= TA is not actually necessary for correctness.
1865 * TA and TB have symmetric roles except for the loop termination
1866 * condition, and the shifts at the beginning of the loop body
1867 * remove any significance from the ordering of TA vs TB before
1868 * the shifts.
1869 * - If TA = 0, the loop goes through 0 iterations and the result is
1870 * correctly TB.
1871 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001872 *
1873 * For the correctness proof below, decompose the original values of
1874 * A and B as
1875 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1876 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1877 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1878 * and gcd(A',B') is odd or 0.
1879 *
1880 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1881 * The code maintains the following invariant:
1882 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001883 */
1884
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001885 /* Proof that the loop terminates:
1886 * At each iteration, either the right-shift by 1 is made on a nonzero
1887 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1888 * by at least 1, or the right-shift by 1 is made on zero and then
1889 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1890 * since in that case TB is calculated from TB-TA with the condition TB>TA).
1891 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001892 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001893 {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001894 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001895 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
1896 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001897
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001898 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1899 * TA-TB is even so the division by 2 has an integer result.
1900 * Invariant (I) is preserved since any odd divisor of both TA and TB
1901 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001902 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001903 * divides TA.
1904 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001905 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001906 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001907 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
1908 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001909 }
1910 else
1911 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001912 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
1913 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001914 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001915 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001916 }
1917
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001918 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
1919 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
1920 * - If there was at least one loop iteration, then one of TA or TB is odd,
1921 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
1922 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
1923 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02001924 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001925 */
1926
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001927 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
1928 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001929
1930cleanup:
1931
Alexander Ke8ad49f2019-08-16 16:16:07 +03001932 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001933
1934 return( ret );
1935}
1936
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001937/* Fill X with n_bytes random bytes.
1938 * X must already have room for those bytes.
Gilles Peskineafb2bd22021-06-03 11:51:09 +02001939 * The ordering of the bytes returned from the RNG is suitable for
1940 * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
Gilles Peskineebe9b6a2021-04-13 21:55:35 +02001941 * The size and sign of X are unchanged.
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001942 * n_bytes must not be 0.
1943 */
1944static int mpi_fill_random_internal(
1945 mbedtls_mpi *X, size_t n_bytes,
1946 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1947{
1948 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1949 const size_t limbs = CHARS_TO_LIMBS( n_bytes );
1950 const size_t overhead = ( limbs * ciL ) - n_bytes;
1951
1952 if( X->n < limbs )
1953 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001954
Gilles Peskineebe9b6a2021-04-13 21:55:35 +02001955 memset( X->p, 0, overhead );
1956 memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001957 MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
Janos Follath4670f882022-07-21 18:25:42 +01001958 mbedtls_mpi_core_bigendian_to_host( X->p, limbs );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001959
1960cleanup:
1961 return( ret );
1962}
1963
Paul Bakker33dc46b2014-04-30 16:11:39 +02001964/*
1965 * Fill X with size bytes of random.
1966 *
1967 * Use a temporary bytes representation to make sure the result is the same
Paul Bakkerc37b0ac2014-05-01 14:19:23 +02001968 * regardless of the platform endianness (useful when f_rng is actually
Paul Bakker33dc46b2014-04-30 16:11:39 +02001969 * deterministic, eg for tests).
1970 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001971int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00001972 int (*f_rng)(void *, unsigned char *, size_t),
1973 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00001974{
Janos Follath24eed8d2019-11-22 13:21:35 +00001975 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +01001976 const size_t limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01001977
Hanno Becker8ce11a32018-12-19 16:18:52 +00001978 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00001979 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02001980
Hanno Beckerda1655a2017-10-18 14:21:44 +01001981 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +02001982 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001983 if( size == 0 )
1984 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00001985
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001986 ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00001987
1988cleanup:
1989 return( ret );
1990}
1991
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001992int mbedtls_mpi_random( mbedtls_mpi *X,
1993 mbedtls_mpi_sint min,
1994 const mbedtls_mpi *N,
1995 int (*f_rng)(void *, unsigned char *, size_t),
1996 void *p_rng )
1997{
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001998 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee5381682021-04-13 21:23:25 +02001999 int count;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002000 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002001 size_t n_bits = mbedtls_mpi_bitlen( N );
2002 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002003 mbedtls_mpi lower_bound;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002004
Gilles Peskine1e918f42021-03-29 22:14:51 +02002005 if( min < 0 )
2006 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2007 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
2008 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2009
Gilles Peskinee5381682021-04-13 21:23:25 +02002010 /*
2011 * When min == 0, each try has at worst a probability 1/2 of failing
2012 * (the msb has a probability 1/2 of being 0, and then the result will
2013 * be < N), so after 30 tries failure probability is a most 2**(-30).
