blob: a95ad28b84a699171538f603c4a736cbaa5969ca [file] [log] [blame]
Jarno Lamsa18987a42019-04-24 15:40:43 +03001/* ecc.c - TinyCrypt implementation of common ECC functions */
2
3/*
Simon Butcher92c3d1f2019-09-09 17:25:08 +01004 * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved.
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8/*
Jarno Lamsa18987a42019-04-24 15:40:43 +03009 * Copyright (c) 2014, Kenneth MacKay
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions are met:
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
27 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions are met:
35 *
36 * - Redistributions of source code must retain the above copyright notice,
37 * this list of conditions and the following disclaimer.
38 *
39 * - Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 *
43 * - Neither the name of Intel Corporation nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
48 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
51 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
52 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
53 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
54 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
55 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57 * POSSIBILITY OF SUCH DAMAGE.
58 */
59
Hanno Becker36ae7582019-07-23 15:52:35 +010060#if !defined(MBEDTLS_CONFIG_FILE)
61#include "mbedtls/config.h"
62#else
63#include MBEDTLS_CONFIG_FILE
64#endif
65
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +020066#if defined(MBEDTLS_USE_TINYCRYPT)
Jarno Lamsa18987a42019-04-24 15:40:43 +030067#include <tinycrypt/ecc.h>
Manuel Pégourié-Gonnardef238282019-11-04 11:19:30 +010068#include "mbedtls/platform_util.h"
Jarno Lamsa18987a42019-04-24 15:40:43 +030069#include <string.h>
70
71/* IMPORTANT: Make sure a cryptographically-secure PRNG is set and the platform
72 * has access to enough entropy in order to feed the PRNG regularly. */
73#if default_RNG_defined
74static uECC_RNG_Function g_rng_function = &default_CSPRNG;
75#else
76static uECC_RNG_Function g_rng_function = 0;
77#endif
78
79void uECC_set_rng(uECC_RNG_Function rng_function)
80{
81 g_rng_function = rng_function;
82}
83
84uECC_RNG_Function uECC_get_rng(void)
85{
86 return g_rng_function;
87}
88
89int uECC_curve_private_key_size(uECC_Curve curve)
90{
91 return BITS_TO_BYTES(curve->num_n_bits);
92}
93
94int uECC_curve_public_key_size(uECC_Curve curve)
95{
96 return 2 * curve->num_bytes;
97}
98
99void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words)
100{
101 wordcount_t i;
102 for (i = 0; i < num_words; ++i) {
103 vli[i] = 0;
104 }
105}
106
107uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words)
108{
109 uECC_word_t bits = 0;
110 wordcount_t i;
111 for (i = 0; i < num_words; ++i) {
112 bits |= vli[i];
113 }
114 return (bits == 0);
115}
116
117uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit)
118{
119 return (vli[bit >> uECC_WORD_BITS_SHIFT] &
120 ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
121}
122
123/* Counts the number of words in vli. */
124static wordcount_t vli_numDigits(const uECC_word_t *vli,
125 const wordcount_t max_words)
126{
127
128 wordcount_t i;
129 /* Search from the end until we find a non-zero digit. We do it in reverse
130 * because we expect that most digits will be nonzero. */
131 for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
132 }
133
134 return (i + 1);
135}
136
137bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
138 const wordcount_t max_words)
139{
140
141 uECC_word_t i;
142 uECC_word_t digit;
143
144 wordcount_t num_digits = vli_numDigits(vli, max_words);
145 if (num_digits == 0) {
146 return 0;
147 }
148
149 digit = vli[num_digits - 1];
150 for (i = 0; digit; ++i) {
151 digit >>= 1;
152 }
153
154 return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
155}
156
157void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
158 wordcount_t num_words)
159{
160 wordcount_t i;
161
162 for (i = 0; i < num_words; ++i) {
163 dest[i] = src[i];
164 }
165}
166
167cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
168 const uECC_word_t *right,
169 wordcount_t num_words)
170{
171 wordcount_t i;
172
173 for (i = num_words - 1; i >= 0; --i) {
174 if (left[i] > right[i]) {
175 return 1;
176 } else if (left[i] < right[i]) {
177 return -1;
178 }
179 }
180 return 0;
181}
182
183uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
184 wordcount_t num_words)
185{
186
187 uECC_word_t diff = 0;
188 wordcount_t i;
189
190 for (i = num_words - 1; i >= 0; --i) {
191 diff |= (left[i] ^ right[i]);
192 }
193 return !(diff == 0);
194}
195
196uECC_word_t cond_set(uECC_word_t p_true, uECC_word_t p_false, unsigned int cond)
197{
198 return (p_true*(cond)) | (p_false*(!cond));
199}
200
201/* Computes result = left - right, returning borrow, in constant time.
202 * Can modify in place. */
203uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
204 const uECC_word_t *right, wordcount_t num_words)
205{
206 uECC_word_t borrow = 0;
207 wordcount_t i;
208 for (i = 0; i < num_words; ++i) {
209 uECC_word_t diff = left[i] - right[i] - borrow;
210 uECC_word_t val = (diff > left[i]);
211 borrow = cond_set(val, borrow, (diff != left[i]));
212
213 result[i] = diff;
214 }
215 return borrow;
216}
217
218/* Computes result = left + right, returning carry, in constant time.
