blob: 931d34df44f7234485403100d031515b2cd5ea15 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020050#if defined(MBEDTLS_PLATFORM_C)
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000051#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020052#else
Rich Evans00ab4702015-02-06 13:43:58 +000053#include <stdio.h>
54#include <stdlib.h>
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020055#define mbedtls_printf printf
Manuel Pégourié-Gonnard7551cb92015-05-26 16:04:06 +020056#define mbedtls_calloc calloc
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020057#define mbedtls_free free
Paul Bakker6e339b52013-07-03 13:37:05 +020058#endif
59
Gabor Mezei66669142022-08-03 12:52:26 +020060#define MPI_VALIDATE_RET( cond ) \
61 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
62#define MPI_VALIDATE( cond ) \
63 MBEDTLS_INTERNAL_VALIDATE( cond )
64
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010065#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
66
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050067/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050068static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
69{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050070 mbedtls_platform_zeroize( v, ciL * n );
71}
72
Paul Bakker5121ce52009-01-03 21:22:43 +000073/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000074 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000075 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020076void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000077{
Hanno Becker73d7d792018-12-11 10:35:51 +000078 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000079
Paul Bakker6c591fa2011-05-05 11:49:20 +000080 X->s = 1;
81 X->n = 0;
82 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000083}
84
85/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000086 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000087 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020088void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000089{
Paul Bakker6c591fa2011-05-05 11:49:20 +000090 if( X == NULL )
91 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000092
Paul Bakker6c591fa2011-05-05 11:49:20 +000093 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000094 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020095 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020096 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000097 }
98
Paul Bakker6c591fa2011-05-05 11:49:20 +000099 X->s = 1;
100 X->n = 0;
101 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000102}
103
104/*
105 * Enlarge to the specified number of limbs
106 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200107int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000108{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200109 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000110 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000111
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200112 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200113 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000114
Paul Bakker5121ce52009-01-03 21:22:43 +0000115 if( X->n < nblimbs )
116 {
Simon Butcher29176892016-05-20 00:19:09 +0100117 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200118 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000119
Paul Bakker5121ce52009-01-03 21:22:43 +0000120 if( X->p != NULL )
121 {
122 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200123 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200124 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000125 }
126
127 X->n = nblimbs;
128 X->p = p;
129 }
130
131 return( 0 );
132}
133
134/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100135 * Resize down as much as possible,
136 * while keeping at least the specified number of limbs
137 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200138int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100139{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200140 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100141 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000142 MPI_VALIDATE_RET( X != NULL );
143
144 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
145 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100146
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100147 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100148 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200149 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100150 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100151
152 for( i = X->n - 1; i > 0; i-- )
153 if( X->p[i] != 0 )
154 break;
155 i++;
156
157 if( i < nblimbs )
158 i = nblimbs;
159
Simon Butcher29176892016-05-20 00:19:09 +0100160 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200161 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100162
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100163 if( X->p != NULL )
164 {
165 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200166 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200167 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100168 }
169
170 X->n = i;
171 X->p = p;
172
173 return( 0 );
174}
175
Gilles Peskineed32b572021-06-02 22:17:52 +0200176/* Resize X to have exactly n limbs and set it to 0. */
177static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
178{
179 if( limbs == 0 )
180 {
181 mbedtls_mpi_free( X );
182 return( 0 );
183 }
184 else if( X->n == limbs )
185 {
186 memset( X->p, 0, limbs * ciL );
187 X->s = 1;
188 return( 0 );
189 }
190 else
191 {
192 mbedtls_mpi_free( X );
193 return( mbedtls_mpi_grow( X, limbs ) );
194 }
195}
196
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100197/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200198 * Copy the contents of Y into X.
199 *
200 * This function is not constant-time. Leading zeros in Y may be removed.
201 *
202 * Ensure that X does not shrink. This is not guaranteed by the public API,
203 * but some code in the bignum module relies on this property, for example
204 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000205 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200206int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000207{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100208 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000209 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000210 MPI_VALIDATE_RET( X != NULL );
211 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000212
213 if( X == Y )
214 return( 0 );
215
Gilles Peskinedb420622020-01-20 21:12:50 +0100216 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200217 {
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200218 if( X->n != 0 )
219 {
220 X->s = 1;
221 memset( X->p, 0, X->n * ciL );
222 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200223 return( 0 );
224 }
225
Paul Bakker5121ce52009-01-03 21:22:43 +0000226 for( i = Y->n - 1; i > 0; i-- )
227 if( Y->p[i] != 0 )
228 break;
229 i++;
230
231 X->s = Y->s;
232
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100233 if( X->n < i )
234 {
235 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
236 }
237 else
238 {
239 memset( X->p + i, 0, ( X->n - i ) * ciL );
240 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000241
Paul Bakker5121ce52009-01-03 21:22:43 +0000242 memcpy( X->p, Y->p, i * ciL );
243
244cleanup:
245
246 return( ret );
247}
248
249/*
250 * Swap the contents of X and Y
251 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200252void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000253{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200254 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000255 MPI_VALIDATE( X != NULL );
256 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000257
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200258 memcpy( &T, X, sizeof( mbedtls_mpi ) );
259 memcpy( X, Y, sizeof( mbedtls_mpi ) );
260 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000261}
262
263/*
264 * Set value from integer
265 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200266int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000267{
Janos Follath24eed8d2019-11-22 13:21:35 +0000268 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000269 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000270
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200271 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000272 memset( X->p, 0, X->n * ciL );
273
274 X->p[0] = ( z < 0 ) ? -z : z;
275 X->s = ( z < 0 ) ? -1 : 1;
276
277cleanup:
278
279 return( ret );
280}
281
282/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000283 * Get a specific bit
284 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200285int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000286{
Hanno Becker73d7d792018-12-11 10:35:51 +0000287 MPI_VALIDATE_RET( X != NULL );
288
Paul Bakker2f5947e2011-05-18 15:47:11 +0000289 if( X->n * biL <= pos )
290 return( 0 );
291
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200292 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000293}
294
295/*
296 * Set a bit to a specific value of 0 or 1
297 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200298int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000299{
300 int ret = 0;
301 size_t off = pos / biL;
302 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000303 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304
305 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200306 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200307
Paul Bakker2f5947e2011-05-18 15:47:11 +0000308 if( X->n * biL <= pos )
309 {
310 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200311 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000312
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200313 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000314 }
315
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200316 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
317 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000318
319cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200320
Paul Bakker2f5947e2011-05-18 15:47:11 +0000321 return( ret );
322}
323
324/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200325 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000326 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200327size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000328{
Paul Bakker23986e52011-04-24 08:57:21 +0000329 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000330 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000331
332 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000333 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000334 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
335 return( count );
336
337 return( 0 );
338}
339
340/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200341 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000342 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200343size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000344{
Gabor Mezei89e31462022-08-12 15:36:56 +0200345 return( mbedtls_mpi_core_bitlen( X->p, X->n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000346}
347
348/*
349 * Return the total size in bytes
350 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200351size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000352{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200353 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000354}
355
356/*
357 * Convert an ASCII character to digit value
358 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200359static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000360{
361 *d = 255;
362
363 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
364 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
365 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
366
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200367 if( *d >= (mbedtls_mpi_uint) radix )
368 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000369
370 return( 0 );
371}
372
373/*
374 * Import from an ASCII string
375 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200376int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000377{
Janos Follath24eed8d2019-11-22 13:21:35 +0000378 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000379 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200380 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200381 mbedtls_mpi_uint d;
382 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000383 MPI_VALIDATE_RET( X != NULL );
384 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000385
386 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000387 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000388
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200389 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000390
Gilles Peskine7cba8592021-06-08 18:32:34 +0200391 if( s[0] == 0 )
392 {
393 mbedtls_mpi_free( X );
394 return( 0 );
395 }
396
Gilles Peskine80f56732021-04-03 18:26:13 +0200397 if( s[0] == '-' )
398 {
399 ++s;
400 sign = -1;
401 }
402
Paul Bakkerff60ee62010-03-16 21:09:09 +0000403 slen = strlen( s );
404
Paul Bakker5121ce52009-01-03 21:22:43 +0000405 if( radix == 16 )
406 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100407 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200408 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
409
Paul Bakkerff60ee62010-03-16 21:09:09 +0000410 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000411
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200412 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
413 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000414
Paul Bakker23986e52011-04-24 08:57:21 +0000415 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000416 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200417 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200418 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000419 }
420 }
421 else
422 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200423 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000424
Paul Bakkerff60ee62010-03-16 21:09:09 +0000425 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000426 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200427 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
428 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200429 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000430 }
431 }
432
Gilles Peskine80f56732021-04-03 18:26:13 +0200433 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
434 X->s = -1;
435
Paul Bakker5121ce52009-01-03 21:22:43 +0000436cleanup:
437
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200438 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000439
440 return( ret );
441}
442
443/*
Ron Eldora16fa292018-11-20 14:07:01 +0200444 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000445 */
Ron Eldora16fa292018-11-20 14:07:01 +0200446static int mpi_write_hlp( mbedtls_mpi *X, int radix,
447 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000448{
Janos Follath24eed8d2019-11-22 13:21:35 +0000449 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200450 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200451 size_t length = 0;
452 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000453
Ron Eldora16fa292018-11-20 14:07:01 +0200454 do
455 {
456 if( length >= buflen )
457 {
458 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
459 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000460
Ron Eldora16fa292018-11-20 14:07:01 +0200461 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
462 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
463 /*
464 * Write the residue in the current position, as an ASCII character.
