blob: b46a0e4d39fbb92c02933a724b88b2d5687296a8 [file] [log] [blame]
Jerry Yu49231312023-01-10 16:57:21 +08001/*
Dave Rodgmanf918d422023-03-17 17:52:23 +00002 * Armv8-A Cryptographic Extension support functions for Aarch64
Jerry Yu49231312023-01-10 16:57:21 +08003 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
Jerry Yu48b999c2023-03-03 15:51:07 +080020#if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && \
Jerry Yu6f86c192023-03-13 11:03:40 +080021 defined(__clang__) && __clang_major__ >= 4
Jerry Yu48b999c2023-03-03 15:51:07 +080022/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
23 *
24 * The intrinsic declaration are guarded by predefined ACLE macros in clang:
25 * these are normally only enabled by the -march option on the command line.
26 * By defining the macros ourselves we gain access to those declarations without
27 * requiring -march on the command line.
28 *
29 * `arm_neon.h` could be included by any header file, so we put these defines
30 * at the top of this file, before any includes.
31 */
32#define __ARM_FEATURE_CRYPTO 1
Jerry Yuae129c32023-03-03 15:55:56 +080033/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
34 *
Jerry Yu490bf082023-03-06 15:21:44 +080035 * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
36 * for older compilers.
Jerry Yuae129c32023-03-03 15:55:56 +080037 */
38#define __ARM_FEATURE_AES 1
Dave Rodgmandb6ab242023-03-14 16:03:57 +000039#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
Jerry Yu490bf082023-03-06 15:21:44 +080040#endif
Jerry Yu48b999c2023-03-03 15:51:07 +080041
Jerry Yu49231312023-01-10 16:57:21 +080042#include <string.h>
43#include "common.h"
44
45#if defined(MBEDTLS_AESCE_C)
46
47#include "aesce.h"
48
49#if defined(MBEDTLS_HAVE_ARM64)
50
Jerry Yu61c4cfa2023-04-26 11:06:51 +080051/* Compiler version checks. */
Jerry Yudb368de2023-04-26 16:55:37 +080052#if defined(__clang__)
53# if __clang_major__ < 4
54# error "Minimum version of Clang for MBEDTLS_AESCE_C is 4.0."
55# endif
56#elif defined(__GNUC__)
57# if __GNUC__ < 6
58# error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0."
59# endif
60#elif defined(_MSC_VER)
Jerry Yu61c4cfa2023-04-26 11:06:51 +080061/* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that,
62 * please update this and document of `MBEDTLS_AESCE_C` in
63 * `mbedtls_config.h`. */
Jerry Yudb368de2023-04-26 16:55:37 +080064# if _MSC_VER < 1929
65# error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2."
66# endif
Jerry Yu61c4cfa2023-04-26 11:06:51 +080067#endif
68
Jerry Yu08933d32023-04-27 18:28:00 +080069#include <arm_neon.h>
70
Jerry Yu580e06f2023-04-28 17:42:40 +080071#if !(defined(__ARM_FEATURE_CRYPTO) || defined(__ARM_FEATURE_AES)) || \
72 defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
Jerry Yuec9be842023-03-14 10:42:47 +080073# if defined(__clang__)
Jerry Yu08933d32023-04-27 18:28:00 +080074# pragma clang attribute push (__attribute__((target("crypto,aes"))), apply_to=function)
Jerry Yuec9be842023-03-14 10:42:47 +080075# define MBEDTLS_POP_TARGET_PRAGMA
76# elif defined(__GNUC__)
Jerry Yuec9be842023-03-14 10:42:47 +080077# pragma GCC push_options
Beniamin Sandu471a9752023-06-25 20:16:16 +030078# pragma GCC target ("+crypto")
Jerry Yuec9be842023-03-14 10:42:47 +080079# define MBEDTLS_POP_TARGET_PRAGMA
Jerry Yu07d28d82023-03-20 18:12:36 +080080# elif defined(_MSC_VER)
Jerry Yu61c4cfa2023-04-26 11:06:51 +080081# error "Required feature(__ARM_FEATURE_AES) is not enabled."