219 * Can modify in place. */
220static uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left,
221 const uECC_word_t *right, wordcount_t num_words)
222{
223 uECC_word_t carry = 0;
224 wordcount_t i;
225 for (i = 0; i < num_words; ++i) {
226 uECC_word_t sum = left[i] + right[i] + carry;
227 uECC_word_t val = (sum < left[i]);
228 carry = cond_set(val, carry, (sum != left[i]));
229 result[i] = sum;
230 }
231 return carry;
232}
233
234cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
235 wordcount_t num_words)
236{
237 uECC_word_t tmp[NUM_ECC_WORDS];
238 uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words);
239 uECC_word_t equal = uECC_vli_isZero(tmp, num_words);
240 return (!equal - 2 * neg);
241}
242
243/* Computes vli = vli >> 1. */
244static void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words)
245{
246 uECC_word_t *end = vli;
247 uECC_word_t carry = 0;
248
249 vli += num_words;
250 while (vli-- > end) {
251 uECC_word_t temp = *vli;
252 *vli = (temp >> 1) | carry;
253 carry = temp << (uECC_WORD_BITS - 1);
254 }
255}
256
Manuel Pégourié-Gonnard86c4f812019-10-31 13:02:03 +0100257/* Compute a * b + r, where r is a double-word with high-order word r1 and
258 * low-order word r0, and store the result in the same double-word (r1, r0),
259 * with the carry bit stored in r2.
260 *
261 * (r2, r1, r0) = a * b + (r1, r0):
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200262 * [in] a, b: operands to be multiplied
263 * [in] r0, r1: low and high-order words of operand to add
264 * [out] r0, r1: low and high-order words of the result
265 * [out] r2: carry
266 */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300267static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t *r0,
268 uECC_word_t *r1, uECC_word_t *r2)
269{
270
271 uECC_dword_t p = (uECC_dword_t)a * b;
272 uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
273 r01 += p;
274 *r2 += (r01 < p);
275 *r1 = r01 >> uECC_WORD_BITS;
276 *r0 = (uECC_word_t)r01;
277
278}
279
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200280/* State for implementing random delays in uECC_vli_mult_rnd().
281 *
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100282 * The state is initialized by randomizing delays and setting i = 0.
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200283 * Each call to uECC_vli_mult_rnd() uses one byte of delays and increments i.
284 *
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100285 * Randomized vli multiplication is used only for point operations
286 * (XYcZ_add_rnd() * and XYcZ_addC_rnd()) in scalar multiplication
287 * (ECCPoint_mult()). Those go in pair, and each pair does 14 calls to
288 * uECC_vli_mult_rnd() (6 in XYcZ_add_rnd() and 8 in XYcZ_addC_rnd(),
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100289 * indirectly through uECC_vli_modMult_rnd().
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100290 *
291 * Considering this, in order to minimize the number of calls to the RNG
292 * (which impact performance) while keeping the size of the structure low,
293 * make room for 14 randomized vli mults, which corresponds to one step in the
294 * scalar multiplication routine.
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200295 */
296typedef struct {
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100297 uint8_t i;
298 uint8_t delays[14];
Manuel Pégourié-Gonnardd5e503e2019-10-31 12:53:44 +0100299} ecc_wait_state_t;
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200300
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100301/*
302 * Reset wait_state so that it's ready to be used.
303 */
Manuel Pégourié-Gonnardd5e503e2019-10-31 12:53:44 +0100304void ecc_wait_state_reset(ecc_wait_state_t *ws)
Manuel Pégourié-Gonnardd4671162019-10-31 11:26:26 +0100305{
306 if (ws == NULL)
307 return;
308
309 ws->i = 0;
310 g_rng_function(ws->delays, sizeof(ws->delays));
311}
312
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200313/* Computes result = left * right. Result must be 2 * num_words long.
314 *
315 * As a counter-measure against horizontal attacks, add noise by performing
316 * a random number of extra computations performing random additional accesses
317 * to limbs of the input.
318 *
319 * Each of the two actual computation loops is surrounded by two
320 * similar-looking waiting loops, to make the beginning and end of the actual
321 * computation harder to spot.
322 *
323 * We add 4 waiting loops of between 0 and 3 calls to muladd() each. That
324 * makes an average of 6 extra calls. Compared to the main computation which
325 * makes 64 such calls, this represents an average performance degradation of
326 * less than 10%.
327 *
328 * Compared to the original uECC_vli_mult(), loose the num_words argument as we
329 * know it's always 8. This saves a bit of code size and execution speed.