465 */
466 if( r < 0xA )
467 *(--p_end) = (char)( '0' + r );
468 else
469 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000470
Ron Eldora16fa292018-11-20 14:07:01 +0200471 length++;
472 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000473
Ron Eldora16fa292018-11-20 14:07:01 +0200474 memmove( *p, p_end, length );
475 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000476
477cleanup:
478
479 return( ret );
480}
481
482/*
483 * Export into an ASCII string
484 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100485int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
486 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000487{
Paul Bakker23986e52011-04-24 08:57:21 +0000488 int ret = 0;
489 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000490 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200491 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000492 MPI_VALIDATE_RET( X != NULL );
493 MPI_VALIDATE_RET( olen != NULL );
494 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000495
496 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000497 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000498
Hanno Becker23cfea02019-02-04 09:45:07 +0000499 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
500 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
501 * `n`. If radix > 4, this might be a strict
502 * overapproximation of the number of
503 * radix-adic digits needed to present `n`. */
504 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
505 * present `n`. */
506
Janos Follath80470622019-03-06 13:43:02 +0000507 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000508 n += 1; /* Compensate for the divisions above, which round down `n`
509 * in case it's not even. */
510 n += 1; /* Potential '-'-sign. */
511 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
512 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000513
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100514 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000515 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100516 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200517 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000518 }
519
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100520 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200521 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000522
523 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000524 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000525 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000526 buflen--;
527 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000528
529 if( radix == 16 )
530 {
Paul Bakker23986e52011-04-24 08:57:21 +0000531 int c;
532 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000533
Paul Bakker23986e52011-04-24 08:57:21 +0000534 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000535 {
Paul Bakker23986e52011-04-24 08:57:21 +0000536 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000537 {
Paul Bakker23986e52011-04-24 08:57:21 +0000538 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000539
Paul Bakker6c343d72014-07-10 14:36:19 +0200540 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000541 continue;
542
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000543 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000544 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000545 k = 1;
546 }
547 }
548 }
549 else
550 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200551 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000552
553 if( T.s == -1 )
554 T.s = 1;
555
Ron Eldora16fa292018-11-20 14:07:01 +0200556 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000557 }
558
559 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100560 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000561
562cleanup:
563
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200564 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000565
566 return( ret );
567}
568
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200569#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000570/*
571 * Read X from an opened file
572 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200573int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000574{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200575 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000576 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000577 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000578 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000579 * Buffer should have space for (short) label and decimal formatted MPI,
580 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000581 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200582 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000583
Hanno Becker73d7d792018-12-11 10:35:51 +0000584 MPI_VALIDATE_RET( X != NULL );
585 MPI_VALIDATE_RET( fin != NULL );
586
587 if( radix < 2 || radix > 16 )
588 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
589
Paul Bakker5121ce52009-01-03 21:22:43 +0000590 memset( s, 0, sizeof( s ) );
591 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200592 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000593
594 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000595 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200596 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000597
Hanno Beckerb2034b72017-04-26 11:46:46 +0100598 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
599 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000600
601 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100602 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000603 if( mpi_get_digit( &d, radix, *p ) != 0 )
604 break;
605
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200606 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000607}
608
609/*
610 * Write X into an opened file (or stdout if fout == NULL)
611 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200612int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000613{
Janos Follath24eed8d2019-11-22 13:21:35 +0000614 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000615 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000616 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000617 * Buffer should have space for (short) label and decimal formatted MPI,
618 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000619 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200620 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000621 MPI_VALIDATE_RET( X != NULL );
622
623 if( radix < 2 || radix > 16 )
624 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000625
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100626 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000627
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100628 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000629
630 if( p == NULL ) p = "";
631
632 plen = strlen( p );
633 slen = strlen( s );
634 s[slen++] = '\r';
635 s[slen++] = '\n';
636
637 if( fout != NULL )
638 {
639 if( fwrite( p, 1, plen, fout ) != plen ||
640 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200641 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000642 }
643 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200644 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000645
646cleanup:
647
648 return( ret );
649}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200650#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000651
652/*
Janos Follatha778a942019-02-13 10:28:28 +0000653 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100654 *
655 * This function is guaranteed to return an MPI with exactly the necessary
656 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000657 */
658int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
659 const unsigned char *buf, size_t buflen )
660{
Janos Follath24eed8d2019-11-22 13:21:35 +0000661 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100662 const size_t limbs = CHARS_TO_LIMBS( buflen );
Janos Follatha778a942019-02-13 10:28:28 +0000663
664 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200665 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000666
Janos Follath5f016652022-07-22 16:18:41 +0100667 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_le( X->p, X->n, buf, buflen ) );
Janos Follatha778a942019-02-13 10:28:28 +0000668
669cleanup:
670
Janos Follath171a7ef2019-02-15 16:17:45 +0000671 /*
672 * This function is also used to import keys. However, wiping the buffers
673 * upon failure is not necessary because failure only can happen before any
674 * input is copied.
675 */
Janos Follatha778a942019-02-13 10:28:28 +0000676 return( ret );
677}
678
679/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000680 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100681 *
682 * This function is guaranteed to return an MPI with exactly the necessary
683 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000684 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200685int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000686{
Janos Follath24eed8d2019-11-22 13:21:35 +0000687 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100688 const size_t limbs = CHARS_TO_LIMBS( buflen );
Paul Bakker5121ce52009-01-03 21:22:43 +0000689
Hanno Becker8ce11a32018-12-19 16:18:52 +0000690 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000691 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
692
Hanno Becker073c1992017-10-17 15:17:27 +0100693 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200694 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000695
Janos Follath5f016652022-07-22 16:18:41 +0100696 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000697
698cleanup:
699
Janos Follath171a7ef2019-02-15 16:17:45 +0000700 /*
701 * This function is also used to import keys. However, wiping the buffers
702 * upon failure is not necessary because failure only can happen before any
703 * input is copied.