Jerry Yu49231312023-01-10 16:57:21 +080082# endif
Jerry Yu580e06f2023-04-28 17:42:40 +080083#endif /* !(__ARM_FEATURE_CRYPTO || __ARM_FEATURE_AES) ||
84 MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
Jerry Yu49231312023-01-10 16:57:21 +080085
Jerry Yub95c7762023-01-10 16:59:51 +080086#if defined(__linux__)
87#include <asm/hwcap.h>
88#include <sys/auxv.h>
89#endif
90
91/*
92 * AES instruction support detection routine
93 */
94int mbedtls_aesce_has_support(void)
95{
96#if defined(__linux__)
97 unsigned long auxval = getauxval(AT_HWCAP);
98 return (auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
99 (HWCAP_ASIMD | HWCAP_AES);
100#else
Jerry Yuba1e78f2023-02-24 11:18:16 +0800101 /* Assume AES instructions are supported. */
Jerry Yub95c7762023-01-10 16:59:51 +0800102 return 1;
103#endif
104}
105
Dave Rodgman48fd2ab2023-06-16 09:36:50 +0100106/* Single round of AESCE encryption */
107#define AESCE_ENCRYPT_ROUND \
108 block = vaeseq_u8(block, vld1q_u8(keys)); \
109 block = vaesmcq_u8(block); \
110 keys += 16
111/* Two rounds of AESCE encryption */
112#define AESCE_ENCRYPT_ROUND_X2 AESCE_ENCRYPT_ROUND; AESCE_ENCRYPT_ROUND
113
Dave Rodgman9bb7e6f2023-06-16 09:41:21 +0100114MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
Jerry Yu2bb3d812023-01-10 17:38:26 +0800115static uint8x16_t aesce_encrypt_block(uint8x16_t block,
116 unsigned char *keys,
117 int rounds)
118{
Dave Rodgman73b0c0b2023-06-16 14:48:14 +0100119 /* 10, 12 or 14 rounds. Unroll loop. */
Dave Rodgman96fdfb82023-06-15 16:21:31 +0100120 if (rounds == 10) {
121 goto rounds_10;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800122 }
Dave Rodgman96fdfb82023-06-15 16:21:31 +0100123 if (rounds == 12) {
124 goto rounds_12;
125 }
Dave Rodgman48fd2ab2023-06-16 09:36:50 +0100126 AESCE_ENCRYPT_ROUND_X2;
Dave Rodgman96fdfb82023-06-15 16:21:31 +0100127rounds_12:
Dave Rodgman48fd2ab2023-06-16 09:36:50 +0100128 AESCE_ENCRYPT_ROUND_X2;
Dave Rodgman96fdfb82023-06-15 16:21:31 +0100129rounds_10:
Dave Rodgman48fd2ab2023-06-16 09:36:50 +0100130 AESCE_ENCRYPT_ROUND_X2;
131 AESCE_ENCRYPT_ROUND_X2;
132 AESCE_ENCRYPT_ROUND_X2;
133 AESCE_ENCRYPT_ROUND_X2;
134 AESCE_ENCRYPT_ROUND;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800135
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800136 /* AES AddRoundKey for the previous round.
137 * SubBytes, ShiftRows for the final round. */
Dave Rodgman96fdfb82023-06-15 16:21:31 +0100138 block = vaeseq_u8(block, vld1q_u8(keys));
139 keys += 16;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800140
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800141 /* Final round: no MixColumns */
Jerry Yu3304c202023-02-22 14:37:11 +0800142
143 /* Final AddRoundKey */
Dave Rodgman96fdfb82023-06-15 16:21:31 +0100144 block = veorq_u8(block, vld1q_u8(keys));
Jerry Yu2bb3d812023-01-10 17:38:26 +0800145
146 return block;
147}
148
Dave Rodgman48fd2ab2023-06-16 09:36:50 +0100149/* Single round of AESCE decryption
150 *
151 * AES AddRoundKey, SubBytes, ShiftRows
152 *
153 * block = vaesdq_u8(block, vld1q_u8(keys));
154 *
155 * AES inverse MixColumns for the next round.
156 *
157 * This means that we switch the order of the inverse AddRoundKey and
158 * inverse MixColumns operations. We have to do this as AddRoundKey is
159 * done in an atomic instruction together with the inverses of SubBytes
160 * and ShiftRows.