2014 *
2015 * When N is just below a power of 2, as is the case when generating
Gilles Peskinee842e582021-04-15 11:45:19 +02002016 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee5381682021-04-13 21:23:25 +02002017 * overwhelming probability. When N is just above a power of 2,
Gilles Peskinee842e582021-04-15 11:45:19 +02002018 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee5381682021-04-13 21:23:25 +02002019 * a probability of failing that is almost 1/2.
2020 *
2021 * The probabilities are almost the same if min is nonzero but negligible
2022 * compared to N. This is always the case when N is crypto-sized, but
2023 * it's convenient to support small N for testing purposes. When N
2024 * is small, use a higher repeat count, otherwise the probability of
2025 * failure is macroscopic.
2026 */
Gilles Peskine87823d72021-06-02 21:18:59 +02002027 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee5381682021-04-13 21:23:25 +02002028
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002029 mbedtls_mpi_init( &lower_bound );
2030
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002031 /* Ensure that target MPI has exactly the same number of limbs
2032 * as the upper bound, even if the upper bound has leading zeros.
2033 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskineed32b572021-06-02 22:17:52 +02002034 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002035 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
2036 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002037
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002038 /*
2039 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2040 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2041 * - use the same byte ordering;
2042 * - keep the leftmost n_bits bits of the generated octet string;
2043 * - try until result is in the desired range.
2044 * This also avoids any bias, which is especially important for ECDSA.
2045 */
2046 do
2047 {
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002048 MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002049 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2050
Gilles Peskinee5381682021-04-13 21:23:25 +02002051 if( --count == 0 )
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002052 {
2053 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2054 goto cleanup;
2055 }
2056
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002057 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2058 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002059 }
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002060 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002061
2062cleanup:
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002063 mbedtls_mpi_free( &lower_bound );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002064 return( ret );
2065}
2066
Paul Bakker5121ce52009-01-03 21:22:43 +00002067/*
2068 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2069 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002070int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002071{
Janos Follath24eed8d2019-11-22 13:21:35 +00002072 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002073 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002074 MPI_VALIDATE_RET( X != NULL );
2075 MPI_VALIDATE_RET( A != NULL );
2076 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002077
Hanno Becker4bcb4912017-04-18 15:49:39 +01002078 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002079 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002080
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002081 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2082 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2083 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002084
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002085 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002086
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002087 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002088 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002089 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002090 goto cleanup;
2091 }
2092
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002093 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2094 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2095 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2096 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002097
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002098 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2099 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2100 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2101 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002102
2103 do
2104 {
2105 while( ( TU.p[0] & 1 ) == 0 )
2106 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002107 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002108
2109 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2110 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002111 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2112 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002113 }
2114
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002115 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2116 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002117 }
2118
2119 while( ( TV.p[0] & 1 ) == 0 )
2120 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002121 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002122
2123 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2124 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002125 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2126 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002127 }
2128
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002129 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2130 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002131 }
2132
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002133 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002134 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002135 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2136 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2137 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002138 }
2139 else
2140 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002141 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2142 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2143 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002144 }
2145 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002146 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002147
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002148 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2149 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002150
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002151 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2152 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002153
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002154 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002155
2156cleanup:
2157
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002158 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2159 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2160 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002161
2162 return( ret );
2163}
2164
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002165#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002166
Paul Bakker5121ce52009-01-03 21:22:43 +00002167static const int small_prime[] =
2168{
2169 3, 5, 7, 11, 13, 17, 19, 23,
2170 29, 31, 37, 41, 43, 47, 53, 59,
2171 61, 67, 71, 73, 79, 83, 89, 97,
2172 101, 103, 107, 109, 113, 127, 131, 137,
2173 139, 149, 151, 157, 163, 167, 173, 179,
2174 181, 191, 193, 197, 199, 211, 223, 227,
2175 229, 233, 239, 241, 251, 257, 263, 269,
2176 271, 277, 281, 283, 293, 307, 311, 313,
2177 317, 331, 337, 347, 349, 353, 359, 367,
2178 373, 379, 383, 389, 397, 401, 409, 419,
2179 421, 431, 433, 439, 443, 449, 457, 461,
2180 463, 467, 479, 487, 491, 499, 503, 509,
2181 521, 523, 541, 547, 557, 563, 569, 571,
2182 577, 587, 593, 599, 601, 607, 613, 617,
2183 619, 631, 641, 643, 647, 653, 659, 661,
2184 673, 677, 683, 691, 701, 709, 719, 727,
2185 733, 739, 743, 751, 757, 761, 769, 773,
2186 787, 797, 809, 811, 821, 823, 827, 829,
2187 839, 853, 857, 859, 863, 877, 881, 883,
2188 887, 907, 911, 919, 929, 937, 941, 947,
2189 953, 967, 971, 977, 983, 991, 997, -103
2190};
2191
2192/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002193 * Small divisors test (X must be positive)
2194 *
2195 * Return values:
2196 * 0: no small factor (possible prime, more tests needed)
2197 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002198 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002199 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002200 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002201static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002202{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002203 int ret = 0;
2204 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002205 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002206
Paul Bakker5121ce52009-01-03 21:22:43 +00002207 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002208 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002209
2210 for( i = 0; small_prime[i] > 0; i++ )
2211 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002212 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002213 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002214
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002215 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002216
2217 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002218 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002219 }
2220
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002221cleanup:
2222 return( ret );