704 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000705 return( ret );
706}
707
708/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000709 * Export X into unsigned binary data, little endian
710 */
711int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
712 unsigned char *buf, size_t buflen )
713{
Janos Follathca5688e2022-08-19 12:05:28 +0100714 return( mbedtls_mpi_core_write_le( X->p, X->n, buf, buflen ) );
Janos Follathe344d0f2019-02-19 16:17:40 +0000715}
716
717/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000718 * Export X into unsigned binary data, big endian
719 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100720int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
721 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000722{
Janos Follath5f016652022-07-22 16:18:41 +0100723 return( mbedtls_mpi_core_write_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000724}
725
726/*
727 * Left-shift: X <<= count
728 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200729int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000730{
Janos Follath24eed8d2019-11-22 13:21:35 +0000731 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000732 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200733 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000734 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000735
736 v0 = count / (biL );
737 t1 = count & (biL - 1);
738
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200739 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000740
Paul Bakkerf9688572011-05-05 10:00:45 +0000741 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200742 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000743
744 ret = 0;
745
746 /*
747 * shift by count / limb_size
748 */
749 if( v0 > 0 )
750 {
Paul Bakker23986e52011-04-24 08:57:21 +0000751 for( i = X->n; i > v0; i-- )
752 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000753
Paul Bakker23986e52011-04-24 08:57:21 +0000754 for( ; i > 0; i-- )
755 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000756 }
757
758 /*
759 * shift by count % limb_size
760 */
761 if( t1 > 0 )
762 {
763 for( i = v0; i < X->n; i++ )
764 {
765 r1 = X->p[i] >> (biL - t1);
766 X->p[i] <<= t1;
767 X->p[i] |= r0;
768 r0 = r1;
769 }
770 }
771
772cleanup:
773
774 return( ret );
775}
776
777/*
778 * Right-shift: X >>= count
779 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200780int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000781{
Paul Bakker23986e52011-04-24 08:57:21 +0000782 size_t i, v0, v1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200783 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000784 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000785
786 v0 = count / biL;
787 v1 = count & (biL - 1);
788
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100789 if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200790 return mbedtls_mpi_lset( X, 0 );
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100791
Paul Bakker5121ce52009-01-03 21:22:43 +0000792 /*
793 * shift by count / limb_size
794 */
795 if( v0 > 0 )
796 {
797 for( i = 0; i < X->n - v0; i++ )
798 X->p[i] = X->p[i + v0];
799
800 for( ; i < X->n; i++ )
801 X->p[i] = 0;
802 }
803
804 /*
805 * shift by count % limb_size
806 */
807 if( v1 > 0 )
808 {
Paul Bakker23986e52011-04-24 08:57:21 +0000809 for( i = X->n; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000810 {
Paul Bakker23986e52011-04-24 08:57:21 +0000811 r1 = X->p[i - 1] << (biL - v1);
812 X->p[i - 1] >>= v1;
813 X->p[i - 1] |= r0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000814 r0 = r1;
815 }
816 }
817
818 return( 0 );
819}
820
821/*
822 * Compare unsigned values
823 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200824int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000825{
Paul Bakker23986e52011-04-24 08:57:21 +0000826 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000827 MPI_VALIDATE_RET( X != NULL );
828 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000829
Paul Bakker23986e52011-04-24 08:57:21 +0000830 for( i = X->n; i > 0; i-- )
831 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000832 break;
833
Paul Bakker23986e52011-04-24 08:57:21 +0000834 for( j = Y->n; j > 0; j-- )
835 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000836 break;
837
Paul Bakker23986e52011-04-24 08:57:21 +0000838 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000839 return( 0 );
840
841 if( i > j ) return( 1 );
842 if( j > i ) return( -1 );
843
Paul Bakker23986e52011-04-24 08:57:21 +0000844 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000845 {
Paul Bakker23986e52011-04-24 08:57:21 +0000846 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
847 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000848 }
849
850 return( 0 );
851}
852
853/*
854 * Compare signed values
855 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200856int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000857{
Paul Bakker23986e52011-04-24 08:57:21 +0000858 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000859 MPI_VALIDATE_RET( X != NULL );
860 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000861
Paul Bakker23986e52011-04-24 08:57:21 +0000862 for( i = X->n; i > 0; i-- )
863 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000864 break;
865
Paul Bakker23986e52011-04-24 08:57:21 +0000866 for( j = Y->n; j > 0; j-- )
867 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000868 break;
869
Paul Bakker23986e52011-04-24 08:57:21 +0000870 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000871 return( 0 );
872
873 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +0000874 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000875
876 if( X->s > 0 && Y->s < 0 ) return( 1 );
877 if( Y->s > 0 && X->s < 0 ) return( -1 );
878
Paul Bakker23986e52011-04-24 08:57:21 +0000879 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000880 {
Paul Bakker23986e52011-04-24 08:57:21 +0000881 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
882 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000883 }
884
885 return( 0 );
886}
887
Janos Follathee6abce2019-09-05 14:47:19 +0100888/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000889 * Compare signed values
890 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200891int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000892{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200893 mbedtls_mpi Y;
894 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +0000895 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000896
897 *p = ( z < 0 ) ? -z : z;
898 Y.s = ( z < 0 ) ? -1 : 1;
899 Y.n = 1;
900 Y.p = p;
901
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200902 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000903}
904
905/*
906 * Unsigned addition: X = |A| + |B| (HAC 14.7)
907 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200908int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000909{
Janos Follath24eed8d2019-11-22 13:21:35 +0000910 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000911 size_t i, j;
Janos Follath6c922682015-10-30 17:43:11 +0100912 mbedtls_mpi_uint *o, *p, c, tmp;
Hanno Becker73d7d792018-12-11 10:35:51 +0000913 MPI_VALIDATE_RET( X != NULL );
914 MPI_VALIDATE_RET( A != NULL );
915 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000916
917 if( X == B )
918 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200919 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000920 }
921
922 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200923 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +0200924
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000925 /*
926 * X should always be positive as a result of unsigned additions.
927 */
928 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000929
Paul Bakker23986e52011-04-24 08:57:21 +0000930 for( j = B->n; j > 0; j-- )
931 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000932 break;
933
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200934 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000935
936 o = B->p; p = X->p; c = 0;
937
Janos Follath6c922682015-10-30 17:43:11 +0100938 /*
939 * tmp is used because it might happen that p == o
940 */
Paul Bakker23986e52011-04-24 08:57:21 +0000941 for( i = 0; i < j; i++, o++, p++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000942 {
Janos Follath6c922682015-10-30 17:43:11 +0100943 tmp= *o;
Paul Bakker5121ce52009-01-03 21:22:43 +0000944 *p += c; c = ( *p < c );
Janos Follath6c922682015-10-30 17:43:11 +0100945 *p += tmp; c += ( *p < tmp );
Paul Bakker5121ce52009-01-03 21:22:43 +0000946 }
947
948 while( c != 0 )
949 {
950 if( i >= X->n )
951 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200952 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000953 p = X->p + i;
954 }
955
Paul Bakker2d319fd2012-09-16 21:34:26 +0000956 *p += c; c = ( *p < c ); i++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000957 }
958
959cleanup:
960
961 return( ret );
962}
963
Paul Bakker5121ce52009-01-03 21:22:43 +0000964/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200965 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000966 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200967int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000968{
Janos Follath24eed8d2019-11-22 13:21:35 +0000969 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000970 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200971 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +0000972 MPI_VALIDATE_RET( X != NULL );
973 MPI_VALIDATE_RET( A != NULL );
974 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000975
Paul Bakker23986e52011-04-24 08:57:21 +0000976 for( n = B->n; n > 0; n-- )
977 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000978 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +0100979 if( n > A->n )
980 {
981 /* B >= (2^ciL)^n > A */
982 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
983 goto cleanup;
984 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000985
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200986 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
987
988 /* Set the high limbs of X to match A. Don't touch the lower limbs
989 * because X might be aliased to B, and we must not overwrite the
990 * significant digits of B. */
991 if( A->n > n )
992 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
993 if( X->n > A->n )
994 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
995
Tom Cosgrove7e655f72022-07-20 14:02:11 +0100996 carry = mbedtls_mpi_core_sub( X->p, A->p, B->p, n );
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200997 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200998 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200999 /* Propagate the carry to the first nonzero limb of X. */
1000 for( ; n < X->n && X->p[n] == 0; n++ )
1001 --X->p[n];
1002 /* If we ran out of space for the carry, it means that the result
1003 * is negative. */
1004 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +02001005 {
1006 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1007 goto cleanup;
1008 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001009 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001010 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001011
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001012 /* X should always be positive as a result of unsigned subtractions. */
1013 X->s = 1;
1014
Paul Bakker5121ce52009-01-03 21:22:43 +00001015cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +00001016 return( ret );
1017}
1018
1019/*
1020 * Signed addition: X = A + B
1021 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001022int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001023{
Hanno Becker73d7d792018-12-11 10:35:51 +00001024 int ret, s;
1025 MPI_VALIDATE_RET( X != NULL );
1026 MPI_VALIDATE_RET( A != NULL );
1027 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001028
Hanno Becker73d7d792018-12-11 10:35:51 +00001029 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001030 if( A->s * B->s < 0 )
1031 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001032 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001033 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001034 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001035 X->s = s;
1036 }
1037 else
1038 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001039 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001040 X->s = -s;
1041 }
1042 }
1043 else
1044 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001045 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001046 X->s = s;
1047 }
1048
1049cleanup:
1050
1051 return( ret );
1052}
1053
1054/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001055 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001056 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001057int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001058{
Hanno Becker73d7d792018-12-11 10:35:51 +00001059 int ret, s;
1060 MPI_VALIDATE_RET( X != NULL );
1061 MPI_VALIDATE_RET( A != NULL );
1062 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001063
Hanno Becker73d7d792018-12-11 10:35:51 +00001064 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001065 if( A->s * B->s > 0 )
1066 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001067 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001068 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001069 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001070 X->s = s;
1071 }
1072 else
1073 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001074 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001075 X->s = -s;
1076 }
1077 }
1078 else
1079 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001080 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001081 X->s = s;
1082 }
1083
1084cleanup:
1085
1086 return( ret );
1087}
1088
1089/*
1090 * Signed addition: X = A + b
1091 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001092int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001093{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001094 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001095 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001096 MPI_VALIDATE_RET( X != NULL );
1097 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001098
1099 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001100 B.s = ( b < 0 ) ? -1 : 1;
1101 B.n = 1;
1102 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001103
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001104 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001105}
1106
1107/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001108 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001109 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001110int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001111{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001112 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001113 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001114 MPI_VALIDATE_RET( X != NULL );
1115 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001116
1117 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001118 B.s = ( b < 0 ) ? -1 : 1;
1119 B.n = 1;
1120 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001121
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001122 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001123}
1124
Paul Bakker5121ce52009-01-03 21:22:43 +00001125/*
1126 * Baseline multiplication: X = A * B (HAC 14.12)
1127 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001128int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001129{
Janos Follath24eed8d2019-11-22 13:21:35 +00001130 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001131 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001132 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001133 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001134 MPI_VALIDATE_RET( X != NULL );
1135 MPI_VALIDATE_RET( A != NULL );
1136 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001137