161 *
162 * It works because MixColumns is a linear operation over GF(2^8) and
163 * AddRoundKey is an exclusive or, which is equivalent to addition over
164 * GF(2^8). (The inverse of MixColumns needs to be applied to the
165 * affected round keys separately which has been done when the
166 * decryption round keys were calculated.)
167 *
168 * block = vaesimcq_u8(block);
169 */
170#define AESCE_DECRYPT_ROUND \
171 block = vaesdq_u8(block, vld1q_u8(keys)); \
172 block = vaesimcq_u8(block); \
173 keys += 16
174/* Two rounds of AESCE decryption */
175#define AESCE_DECRYPT_ROUND_X2 AESCE_DECRYPT_ROUND; AESCE_DECRYPT_ROUND
176
Jerry Yu2bb3d812023-01-10 17:38:26 +0800177static uint8x16_t aesce_decrypt_block(uint8x16_t block,
178 unsigned char *keys,
179 int rounds)
180{
Dave Rodgman73b0c0b2023-06-16 14:48:14 +0100181 /* 10, 12 or 14 rounds. Unroll loop. */
Dave Rodgman1c4451d2023-06-15 16:28:00 +0100182 if (rounds == 10) {
183 goto rounds_10;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800184 }
Dave Rodgman1c4451d2023-06-15 16:28:00 +0100185 if (rounds == 12) {
186 goto rounds_12;
187 }
Dave Rodgman48fd2ab2023-06-16 09:36:50 +0100188 AESCE_DECRYPT_ROUND_X2;
Dave Rodgman1c4451d2023-06-15 16:28:00 +0100189rounds_12:
Dave Rodgman48fd2ab2023-06-16 09:36:50 +0100190 AESCE_DECRYPT_ROUND_X2;
Dave Rodgman1c4451d2023-06-15 16:28:00 +0100191rounds_10:
Dave Rodgman48fd2ab2023-06-16 09:36:50 +0100192 AESCE_DECRYPT_ROUND_X2;
193 AESCE_DECRYPT_ROUND_X2;
194 AESCE_DECRYPT_ROUND_X2;
195 AESCE_DECRYPT_ROUND_X2;
196 AESCE_DECRYPT_ROUND;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800197
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800198 /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
199 * last full round. */
Dave Rodgman1c4451d2023-06-15 16:28:00 +0100200 block = vaesdq_u8(block, vld1q_u8(keys));
201 keys += 16;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800202
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800203 /* Inverse AddRoundKey for inverting the initial round key addition. */
Dave Rodgman1c4451d2023-06-15 16:28:00 +0100204 block = veorq_u8(block, vld1q_u8(keys));
Jerry Yu2bb3d812023-01-10 17:38:26 +0800205
206 return block;
207}
208
209/*
210 * AES-ECB block en(de)cryption
211 */
212int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
213 int mode,
214 const unsigned char input[16],
215 unsigned char output[16])
216{
217 uint8x16_t block = vld1q_u8(&input[0]);
218 unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
219
220 if (mode == MBEDTLS_AES_ENCRYPT) {
221 block = aesce_encrypt_block(block, keys, ctx->nr);
222 } else {
223 block = aesce_decrypt_block(block, keys, ctx->nr);
224 }
225 vst1q_u8(&output[0], block);
226
227 return 0;
228}
229
Jerry Yue096da12023-01-10 17:07:01 +0800230/*
231 * Compute decryption round keys from encryption round keys
232 */
233void mbedtls_aesce_inverse_key(unsigned char *invkey,
234 const unsigned char *fwdkey,
235 int nr)
236{
237 int i, j;
238 j = nr;
239 vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
240 for (i = 1, j--; j > 0; i++, j--) {
241 vst1q_u8(invkey + i * 16,
242 vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
243 }
244 vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
245
246}
247
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800248static inline uint32_t aes_rot_word(uint32_t word)
Jerry Yu3f2fb712023-01-10 17:05:42 +0800249{