2223}
2224
2225/*
2226 * Miller-Rabin pseudo-primality test (HAC 4.24)
2227 */
Janos Follathda31fa12018-09-03 14:45:23 +01002228static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002229 int (*f_rng)(void *, unsigned char *, size_t),
2230 void *p_rng )
2231{
Pascal Junodb99183d2015-03-11 16:49:45 +01002232 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002233 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002234 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002235
Hanno Becker8ce11a32018-12-19 16:18:52 +00002236 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002237 MPI_VALIDATE_RET( f_rng != NULL );
2238
2239 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2240 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002241 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002242
Paul Bakker5121ce52009-01-03 21:22:43 +00002243 /*
2244 * W = |X| - 1
2245 * R = W >> lsb( W )
2246 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002247 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2248 s = mbedtls_mpi_lsb( &W );
2249 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2250 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002251
Janos Follathda31fa12018-09-03 14:45:23 +01002252 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002253 {
2254 /*
2255 * pick a random A, 1 < A < |X| - 1
2256 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002257 count = 0;
2258 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002259 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002260
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002261 j = mbedtls_mpi_bitlen( &A );
2262 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002263 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002264 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002265 }
2266
2267 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002268 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2269 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002270 }
2271
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002272 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2273 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002274
2275 /*
2276 * A = A^R mod |X|
2277 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002278 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002279
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002280 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2281 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002282 continue;
2283
2284 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002285 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002286 {
2287 /*
2288 * A = A * A mod |X|
2289 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002290 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2291 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002292
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002293 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002294 break;
2295
2296 j++;
2297 }
2298
2299 /*
2300 * not prime if A != |X| - 1 or A == 1
2301 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002302 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2303 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002304 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002305 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002306 break;
2307 }
2308 }
2309
2310cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002311 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2312 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002313 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002314
2315 return( ret );
2316}
2317
2318/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002319 * Pseudo-primality test: small factors, then Miller-Rabin
2320 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002321int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2322 int (*f_rng)(void *, unsigned char *, size_t),
2323 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002324{
Janos Follath24eed8d2019-11-22 13:21:35 +00002325 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002326 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002327 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002328 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002329
2330 XX.s = 1;
2331 XX.n = X->n;
2332 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002333
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002334 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2335 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2336 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002337
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002338 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002339 return( 0 );
2340
2341 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2342 {
2343 if( ret == 1 )
2344 return( 0 );
2345
2346 return( ret );
2347 }
2348
Janos Follathda31fa12018-09-03 14:45:23 +01002349 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002350}
2351
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002352/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002353 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002354 *
Janos Follathf301d232018-08-14 13:34:01 +01002355 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2356 * be either 1024 bits or 1536 bits long, and flags must contain
2357 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002358 */
Janos Follath7c025a92018-08-14 11:08:41 +01002359int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002360 int (*f_rng)(void *, unsigned char *, size_t),
2361 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002362{
Jethro Beekman66689272018-02-14 19:24:10 -08002363#ifdef MBEDTLS_HAVE_INT64
2364// ceil(2^63.5)
2365#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2366#else
2367// ceil(2^31.5)
2368#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2369#endif
2370 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002371 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002372 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002373 mbedtls_mpi_uint r;
2374 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002375
Hanno Becker8ce11a32018-12-19 16:18:52 +00002376 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002377 MPI_VALIDATE_RET( f_rng != NULL );
2378
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002379 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2380 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002381
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002382 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002383
2384 n = BITS_TO_LIMBS( nbits );
2385
Janos Follathda31fa12018-09-03 14:45:23 +01002386 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2387 {
2388 /*
2389 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2390 */
2391 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2392 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2393 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2394 }
2395 else
2396 {
2397 /*
2398 * 2^-100 error probability, number of rounds computed based on HAC,
2399 * fact 4.48
2400 */
2401 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2402 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2403 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2404 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2405 }
2406
Jethro Beekman66689272018-02-14 19:24:10 -08002407 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002408 {
Jethro Beekman66689272018-02-14 19:24:10 -08002409 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2410 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2411 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2412
2413 k = n * biL;
2414 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2415 X->p[0] |= 1;
2416
Janos Follath7c025a92018-08-14 11:08:41 +01002417 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002418 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002419 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002420
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002421 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002422 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002423 }
Jethro Beekman66689272018-02-14 19:24:10 -08002424 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002425 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002426 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002427 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002428 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2429 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002430 */
Jethro Beekman66689272018-02-14 19:24:10 -08002431
2432 X->p[0] |= 2;
2433
2434 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2435 if( r == 0 )
2436 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2437 else if( r == 1 )
2438 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2439
2440 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2441 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2442 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2443
2444 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002445 {
Jethro Beekman66689272018-02-14 19:24:10 -08002446 /*
2447 * First, check small factors for X and Y
2448 * before doing Miller-Rabin on any of them
2449 */
2450 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2451 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002452 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002453 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002454 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002455 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002456 goto cleanup;
2457
2458 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2459 goto cleanup;
2460
2461 /*
2462 * Next candidates. We want to preserve Y = (X-1) / 2 and
2463 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2464 * so up Y by 6 and X by 12.