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001138 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001139
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001140 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1141 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001142
Hanno Beckerda763de2022-04-13 06:50:02 +01001143 for( i = A->n; i > 0; i-- )
1144 if( A->p[i - 1] != 0 )
1145 break;
1146 if( i == 0 )
1147 result_is_zero = 1;
1148
1149 for( j = B->n; j > 0; j-- )
1150 if( B->p[j - 1] != 0 )
1151 break;
1152 if( j == 0 )
1153 result_is_zero = 1;
1154
1155 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001156 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001157
Hanno Becker1772e052022-04-13 06:51:40 +01001158 for( size_t k = 0; k < j; k++ )
Hanno Beckerfee261a2022-04-06 06:20:22 +01001159 {
1160 /* We know that there cannot be any carry-out since we're
1161 * iterating from bottom to top. */
Hanno Beckerda763de2022-04-13 06:50:02 +01001162 (void) mbedtls_mpi_core_mla( X->p + k, i + 1,
1163 A->p, i,
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001164 B->p[k] );
Hanno Beckerfee261a2022-04-06 06:20:22 +01001165 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001166
Hanno Beckerda763de2022-04-13 06:50:02 +01001167 /* If the result is 0, we don't shortcut the operation, which reduces
1168 * but does not eliminate side channels leaking the zero-ness. We do
1169 * need to take care to set the sign bit properly since the library does
1170 * not fully support an MPI object with a value of 0 and s == -1. */
1171 if( result_is_zero )
1172 X->s = 1;
1173 else
1174 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001175
1176cleanup:
1177
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001178 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001179
1180 return( ret );
1181}
1182
1183/*
1184 * Baseline multiplication: X = A * b
1185 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001186int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001187{
Hanno Becker73d7d792018-12-11 10:35:51 +00001188 MPI_VALIDATE_RET( X != NULL );
1189 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001190
Hanno Becker35771312022-04-14 11:52:11 +01001191 size_t n = A->n;
1192 while( n > 0 && A->p[n - 1] == 0 )
1193 --n;
1194
Hanno Becker74a11a32022-04-06 06:27:00 +01001195 /* The general method below doesn't work if b==0. */
Hanno Becker35771312022-04-14 11:52:11 +01001196 if( b == 0 || n == 0 )
Paul Elliott986b55a2021-04-20 21:46:29 +01001197 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001198
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001199 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001200 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001201 /* In general, A * b requires 1 limb more than b. If
1202 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1203 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001204 * copy() will take care of the growth if needed. However, experimentally,
1205 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001206 * calls to calloc() in ECP code, presumably because it reuses the
1207 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001208 * grow to its final size.
1209 *
1210 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1211 * A,X can be the same. */
Hanno Becker35771312022-04-14 11:52:11 +01001212 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001213 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Hanno Becker35771312022-04-14 11:52:11 +01001214 mbedtls_mpi_core_mla( X->p, X->n, A->p, n, b - 1 );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001215
1216cleanup:
1217 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001218}
1219
1220/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001221 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1222 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001223 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001224static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1225 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001226{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001227#if defined(MBEDTLS_HAVE_UDBL)
1228 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001229#else
Simon Butcher9803d072016-01-03 00:24:34 +00001230 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1231 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001232 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1233 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001234 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001235#endif
1236
Simon Butcher15b15d12015-11-26 19:35:03 +00001237 /*
1238 * Check for overflow
1239 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001240 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001241 {
Simon Butcherf5ba0452015-12-27 23:01:55 +00001242 if (r != NULL) *r = ~0;
Simon Butcher15b15d12015-11-26 19:35:03 +00001243
Simon Butcherf5ba0452015-12-27 23:01:55 +00001244 return ( ~0 );
Simon Butcher15b15d12015-11-26 19:35:03 +00001245 }
1246
1247#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001248 dividend = (mbedtls_t_udbl) u1 << biL;
1249 dividend |= (mbedtls_t_udbl) u0;
1250 quotient = dividend / d;
1251 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1252 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1253
1254 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001255 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001256
1257 return (mbedtls_mpi_uint) quotient;
1258#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001259
1260 /*
1261 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1262 * Vol. 2 - Seminumerical Algorithms, Knuth
1263 */
1264
1265 /*
1266 * Normalize the divisor, d, and dividend, u0, u1
1267 */
Janos Follath4670f882022-07-21 18:25:42 +01001268 s = mbedtls_mpi_core_clz( d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001269 d = d << s;
1270
1271 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001272 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001273 u0 = u0 << s;
1274
1275 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001276 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001277
1278 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001279 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001280
1281 /*
1282 * Find the first quotient and remainder
1283 */
1284 q1 = u1 / d1;
1285 r0 = u1 - d1 * q1;
1286
1287 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1288 {
1289 q1 -= 1;
1290 r0 += d1;
1291
1292 if ( r0 >= radix ) break;
1293 }
1294
Simon Butcherf5ba0452015-12-27 23:01:55 +00001295 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001296 q0 = rAX / d1;
1297 r0 = rAX - q0 * d1;
1298
1299 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1300 {
1301 q0 -= 1;
1302 r0 += d1;
1303
1304 if ( r0 >= radix ) break;
1305 }
1306
1307 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001308 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001309
1310 quotient = q1 * radix + q0;
1311
1312 return quotient;
1313#endif
1314}
1315
1316/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001317 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001318 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001319int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1320 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001321{
Janos Follath24eed8d2019-11-22 13:21:35 +00001322 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001323 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001324 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001325 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001326 MPI_VALIDATE_RET( A != NULL );
1327 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001328
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001329 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1330 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001331
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001332 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001333 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001334 /*
1335 * Avoid dynamic memory allocations for constant-size T2.
1336 *
1337 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1338 * so nobody increase the size of the MPI and we're safe to use an on-stack
1339 * buffer.
1340 */
Alexander K35d6d462019-10-31 14:46:45 +03001341 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001342 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1343 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001344
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001345 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001346 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001347 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1348 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001349 return( 0 );
1350 }
1351
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001352 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1353 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001354 X.s = Y.s = 1;
1355
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001356 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1357 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001358 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001359
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001360 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001361 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001362 {
1363 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001364 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1365 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001366 }
1367 else k = 0;
1368
1369 n = X.n - 1;
1370 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001371 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001372
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001373 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001374 {
1375 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001376 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001377 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001378 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001379
1380 for( i = n; i > t ; i-- )
1381 {
1382 if( X.p[i] >= Y.p[t] )
1383 Z.p[i - t - 1] = ~0;
1384 else
1385 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001386 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1387 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001388 }
1389
Alexander K35d6d462019-10-31 14:46:45 +03001390 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1391 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1392 T2.p[2] = X.p[i];
1393
Paul Bakker5121ce52009-01-03 21:22:43 +00001394 Z.p[i - t - 1]++;
1395 do
1396 {
1397 Z.p[i - t - 1]--;
1398
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001399 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001400 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001401 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001402 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001403 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001404 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001405
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001406 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1407 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1408 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001409
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001410 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001411 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001412 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1413 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1414 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001415 Z.p[i - t - 1]--;
1416 }
1417 }
1418
1419 if( Q != NULL )
1420 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001421 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001422 Q->s = A->s * B->s;
1423 }
1424
1425 if( R != NULL )
1426 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001427 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001428 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001429 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001430
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001431 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001432 R->s = 1;
1433 }
1434
1435cleanup:
1436
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001437 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001438 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001439 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001440
1441 return( ret );
1442}
1443
1444/*
1445 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001446 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001447int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1448 const mbedtls_mpi *A,
1449 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001450{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001451 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001452 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001453 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001454
1455 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001456 B.s = ( b < 0 ) ? -1 : 1;
1457 B.n = 1;
1458 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001459
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001460 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001461}
1462
1463/*
1464 * Modulo: R = A mod B
1465 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001466int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001467{
Janos Follath24eed8d2019-11-22 13:21:35 +00001468 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001469 MPI_VALIDATE_RET( R != NULL );
1470 MPI_VALIDATE_RET( A != NULL );
1471 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001472
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001473 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1474 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001475
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001476 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001477
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001478 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1479 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001480
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001481 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1482 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001483
1484cleanup:
1485
1486 return( ret );
1487}
1488
1489/*
1490 * Modulo: r = A mod b
1491 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001492int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001493{
Paul Bakker23986e52011-04-24 08:57:21 +00001494 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001495 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001496 MPI_VALIDATE_RET( r != NULL );
1497 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001498
1499 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001500 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001501
1502 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001503 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001504
1505 /*
1506 * handle trivial cases
1507 */
Gilles Peskineae25bb02022-06-09 19:32:46 +02001508 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001509 {
1510 *r = 0;
1511 return( 0 );
1512 }
1513
1514 if( b == 2 )
1515 {
1516 *r = A->p[0] & 1;
1517 return( 0 );
1518 }
1519
1520 /*
1521 * general case
1522 */
Paul Bakker23986e52011-04-24 08:57:21 +00001523 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001524 {
Paul Bakker23986e52011-04-24 08:57:21 +00001525 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001526 y = ( y << biH ) | ( x >> biH );
1527 z = y / b;
1528 y -= z * b;
1529
1530 x <<= biH;
1531 y = ( y << biH ) | ( x >> biH );
1532 z = y / b;
1533 y -= z * b;
1534 }
1535
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001536 /*
1537 * If A is negative, then the current y represents a negative value.