250 return (word << (32 - 8)) | (word >> 8);
251}
252
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800253static inline uint32_t aes_sub_word(uint32_t in)
Jerry Yu3f2fb712023-01-10 17:05:42 +0800254{
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800255 uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
Jerry Yu3f2fb712023-01-10 17:05:42 +0800256 uint8x16_t zero = vdupq_n_u8(0);
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800257
258 /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
259 * the correct result as ShiftRows doesn't change the first row. */
260 v = vaeseq_u8(zero, v);
261 return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
Jerry Yu3f2fb712023-01-10 17:05:42 +0800262}
263
264/*
Jerry Yubaae4012023-02-21 15:26:13 +0800265 * Key expansion function
Jerry Yu3f2fb712023-01-10 17:05:42 +0800266 */
Jerry Yubaae4012023-02-21 15:26:13 +0800267static void aesce_setkey_enc(unsigned char *rk,
268 const unsigned char *key,
269 const size_t key_bit_length)
Jerry Yu3f2fb712023-01-10 17:05:42 +0800270{
Jerry Yubaae4012023-02-21 15:26:13 +0800271 static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
272 0x20, 0x40, 0x80, 0x1b, 0x36 };
Jerry Yu947bf962023-02-23 11:07:57 +0800273 /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
274 * - Section 5, Nr = Nk + 6
Jerry Yu2c266512023-03-01 11:18:20 +0800275 * - Section 5.2, the length of round keys is Nb*(Nr+1)
Jerry Yu947bf962023-02-23 11:07:57 +0800276 */
277 const uint32_t key_len_in_words = key_bit_length / 32; /* Nk */
278 const size_t round_key_len_in_words = 4; /* Nb */
Jerry Yu2c266512023-03-01 11:18:20 +0800279 const size_t rounds_needed = key_len_in_words + 6; /* Nr */
280 const size_t round_keys_len_in_words =
281 round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */
282 const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800283
Jerry Yu3304c202023-02-22 14:37:11 +0800284 memcpy(rk, key, key_len_in_words * 4);
Jerry Yu3f2fb712023-01-10 17:05:42 +0800285
Jerry Yu3304c202023-02-22 14:37:11 +0800286 for (uint32_t *rki = (uint32_t *) rk;
287 rki + key_len_in_words < rko_end;
288 rki += key_len_in_words) {
289
Jerry Yufac5a542023-02-23 10:13:40 +0800290 size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words;
Jerry Yu3304c202023-02-22 14:37:11 +0800291 uint32_t *rko;
Jerry Yubaae4012023-02-21 15:26:13 +0800292 rko = rki + key_len_in_words;
293 rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
Jerry Yu3304c202023-02-22 14:37:11 +0800294 rko[0] ^= rcon[iteration] ^ rki[0];
Jerry Yu3f2fb712023-01-10 17:05:42 +0800295 rko[1] = rko[0] ^ rki[1];
296 rko[2] = rko[1] ^ rki[2];
297 rko[3] = rko[2] ^ rki[3];
Jerry Yufac5a542023-02-23 10:13:40 +0800298 if (rko + key_len_in_words > rko_end) {
Jerry Yu3304c202023-02-22 14:37:11 +0800299 /* Do not write overflow words.*/
300 continue;
301 }
Yanray Wange2bc1582023-05-08 10:28:53 +0800302#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
Jerry Yubaae4012023-02-21 15:26:13 +0800303 switch (key_bit_length) {
Jerry Yu3304c202023-02-22 14:37:11 +0800304 case 128:
305 break;
Jerry Yubaae4012023-02-21 15:26:13 +0800306 case 192:
Jerry Yu3304c202023-02-22 14:37:11 +0800307 rko[4] = rko[3] ^ rki[4];
308 rko[5] = rko[4] ^ rki[5];
Jerry Yubaae4012023-02-21 15:26:13 +0800309 break;
310 case 256:
Jerry Yu3304c202023-02-22 14:37:11 +0800311 rko[4] = aes_sub_word(rko[3]) ^ rki[4];
312 rko[5] = rko[4] ^ rki[5];