2465 */
2466 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2467 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002468 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002469 }
2470 }
2471
2472cleanup:
2473
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002474 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002475
2476 return( ret );
2477}
2478
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002479#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002480
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002481#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002482
Paul Bakker23986e52011-04-24 08:57:21 +00002483#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002484
2485static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2486{
2487 { 693, 609, 21 },
2488 { 1764, 868, 28 },
2489 { 768454923, 542167814, 1 }
2490};
2491
Paul Bakker5121ce52009-01-03 21:22:43 +00002492/*
2493 * Checkup routine
2494 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002495int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002496{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002497 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002498 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002499
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002500 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
2501 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002502
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002503 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002504 "EFE021C2645FD1DC586E69184AF4A31E" \
2505 "D5F53E93B5F123FA41680867BA110131" \
2506 "944FE7952E2517337780CB0DB80E61AA" \
2507 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
2508
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002509 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002510 "B2E7EFD37075B9F03FF989C7C5051C20" \
2511 "34D2A323810251127E7BF8625A4F49A5" \
2512 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2513 "5B5C25763222FEFCCFC38B832366C29E" ) );
2514
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002515 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002516 "0066A198186C18C10B2F5ED9B522752A" \
2517 "9830B69916E535C8F047518A889A43A5" \
2518 "94B6BED27A168D31D4A52F88925AA8F5" ) );
2519
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002520 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002521
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002522 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002523 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2524 "9E857EA95A03512E2BAE7391688D264A" \
2525 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2526 "8001B72E848A38CAE1C65F78E56ABDEF" \
2527 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2528 "ECF677152EF804370C1A305CAF3B5BF1" \
2529 "30879B56C61DE584A0F53A2447A51E" ) );
2530
2531 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002532 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002533
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002534 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002535 {
2536 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002537 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002538
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002539 ret = 1;
2540 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002541 }
2542
2543 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002544 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002545
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002546 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002547
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002548 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002549 "256567336059E52CAE22925474705F39A94" ) );
2550
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002551 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002552 "6613F26162223DF488E9CD48CC132C7A" \
2553 "0AC93C701B001B092E4E5B9F73BCD27B" \
2554 "9EE50D0657C77F374E903CDFA4C642" ) );
2555
2556 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002557 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002558
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002559 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
2560 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002561 {
2562 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002563 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002564
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002565 ret = 1;
2566 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002567 }
2568
2569 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002570 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002571
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002572 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002573
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002574 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002575 "36E139AEA55215609D2816998ED020BB" \
2576 "BD96C37890F65171D948E9BC7CBAA4D9" \
2577 "325D24D6A3C12710F10A09FA08AB87" ) );
2578
2579 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002580 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002581
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002582 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002583 {
2584 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002585 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002586
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002587 ret = 1;
2588 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002589 }
2590
2591 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002592 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002593
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002594 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002595
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002596 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002597 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2598 "C3DBA76456363A10869622EAC2DD84EC" \
2599 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
2600
2601 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002602 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002603
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002604 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002605 {
2606 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002607 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002608
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002609 ret = 1;
2610 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002611 }
2612
2613 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002614 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002615
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002616 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002617 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002618
Paul Bakker66d5d072014-06-17 16:39:18 +02002619 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002620 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002621 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
2622 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002623
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002624 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002625
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002626 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002627 {
2628 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002629 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002630
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002631 ret = 1;
2632 goto cleanup;
2633 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002634 }
2635
2636 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002637 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002638
Paul Bakker5121ce52009-01-03 21:22:43 +00002639cleanup:
2640
2641 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02002642 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00002643
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002644 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
2645 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002646
2647 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002648 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002649
2650 return( ret );
2651}
2652
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002653#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002654
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002655#endif /* MBEDTLS_BIGNUM_C */