1538 * Flipping it to the positive side.
1539 */
1540 if( A->s < 0 && y != 0 )
1541 y = b - y;
1542
Paul Bakker5121ce52009-01-03 21:22:43 +00001543 *r = y;
1544
1545 return( 0 );
1546}
1547
1548/*
1549 * Fast Montgomery initialization (thanks to Tom St Denis)
1550 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001551static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001552{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001553 mbedtls_mpi_uint x, m0 = N->p[0];
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001554 unsigned int i;
Paul Bakker5121ce52009-01-03 21:22:43 +00001555
1556 x = m0;
1557 x += ( ( m0 + 2 ) & 4 ) << 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001558
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001559 for( i = biL; i >= 8; i /= 2 )
1560 x *= ( 2 - ( m0 * x ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001561
1562 *mm = ~x + 1;
1563}
1564
Gilles Peskine2a82f722020-06-04 15:00:49 +02001565/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1566 *
1567 * \param[in,out] A One of the numbers to multiply.
Gilles Peskine221626f2020-06-08 22:37:50 +02001568 * It must have at least as many limbs as N
1569 * (A->n >= N->n), and any limbs beyond n are ignored.
Gilles Peskine2a82f722020-06-04 15:00:49 +02001570 * On successful completion, A contains the result of
1571 * the multiplication A * B * R^-1 mod N where
1572 * R = (2^ciL)^n.
1573 * \param[in] B One of the numbers to multiply.
1574 * It must be nonzero and must not have more limbs than N
1575 * (B->n <= N->n).
1576 * \param[in] N The modulo. N must be odd.
1577 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1578 * This is -N^-1 mod 2^ciL.
1579 * \param[in,out] T A bignum for temporary storage.
Hanno Beckere1417022022-04-06 06:45:45 +01001580 * It must be at least twice the limb size of N plus 1
1581 * (T->n >= 2 * N->n + 1).
Gilles Peskine2a82f722020-06-04 15:00:49 +02001582 * Its initial content is unused and
1583 * its final content is indeterminate.
1584 * Note that unlike the usual convention in the library
1585 * for `const mbedtls_mpi*`, the content of T can change.
Paul Bakker5121ce52009-01-03 21:22:43 +00001586 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001587static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001588 const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001589{
Hanno Becker0235f752022-04-12 10:54:46 +01001590 size_t n, m;
1591 mbedtls_mpi_uint *d;
Paul Bakker5121ce52009-01-03 21:22:43 +00001592
1593 memset( T->p, 0, T->n * ciL );
1594
1595 d = T->p;
1596 n = N->n;
1597 m = ( B->n < n ) ? B->n : n;
1598
Hanno Becker0235f752022-04-12 10:54:46 +01001599 for( size_t i = 0; i < n; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001600 {
Hanno Becker0235f752022-04-12 10:54:46 +01001601 mbedtls_mpi_uint u0, u1;
1602
Paul Bakker5121ce52009-01-03 21:22:43 +00001603 /*
1604 * T = (T + u0*B + u1*N) / 2^biL
1605 */
1606 u0 = A->p[i];
1607 u1 = ( d[0] + u0 * B->p[0] ) * mm;
1608
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001609 (void) mbedtls_mpi_core_mla( d, n + 2,
1610 B->p, m,
1611 u0 );
1612 (void) mbedtls_mpi_core_mla( d, n + 2,
1613 N->p, n,
1614 u1 );
Hanno Beckere1417022022-04-06 06:45:45 +01001615 d++;
Paul Bakker5121ce52009-01-03 21:22:43 +00001616 }
1617
Gilles Peskine221626f2020-06-08 22:37:50 +02001618 /* At this point, d is either the desired result or the desired result
1619 * plus N. We now potentially subtract N, avoiding leaking whether the
1620 * subtraction is performed through side channels. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001621
Gilles Peskine221626f2020-06-08 22:37:50 +02001622 /* Copy the n least significant limbs of d to A, so that
1623 * A = d if d < N (recall that N has n limbs). */
1624 memcpy( A->p, d, n * ciL );
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001625 /* If d >= N then we want to set A to d - N. To prevent timing attacks,
Gilles Peskine221626f2020-06-08 22:37:50 +02001626 * do the calculation without using conditional tests. */
1627 /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
Gilles Peskine132c0972020-06-04 21:05:24 +02001628 d[n] += 1;
Tom Cosgrove7e655f72022-07-20 14:02:11 +01001629 d[n] -= mbedtls_mpi_core_sub( d, d, N->p, n );
Gilles Peskine221626f2020-06-08 22:37:50 +02001630 /* If d0 < N then d < (2^biL)^n
1631 * so d[n] == 0 and we want to keep A as it is.
1632 * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
1633 * so d[n] == 1 and we want to set A to the result of the subtraction
1634 * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
1635 * This exactly corresponds to a conditional assignment. */
Gabor Mezei90437e32021-10-20 11:59:27 +02001636 mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001637}
1638
1639/*
1640 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001641 *
1642 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001643 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001644static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
1645 mbedtls_mpi_uint mm, const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001646{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001647 mbedtls_mpi_uint z = 1;
1648 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001649
Paul Bakker8ddb6452013-02-27 14:56:33 +01001650 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001651 U.p = &z;
1652
Gilles Peskine4e91d472020-06-04 20:55:15 +02001653 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001654}
1655
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001656/**
1657 * Select an MPI from a table without leaking the index.
1658 *
1659 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1660 * reads the entire table in order to avoid leaking the value of idx to an
1661 * attacker able to observe memory access patterns.
1662 *
1663 * \param[out] R Where to write the selected MPI.
1664 * \param[in] T The table to read from.
1665 * \param[in] T_size The number of elements in the table.
1666 * \param[in] idx The index of the element to select;
1667 * this must satisfy 0 <= idx < T_size.
1668 *
1669 * \return \c 0 on success, or a negative error code.
1670 */
1671static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1672{
1673 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1674
1675 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001676 {
1677 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei90437e32021-10-20 11:59:27 +02001678 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001679 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001680
1681cleanup:
1682 return( ret );
1683}
1684
Paul Bakker5121ce52009-01-03 21:22:43 +00001685/*
1686 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1687 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001688int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
1689 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano538a0cb2021-07-14 10:20:09 +01001690 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00001691{
Janos Follath24eed8d2019-11-22 13:21:35 +00001692 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001693 size_t wbits, wsize, one = 1;
1694 size_t i, j, nblimbs;
1695 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001696 mbedtls_mpi_uint ei, mm, state;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001697 mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001698 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001699
Hanno Becker73d7d792018-12-11 10:35:51 +00001700 MPI_VALIDATE_RET( X != NULL );
1701 MPI_VALIDATE_RET( A != NULL );
1702 MPI_VALIDATE_RET( E != NULL );
1703 MPI_VALIDATE_RET( N != NULL );
1704
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01001705 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001706 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001707
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001708 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
1709 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001710
Chris Jones9246d042020-11-25 15:12:39 +00001711 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
1712 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
1713 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1714
Paul Bakkerf6198c12012-05-16 08:02:29 +00001715 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001716 * Init temps and window size
1717 */
1718 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001719 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
1720 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001721 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00001722 memset( W, 0, sizeof( W ) );
1723
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001724 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00001725
1726 wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
1727 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
1728
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001729#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001730 if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
1731 wsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001732#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001733
Paul Bakker5121ce52009-01-03 21:22:43 +00001734 j = N->n + 1;
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001735 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
1736 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1737 * large enough, and later we'll grow other W[i] to the same length.