313 rko[6] = rko[5] ^ rki[6];
314 rko[7] = rko[6] ^ rki[7];
Jerry Yubaae4012023-02-21 15:26:13 +0800315 break;
Jerry Yu3f2fb712023-01-10 17:05:42 +0800316 }
Yanray Wange2bc1582023-05-08 10:28:53 +0800317#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
Jerry Yu3f2fb712023-01-10 17:05:42 +0800318 }
319}
320
321/*
322 * Key expansion, wrapper
323 */
324int mbedtls_aesce_setkey_enc(unsigned char *rk,
325 const unsigned char *key,
326 size_t bits)
327{
328 switch (bits) {
Jerry Yubaae4012023-02-21 15:26:13 +0800329 case 128:
330 case 192:
331 case 256:
Jerry Yuba1e78f2023-02-24 11:18:16 +0800332 aesce_setkey_enc(rk, key, bits);
333 break;
334 default:
335 return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
Jerry Yu3f2fb712023-01-10 17:05:42 +0800336 }
337
338 return 0;
339}
340
Jerry Yudf87a122023-01-10 18:17:15 +0800341#if defined(MBEDTLS_GCM_C)
342
Jerry Yu132d0cb2023-03-02 17:35:53 +0800343#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 5
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800344/* Some intrinsics are not available for GCC 5.X. */
Jerry Yu132d0cb2023-03-02 17:35:53 +0800345#define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
346#define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
347static inline poly64_t vget_low_p64(poly64x2_t __a)
348{
349 uint64x2_t tmp = (uint64x2_t) (__a);
350 uint64x1_t lo = vcreate_u64(vgetq_lane_u64(tmp, 0));
351 return (poly64_t) (lo);
352}
353#endif /* !__clang__ && __GNUC__ && __GNUC__ == 5*/
354
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800355/* vmull_p64/vmull_high_p64 wrappers.
356 *
357 * Older compilers miss some intrinsic functions for `poly*_t`. We use
358 * uint8x16_t and uint8x16x3_t as input/output parameters.
359 */
Jerry Yu9db4b1f2023-03-21 16:56:43 +0800360#if defined(__GNUC__) && !defined(__clang__)
361/* GCC reports incompatible type error without cast. GCC think poly64_t and
362 * poly64x1_t are different, that is different with MSVC and Clang. */
363#define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b)
364#else
365/* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report
366 * error with/without cast. And I think poly64_t and poly64x1_t are same, no
367 * cast for clang also. */
368#define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b)
369#endif
Jerry Yudf87a122023-01-10 18:17:15 +0800370static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
371{
Jerry Yu9db4b1f2023-03-21 16:56:43 +0800372
Jerry Yudf87a122023-01-10 18:17:15 +0800373 return vreinterpretq_u8_p128(
Jerry Yu9db4b1f2023-03-21 16:56:43 +0800374 MBEDTLS_VMULL_P64(
375 vget_low_p64(vreinterpretq_p64_u8(a)),
376 vget_low_p64(vreinterpretq_p64_u8(b))
377 ));
Jerry Yudf87a122023-01-10 18:17:15 +0800378}
379
380static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
381{
382 return vreinterpretq_u8_p128(
383 vmull_high_p64(vreinterpretq_p64_u8(a),
384 vreinterpretq_p64_u8(b)));
385}
386
Jerry Yuf0526a92023-03-14 15:00:29 +0800387/* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
Jerry Yu49b43672023-03-13 10:09:34 +0800388 * `x^128 + x^7 + x^2 + x + 1`.
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800389 *
390 * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
391 * multiplies to generate a 128b.
392 *
393 * `poly_mult_128` executes polynomial multiplication and outputs 256b that
394 * represented by 3 128b due to code size optimization.