1738 * They must not be shrunk midway through this function!
1739 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001740 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
1741 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
1742 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001743
1744 /*
Paul Bakker50546922012-05-19 08:40:49 +00001745 * Compensate for negative A (and correct at the end)
1746 */
1747 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00001748 if( neg )
1749 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001750 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00001751 Apos.s = 1;
1752 A = &Apos;
1753 }
1754
1755 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001756 * If 1st call, pre-compute R^2 mod N
1757 */
Yuto Takano538a0cb2021-07-14 10:20:09 +01001758 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00001759 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001760 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
1761 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
1762 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001763
Yuto Takano538a0cb2021-07-14 10:20:09 +01001764 if( prec_RR != NULL )
1765 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001766 }
1767 else
Yuto Takano538a0cb2021-07-14 10:20:09 +01001768 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001769
1770 /*
1771 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1772 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001773 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001774 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001775 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001776 /* This should be a no-op because W[1] is already that large before
1777 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
1778 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine2aa3f162021-06-15 21:22:48 +02001779 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001780 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01001781 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001782 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001783
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001784 /* Note that this is safe because W[1] always has at least N->n limbs
1785 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001786 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001787
1788 /*
1789 * X = R^2 * R^-1 mod N = R mod N
1790 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001791 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
Gilles Peskine4e91d472020-06-04 20:55:15 +02001792 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001793
1794 if( wsize > 1 )
1795 {
1796 /*
1797 * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
1798 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001799 j = one << ( wsize - 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001800
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001801 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
1802 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001803
1804 for( i = 0; i < wsize - 1; i++ )
Gilles Peskine4e91d472020-06-04 20:55:15 +02001805 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01001806
Paul Bakker5121ce52009-01-03 21:22:43 +00001807 /*
1808 * W[i] = W[i - 1] * W[1]
1809 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001810 for( i = j + 1; i < ( one << wsize ); i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001811 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001812 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
1813 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001814
Gilles Peskine4e91d472020-06-04 20:55:15 +02001815 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001816 }
1817 }
1818
1819 nblimbs = E->n;
1820 bufsize = 0;
1821 nbits = 0;
1822 wbits = 0;
1823 state = 0;
1824
1825 while( 1 )
1826 {
1827 if( bufsize == 0 )
1828 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01001829 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001830 break;
1831
Paul Bakker0d7702c2013-10-29 16:18:35 +01001832 nblimbs--;
1833
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001834 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001835 }
1836
1837 bufsize--;
1838
1839 ei = (E->p[nblimbs] >> bufsize) & 1;
1840
1841 /*
1842 * skip leading 0s
1843 */
1844 if( ei == 0 && state == 0 )
1845 continue;
1846
1847 if( ei == 0 && state == 1 )
1848 {
1849 /*
1850 * out of window, square X
1851 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001852 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001853 continue;
1854 }
1855
1856 /*
1857 * add ei to current window
1858 */
1859 state = 2;
1860
1861 nbits++;
Paul Bakker66d5d072014-06-17 16:39:18 +02001862 wbits |= ( ei << ( wsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001863
1864 if( nbits == wsize )
1865 {
1866 /*
1867 * X = X^wsize R^-1 mod N
1868 */
1869 for( i = 0; i < wsize; i++ )
Gilles Peskine4e91d472020-06-04 20:55:15 +02001870 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001871
1872 /*
1873 * X = X * W[wbits] R^-1 mod N
1874 */
Manuel Pégourié-Gonnarde22176e2021-06-10 09:34:00 +02001875 MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001876 mpi_montmul( X, &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001877
1878 state--;
1879 nbits = 0;
1880 wbits = 0;
1881 }
1882 }
1883
1884 /*
1885 * process the remaining bits
1886 */
1887 for( i = 0; i < nbits; i++ )
1888 {
Gilles Peskine4e91d472020-06-04 20:55:15 +02001889 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001890
1891 wbits <<= 1;
1892
Paul Bakker66d5d072014-06-17 16:39:18 +02001893 if( ( wbits & ( one << wsize ) ) != 0 )
Gilles Peskine4e91d472020-06-04 20:55:15 +02001894 mpi_montmul( X, &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001895 }
1896
1897 /*
1898 * X = A^E * R * R^-1 mod N = A^E mod N
1899 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001900 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001901
Hanno Beckera4af1c42017-04-18 09:07:45 +01001902 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00001903 {
1904 X->s = -1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001905 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001906 }
1907
Paul Bakker5121ce52009-01-03 21:22:43 +00001908cleanup:
1909
Paul Bakker66d5d072014-06-17 16:39:18 +02001910 for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001911 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001912
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001913 mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001914 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00001915
Yuto Takano538a0cb2021-07-14 10:20:09 +01001916 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001917 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00001918
1919 return( ret );
1920}
1921
Paul Bakker5121ce52009-01-03 21:22:43 +00001922/*
1923 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1924 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001925int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001926{
Janos Follath24eed8d2019-11-22 13:21:35 +00001927 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001928 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001929 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001930
Hanno Becker73d7d792018-12-11 10:35:51 +00001931 MPI_VALIDATE_RET( G != NULL );
1932 MPI_VALIDATE_RET( A != NULL );
1933 MPI_VALIDATE_RET( B != NULL );
1934
Alexander Ke8ad49f2019-08-16 16:16:07 +03001935 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001936
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001937 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
1938 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001939
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001940 lz = mbedtls_mpi_lsb( &TA );
1941 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001942
Gilles Peskine27253bc2021-06-09 13:26:43 +02001943 /* The loop below gives the correct result when A==0 but not when B==0.
1944 * So have a special case for B==0. Leverage the fact that we just
1945 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1946 * slightly more efficient than cmp_int(). */
1947 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
1948 {
1949 ret = mbedtls_mpi_copy( G, A );
1950 goto cleanup;
1951 }
1952
Paul Bakker66d5d072014-06-17 16:39:18 +02001953 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001954 lz = lzt;
1955
Paul Bakker5121ce52009-01-03 21:22:43 +00001956 TA.s = TB.s = 1;
1957
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001958 /* We mostly follow the procedure described in HAC 14.54, but with some
1959 * minor differences:
1960 * - Sequences of multiplications or divisions by 2 are grouped into a
1961 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001962 * - The procedure in HAC assumes that 0 < TB <= TA.
1963 * - The condition TB <= TA is not actually necessary for correctness.
1964 * TA and TB have symmetric roles except for the loop termination
1965 * condition, and the shifts at the beginning of the loop body
1966 * remove any significance from the ordering of TA vs TB before
1967 * the shifts.
1968 * - If TA = 0, the loop goes through 0 iterations and the result is
1969 * correctly TB.
1970 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001971 *
1972 * For the correctness proof below, decompose the original values of
1973 * A and B as
1974 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1975 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1976 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1977 * and gcd(A',B') is odd or 0.
1978 *
1979 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1980 * The code maintains the following invariant:
1981 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001982 */
1983
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001984 /* Proof that the loop terminates:
1985 * At each iteration, either the right-shift by 1 is made on a nonzero
1986 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1987 * by at least 1, or the right-shift by 1 is made on zero and then
1988 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1989 * since in that case TB is calculated from TB-TA with the condition TB>TA).
1990 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001991 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001992 {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001993 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001994 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
1995 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001996
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001997 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1998 * TA-TB is even so the division by 2 has an integer result.
1999 * Invariant (I) is preserved since any odd divisor of both TA and TB
2000 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08002001 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002002 * divides TA.
2003 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002004 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002005 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002006 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
2007 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002008 }
2009 else
2010 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002011 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
2012 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002013 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002014 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002015 }
2016
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002017 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2018 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2019 * - If there was at least one loop iteration, then one of TA or TB is odd,
2020 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2021 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2022 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02002023 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002024 */
2025
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002026 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
2027 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002028
2029cleanup:
2030
Alexander Ke8ad49f2019-08-16 16:16:07 +03002031 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00002032
2033 return( ret );
2034}
2035
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002036/* Fill X with n_bytes random bytes.