395 *
396 * Output layout:
397 * | | | |
398 * |------------|-------------|-------------|
399 * | ret.val[0] | h3:h2:00:00 | high 128b |
Jerry Yu8f810602023-03-14 17:28:52 +0800400 * | ret.val[1] | :m2:m1:00 | middle 128b |
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800401 * | ret.val[2] | : :l1:l0 | low 128b |
402 */
Jerry Yudf87a122023-01-10 18:17:15 +0800403static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
404{
405 uint8x16x3_t ret;
Jerry Yu8f810602023-03-14 17:28:52 +0800406 uint8x16_t h, m, l; /* retval high/middle/low */
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800407 uint8x16_t c, d, e;
408
409 h = pmull_high(a, b); /* h3:h2:00:00 = a1*b1 */
410 l = pmull_low(a, b); /* : :l1:l0 = a0*b0 */
411 c = vextq_u8(b, b, 8); /* :c1:c0 = b0:b1 */
412 d = pmull_high(a, c); /* :d2:d1:00 = a1*b0 */
413 e = pmull_low(a, c); /* :e2:e1:00 = a0*b1 */
414 m = veorq_u8(d, e); /* :m2:m1:00 = d + e */
415
416 ret.val[0] = h;
417 ret.val[1] = m;
418 ret.val[2] = l;
Jerry Yudf87a122023-01-10 18:17:15 +0800419 return ret;
420}
421
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800422/*
423 * Modulo reduction.
424 *
425 * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
426 *
427 * Section 4.3
428 *
429 * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
430 * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
Jerry Yube4fdef2023-03-15 14:50:42 +0800431 * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
432 * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
433 * simply multiply the higher part of the operand by r(z) and add it to l(z). If
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800434 * the result is still larger than 128 bits, we reduce again.
435 */
436static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
Jerry Yudf87a122023-01-10 18:17:15 +0800437{
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800438 uint8x16_t const ZERO = vdupq_n_u8(0);
Jerry Yu8b6df3f2023-03-21 16:59:13 +0800439
Jerry Yudf87a122023-01-10 18:17:15 +0800440 uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
Jerry Yu8b6df3f2023-03-21 16:59:13 +0800441#if defined(__GNUC__)
442 /* use 'asm' as an optimisation barrier to prevent loading MODULO from
443 * memory. It is for GNUC compatible compilers.
444 */
Jerry Yudf87a122023-01-10 18:17:15 +0800445 asm ("" : "+w" (r));
Jerry Yu8b6df3f2023-03-21 16:59:13 +0800446#endif
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800447 uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
Jerry Yu8f810602023-03-14 17:28:52 +0800448 uint8x16_t h, m, l; /* input high/middle/low 128b */
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800449 uint8x16_t c, d, e, f, g, n, o;
450 h = input.val[0]; /* h3:h2:00:00 */
451 m = input.val[1]; /* :m2:m1:00 */
452 l = input.val[2]; /* : :l1:l0 */
453 c = pmull_high(h, MODULO); /* :c2:c1:00 = reduction of h3 */
454 d = pmull_low(h, MODULO); /* : :d1:d0 = reduction of h2 */
455 e = veorq_u8(c, m); /* :e2:e1:00 = m2:m1:00 + c2:c1:00 */
456 f = pmull_high(e, MODULO); /* : :f1:f0 = reduction of e2 */
457 g = vextq_u8(ZERO, e, 8); /* : :g1:00 = e1:00 */
458 n = veorq_u8(d, l); /* : :n1:n0 = d1:d0 + l1:l0 */
459 o = veorq_u8(n, f); /* o1:o0 = f1:f0 + n1:n0 */
460 return veorq_u8(o, g); /* = o1:o0 + g1:00 */
Jerry Yudf87a122023-01-10 18:17:15 +0800461}
462
463/*
464 * GCM multiplication: c = a times b in GF(2^128)
465 */
466void mbedtls_aesce_gcm_mult(unsigned char c[16],
467 const unsigned char a[16],
468 const unsigned char b[16])
469{
470 uint8x16_t va, vb, vc;
471 va = vrbitq_u8(vld1q_u8(&a[0]));
472 vb = vrbitq_u8(vld1q_u8(&b[0]));
473 vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
474 vst1q_u8(&c[0], vc);
475}
476
477#endif /* MBEDTLS_GCM_C */
Jerry Yu48b999c2023-03-03 15:51:07 +0800478
479#if defined(MBEDTLS_POP_TARGET_PRAGMA)
480#if defined(__clang__)
481#pragma clang attribute pop
482#elif defined(__GNUC__)
483#pragma GCC pop_options
484#endif
485#undef MBEDTLS_POP_TARGET_PRAGMA
486#endif
487
Jerry Yu49231312023-01-10 16:57:21 +0800488#endif /* MBEDTLS_HAVE_ARM64 */
489
490#endif /* MBEDTLS_AESCE_C */