2037 * X must already have room for those bytes.
Gilles Peskineafb2bd22021-06-03 11:51:09 +02002038 * The ordering of the bytes returned from the RNG is suitable for
2039 * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
Gilles Peskineebe9b6a2021-04-13 21:55:35 +02002040 * The size and sign of X are unchanged.
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002041 * n_bytes must not be 0.
2042 */
2043static int mpi_fill_random_internal(
2044 mbedtls_mpi *X, size_t n_bytes,
2045 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2046{
2047 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2048 const size_t limbs = CHARS_TO_LIMBS( n_bytes );
2049 const size_t overhead = ( limbs * ciL ) - n_bytes;
2050
2051 if( X->n < limbs )
2052 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002053
Gilles Peskineebe9b6a2021-04-13 21:55:35 +02002054 memset( X->p, 0, overhead );
2055 memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002056 MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
Janos Follath4670f882022-07-21 18:25:42 +01002057 mbedtls_mpi_core_bigendian_to_host( X->p, limbs );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002058
2059cleanup:
2060 return( ret );
2061}
2062
Paul Bakker33dc46b2014-04-30 16:11:39 +02002063/*
2064 * Fill X with size bytes of random.
2065 *
2066 * Use a temporary bytes representation to make sure the result is the same
Paul Bakkerc37b0ac2014-05-01 14:19:23 +02002067 * regardless of the platform endianness (useful when f_rng is actually
Paul Bakker33dc46b2014-04-30 16:11:39 +02002068 * deterministic, eg for tests).
2069 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002070int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002071 int (*f_rng)(void *, unsigned char *, size_t),
2072 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00002073{
Janos Follath24eed8d2019-11-22 13:21:35 +00002074 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +01002075 const size_t limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01002076
Hanno Becker8ce11a32018-12-19 16:18:52 +00002077 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002078 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02002079
Hanno Beckerda1655a2017-10-18 14:21:44 +01002080 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +02002081 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002082 if( size == 0 )
2083 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00002084
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002085 ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00002086
2087cleanup:
2088 return( ret );
2089}
2090
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002091int mbedtls_mpi_random( mbedtls_mpi *X,
2092 mbedtls_mpi_sint min,
2093 const mbedtls_mpi *N,
2094 int (*f_rng)(void *, unsigned char *, size_t),
2095 void *p_rng )
2096{
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002097 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee5381682021-04-13 21:23:25 +02002098 int count;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002099 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002100 size_t n_bits = mbedtls_mpi_bitlen( N );
2101 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002102 mbedtls_mpi lower_bound;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002103
Gilles Peskine1e918f42021-03-29 22:14:51 +02002104 if( min < 0 )
2105 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2106 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
2107 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2108
Gilles Peskinee5381682021-04-13 21:23:25 +02002109 /*
2110 * When min == 0, each try has at worst a probability 1/2 of failing
2111 * (the msb has a probability 1/2 of being 0, and then the result will
2112 * be < N), so after 30 tries failure probability is a most 2**(-30).
2113 *
2114 * When N is just below a power of 2, as is the case when generating
Gilles Peskinee842e582021-04-15 11:45:19 +02002115 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee5381682021-04-13 21:23:25 +02002116 * overwhelming probability. When N is just above a power of 2,
Gilles Peskinee842e582021-04-15 11:45:19 +02002117 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee5381682021-04-13 21:23:25 +02002118 * a probability of failing that is almost 1/2.
2119 *
2120 * The probabilities are almost the same if min is nonzero but negligible
2121 * compared to N. This is always the case when N is crypto-sized, but
2122 * it's convenient to support small N for testing purposes. When N
2123 * is small, use a higher repeat count, otherwise the probability of
2124 * failure is macroscopic.
2125 */
Gilles Peskine87823d72021-06-02 21:18:59 +02002126 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee5381682021-04-13 21:23:25 +02002127
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002128 mbedtls_mpi_init( &lower_bound );
2129
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002130 /* Ensure that target MPI has exactly the same number of limbs
2131 * as the upper bound, even if the upper bound has leading zeros.
2132 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskineed32b572021-06-02 22:17:52 +02002133 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002134 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
2135 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002136
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002137 /*
2138 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2139 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2140 * - use the same byte ordering;
2141 * - keep the leftmost n_bits bits of the generated octet string;
2142 * - try until result is in the desired range.
2143 * This also avoids any bias, which is especially important for ECDSA.
2144 */
2145 do
2146 {
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002147 MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002148 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2149
Gilles Peskinee5381682021-04-13 21:23:25 +02002150 if( --count == 0 )
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002151 {
2152 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2153 goto cleanup;
2154 }
2155
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002156 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2157 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002158 }
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002159 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002160
2161cleanup:
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002162 mbedtls_mpi_free( &lower_bound );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002163 return( ret );
2164}
2165
Paul Bakker5121ce52009-01-03 21:22:43 +00002166/*
2167 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2168 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002169int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002170{
Janos Follath24eed8d2019-11-22 13:21:35 +00002171 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002172 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002173 MPI_VALIDATE_RET( X != NULL );
2174 MPI_VALIDATE_RET( A != NULL );
2175 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002176
Hanno Becker4bcb4912017-04-18 15:49:39 +01002177 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002178 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002179
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002180 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2181 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2182 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002183
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002184 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002185
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002186 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002187 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002188 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002189 goto cleanup;
2190 }
2191
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002192 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2193 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2194 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2195 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002196
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002197 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2198 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2199 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2200 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002201
2202 do
2203 {
2204 while( ( TU.p[0] & 1 ) == 0 )
2205 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002206 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002207
2208 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2209 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002210 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2211 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002212 }
2213
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002214 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2215 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002216 }
2217
2218 while( ( TV.p[0] & 1 ) == 0 )
2219 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002220 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002221
2222 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2223 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002224 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2225 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002226 }
2227
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002228 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2229 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002230 }
2231
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002232 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002233 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002234 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2235 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2236 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002237 }
2238 else
2239 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002240 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2241 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2242 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002243 }
2244 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002245 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002246
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002247 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2248 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002249
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002250 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2251 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002252
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002253 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002254
2255cleanup:
2256
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002257 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2258 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2259 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002260
2261 return( ret );
2262}
2263
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002264#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002265
Paul Bakker5121ce52009-01-03 21:22:43 +00002266static const int small_prime[] =
2267{
2268 3, 5, 7, 11, 13, 17, 19, 23,
2269 29, 31, 37, 41, 43, 47, 53, 59,
2270 61, 67, 71, 73, 79, 83, 89, 97,
2271 101, 103, 107, 109, 113, 127, 131, 137,
2272 139, 149, 151, 157, 163, 167, 173, 179,
2273 181, 191, 193, 197, 199, 211, 223, 227,
2274 229, 233, 239, 241, 251, 257, 263, 269,
2275 271, 277, 281, 283, 293, 307, 311, 313,
2276 317, 331, 337, 347, 349, 353, 359, 367,
2277 373, 379, 383, 389, 397, 401, 409, 419,
2278 421, 431, 433, 439, 443, 449, 457, 461,
2279 463, 467, 479, 487, 491, 499, 503, 509,
2280 521, 523, 541, 547, 557, 563, 569, 571,
2281 577, 587, 593, 599, 601, 607, 613, 617,
2282 619, 631, 641, 643, 647, 653, 659, 661,
2283 673, 677, 683, 691, 701, 709, 719, 727,
2284 733, 739, 743, 751, 757, 761, 769, 773,
2285 787, 797, 809, 811, 821, 823, 827, 829,
2286 839, 853, 857, 859, 863, 877, 881, 883,
2287 887, 907, 911, 919, 929, 937, 941, 947,
2288 953, 967, 971, 977, 983, 991, 997, -103
2289};
2290
2291/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002292 * Small divisors test (X must be positive)
2293 *
2294 * Return values:
2295 * 0: no small factor (possible prime, more tests needed)
2296 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002297 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002298 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002299 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002300static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002301{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002302 int ret = 0;
2303 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002304 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002305
Paul Bakker5121ce52009-01-03 21:22:43 +00002306 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002307 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002308
2309 for( i = 0; small_prime[i] > 0; i++ )
2310 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002311 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002312 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002313
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002314 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002315
2316 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002317 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002318 }
2319
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002320cleanup:
2321 return( ret );
2322}
2323
2324/*
2325 * Miller-Rabin pseudo-primality test (HAC 4.24)
2326 */
Janos Follathda31fa12018-09-03 14:45:23 +01002327static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002328 int (*f_rng)(void *, unsigned char *, size_t),
2329 void *p_rng )
2330{
Pascal Junodb99183d2015-03-11 16:49:45 +01002331 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002332 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002333 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002334
Hanno Becker8ce11a32018-12-19 16:18:52 +00002335 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002336 MPI_VALIDATE_RET( f_rng != NULL );
2337
2338 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2339 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002340 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002341
Paul Bakker5121ce52009-01-03 21:22:43 +00002342 /*
2343 * W = |X| - 1
2344 * R = W >> lsb( W )
2345 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002346 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2347 s = mbedtls_mpi_lsb( &W );
2348 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2349 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002350
Janos Follathda31fa12018-09-03 14:45:23 +01002351 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002352 {
2353 /*
2354 * pick a random A, 1 < A < |X| - 1
2355 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002356 count = 0;
2357 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002358 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002359
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002360 j = mbedtls_mpi_bitlen( &A );
2361 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002362 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002363 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002364 }
2365
2366 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002367 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2368 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002369 }
2370
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002371 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2372 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002373
2374 /*
2375 * A = A^R mod |X|
2376 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002377 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002378
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002379 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2380 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002381 continue;
2382
2383 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002384 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002385 {
2386 /*
2387 * A = A * A mod |X|
2388 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002389 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2390 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002391
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002392 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002393 break;
2394
2395 j++;
2396 }
2397
2398 /*
2399 * not prime if A != |X| - 1 or A == 1
2400 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002401 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2402 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002403 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002404 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002405 break;
2406 }
2407 }
2408
2409cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002410 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2411 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002412 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002413
2414 return( ret );
2415}
2416
2417/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002418 * Pseudo-primality test: small factors, then Miller-Rabin
2419 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002420int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2421 int (*f_rng)(void *, unsigned char *, size_t),
2422 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002423{
Janos Follath24eed8d2019-11-22 13:21:35 +00002424 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002425 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002426 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002427 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002428
2429 XX.s = 1;
2430 XX.n = X->n;
2431 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002432
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002433 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2434 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2435 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002436
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002437 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002438 return( 0 );
2439
2440 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2441 {
2442 if( ret == 1 )
2443 return( 0 );
2444
2445 return( ret );
2446 }
2447
Janos Follathda31fa12018-09-03 14:45:23 +01002448 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002449}
2450
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002451/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002452 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002453 *
Janos Follathf301d232018-08-14 13:34:01 +01002454 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2455 * be either 1024 bits or 1536 bits long, and flags must contain
2456 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002457 */
Janos Follath7c025a92018-08-14 11:08:41 +01002458int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002459 int (*f_rng)(void *, unsigned char *, size_t),
2460 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002461{
Jethro Beekman66689272018-02-14 19:24:10 -08002462#ifdef MBEDTLS_HAVE_INT64
2463// ceil(2^63.5)
2464#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2465#else
2466// ceil(2^31.5)
2467#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2468#endif
2469 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002470 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002471 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002472 mbedtls_mpi_uint r;
2473 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002474
Hanno Becker8ce11a32018-12-19 16:18:52 +00002475 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002476 MPI_VALIDATE_RET( f_rng != NULL );
2477
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002478 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2479 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002480
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002481 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002482
2483 n = BITS_TO_LIMBS( nbits );
2484
Janos Follathda31fa12018-09-03 14:45:23 +01002485 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2486 {
2487 /*
2488 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2489 */
2490 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2491 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2492 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2493 }
2494 else
2495 {
2496 /*
2497 * 2^-100 error probability, number of rounds computed based on HAC,
2498 * fact 4.48
2499 */
2500 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2501 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2502 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2503 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2504 }
2505
Jethro Beekman66689272018-02-14 19:24:10 -08002506 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002507 {
Jethro Beekman66689272018-02-14 19:24:10 -08002508 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2509 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2510 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2511
2512 k = n * biL;
2513 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2514 X->p[0] |= 1;
2515
Janos Follath7c025a92018-08-14 11:08:41 +01002516 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002517 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002518 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002519
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002520 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002521 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002522 }
Jethro Beekman66689272018-02-14 19:24:10 -08002523 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002524 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002525 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002526 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002527 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2528 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002529 */
Jethro Beekman66689272018-02-14 19:24:10 -08002530
2531 X->p[0] |= 2;
2532
2533 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2534 if( r == 0 )
2535 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2536 else if( r == 1 )
2537 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2538
2539 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2540 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2541 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2542
2543 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002544 {
Jethro Beekman66689272018-02-14 19:24:10 -08002545 /*
2546 * First, check small factors for X and Y
2547 * before doing Miller-Rabin on any of them
2548 */
2549 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2550 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002551 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002552 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002553 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002554 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002555 goto cleanup;
2556
2557 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2558 goto cleanup;
2559
2560 /*
2561 * Next candidates. We want to preserve Y = (X-1) / 2 and
2562 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2563 * so up Y by 6 and X by 12.
2564 */
2565 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2566 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002567 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002568 }
2569 }
2570
2571cleanup:
2572
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002573 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002574
2575 return( ret );
2576}
2577
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002578#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002579
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002580#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002581
Paul Bakker23986e52011-04-24 08:57:21 +00002582#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002583
2584static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2585{
2586 { 693, 609, 21 },
2587 { 1764, 868, 28 },
2588 { 768454923, 542167814, 1 }
2589};
2590
Paul Bakker5121ce52009-01-03 21:22:43 +00002591/*
2592 * Checkup routine
2593 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002594int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002595{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002596 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002597 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002598
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002599 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
2600 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002601
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002602 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002603 "EFE021C2645FD1DC586E69184AF4A31E" \
2604 "D5F53E93B5F123FA41680867BA110131" \
2605 "944FE7952E2517337780CB0DB80E61AA" \
2606 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
2607
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002608 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002609 "B2E7EFD37075B9F03FF989C7C5051C20" \
2610 "34D2A323810251127E7BF8625A4F49A5" \
2611 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2612 "5B5C25763222FEFCCFC38B832366C29E" ) );
2613
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002614 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002615 "0066A198186C18C10B2F5ED9B522752A" \
2616 "9830B69916E535C8F047518A889A43A5" \
2617 "94B6BED27A168D31D4A52F88925AA8F5" ) );
2618
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002619 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002620
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002621 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002622 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2623 "9E857EA95A03512E2BAE7391688D264A" \
2624 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2625 "8001B72E848A38CAE1C65F78E56ABDEF" \
2626 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2627 "ECF677152EF804370C1A305CAF3B5BF1" \
2628 "30879B56C61DE584A0F53A2447A51E" ) );
2629
2630 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002631 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002632
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002633 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002634 {
2635 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002636 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002637
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002638 ret = 1;
2639 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002640 }
2641
2642 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002643 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002644
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002645 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002646
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002647 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002648 "256567336059E52CAE22925474705F39A94" ) );
2649
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002650 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002651 "6613F26162223DF488E9CD48CC132C7A" \
2652 "0AC93C701B001B092E4E5B9F73BCD27B" \
2653 "9EE50D0657C77F374E903CDFA4C642" ) );
2654
2655 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002656 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002657
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002658 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
2659 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002660 {
2661 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002662 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002663
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002664 ret = 1;
2665 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002666 }
2667
2668 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002669 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002670
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002671 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002672
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002673 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002674 "36E139AEA55215609D2816998ED020BB" \
2675 "BD96C37890F65171D948E9BC7CBAA4D9" \
2676 "325D24D6A3C12710F10A09FA08AB87" ) );
2677
2678 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002679 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002680
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002681 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002682 {
2683 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002684 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002685
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002686 ret = 1;
2687 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002688 }
2689
2690 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002691 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002692
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002693 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002694
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002695 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002696 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2697 "C3DBA76456363A10869622EAC2DD84EC" \
2698 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
2699
2700 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002701 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002702
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002703 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002704 {
2705 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002706 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002707
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002708 ret = 1;
2709 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002710 }
2711
2712 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002713 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002714
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002715 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002716 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002717
Paul Bakker66d5d072014-06-17 16:39:18 +02002718 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002719 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002720 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
2721 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002722
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002723 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002724
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002725 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002726 {
2727 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002728 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002729
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002730 ret = 1;
2731 goto cleanup;
2732 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002733 }
2734
2735 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002736 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002737
Paul Bakker5121ce52009-01-03 21:22:43 +00002738cleanup:
2739
2740 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02002741 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00002742
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002743 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
2744 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002745
2746 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002747 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002748
2749 return( ret );
2750}
2751
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002752#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002753
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002754#endif /* MBEDTLS_BIGNUM_C */