330 */
331static void uECC_vli_mult_rnd(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnardd5e503e2019-10-31 12:53:44 +0100332 const uECC_word_t *right, ecc_wait_state_t *s)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300333{
334
335 uECC_word_t r0 = 0;
336 uECC_word_t r1 = 0;
337 uECC_word_t r2 = 0;
338 wordcount_t i, k;
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200339 const uint8_t num_words = 8;
340
341 /* Fetch 8 bit worth of delay from the state; 0 if we have no state */
342 uint8_t delays = s ? s->delays[s->i++] : 0;
343 uECC_word_t rr0 = 0, rr1 = 0;
344 volatile uECC_word_t r;
345
346 /* Mimic start of next loop: k in [0, 3] */
347 k = 0 + (delays & 0x03);
348 delays >>= 2;
349 /* k = 0 -> i in [1, 0] -> 0 extra muladd;
350 * k = 3 -> i in [1, 3] -> 3 extra muladd */
351 for (i = 0; i <= k; ++i) {
352 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
353 }
354 r = rr0;
355 rr0 = rr1;
356 rr1 = r2;
357 r2 = 0;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300358
359 /* Compute each digit of result in sequence, maintaining the carries. */
360 for (k = 0; k < num_words; ++k) {
361
362 for (i = 0; i <= k; ++i) {
363 muladd(left[i], right[k - i], &r0, &r1, &r2);
364 }
365
366 result[k] = r0;
367 r0 = r1;
368 r1 = r2;
369 r2 = 0;
370 }
371
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200372 /* Mimic end of previous loop: k in [4, 7] */
373 k = 4 + (delays & 0x03);
374 delays >>= 2;
375 /* k = 4 -> i in [5, 4] -> 0 extra muladd;
376 * k = 7 -> i in [5, 7] -> 3 extra muladd */
377 for (i = 5; i <= k; ++i) {
378 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
379 }
380 r = rr0;
381 rr0 = rr1;
382 rr1 = r2;
383 r2 = 0;
384
385 /* Mimic start of next loop: k in [8, 11] */
386 k = 11 - (delays & 0x03);
387 delays >>= 2;
388 /* k = 8 -> i in [5, 7] -> 3 extra muladd;
389 * k = 11 -> i in [8, 7] -> 0 extra muladd */
390 for (i = (k + 5) - num_words; i < num_words; ++i) {
391 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
392 }
393 r = rr0;
394 rr0 = rr1;
395 rr1 = r2;
396 r2 = 0;
397
Jarno Lamsa18987a42019-04-24 15:40:43 +0300398 for (k = num_words; k < num_words * 2 - 1; ++k) {
399
400 for (i = (k + 1) - num_words; i < num_words; ++i) {
401 muladd(left[i], right[k - i], &r0, &r1, &r2);
402 }
403 result[k] = r0;
404 r0 = r1;
405 r1 = r2;
406 r2 = 0;
407 }
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200408
Jarno Lamsa18987a42019-04-24 15:40:43 +0300409 result[num_words * 2 - 1] = r0;
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200410
411 /* Mimic end of previous loop: k in [12, 15] */
412 k = 15 - (delays & 0x03);
413 delays >>= 2;
414 /* k = 12 -> i in [5, 7] -> 3 extra muladd;
415 * k = 15 -> i in [8, 7] -> 0 extra muladd */
416 for (i = (k + 1) - num_words; i < num_words; ++i) {
417 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
418 }
419 r = rr0;
420 rr0 = rr1;
421 rr1 = r2;
422 r2 = 0;
423
424 /* avoid warning that r is set but not used */
425 (void) r;
426}
427
Jarno Lamsa18987a42019-04-24 15:40:43 +0300428void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
429 const uECC_word_t *right, const uECC_word_t *mod,
430 wordcount_t num_words)
431{
432 uECC_word_t carry = uECC_vli_add(result, left, right, num_words);
433 if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) {
434 /* result > mod (result = mod + remainder), so subtract mod to get
435 * remainder. */
436 uECC_vli_sub(result, result, mod, num_words);
437 }
438}
439
440void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
441 const uECC_word_t *right, const uECC_word_t *mod,
442 wordcount_t num_words)
443{
444 uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words);
445 if (l_borrow) {
446 /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
447 * we can get the correct result from result + mod (with overflow). */
448 uECC_vli_add(result, result, mod, num_words);
449 }
450}
451
452/* Computes result = product % mod, where product is 2N words long. */
453/* Currently only designed to work for curve_p or curve_n. */
454void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
455 const uECC_word_t *mod, wordcount_t num_words)
456{
457 uECC_word_t mod_multiple[2 * NUM_ECC_WORDS];
458 uECC_word_t tmp[2 * NUM_ECC_WORDS];
459 uECC_word_t *v[2] = {tmp, product};
460 uECC_word_t index;
461
462 /* Shift mod so its highest set bit is at the maximum position. */
463 bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) -
464 uECC_vli_numBits(mod, num_words);
465 wordcount_t word_shift = shift / uECC_WORD_BITS;
466 wordcount_t bit_shift = shift % uECC_WORD_BITS;
467 uECC_word_t carry = 0;
468 uECC_vli_clear(mod_multiple, word_shift);
469 if (bit_shift > 0) {
470 for(index = 0; index < (uECC_word_t)num_words; ++index) {
471 mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry;
472 carry = mod[index] >> (uECC_WORD_BITS - bit_shift);
473 }
474 } else {
475 uECC_vli_set(mod_multiple + word_shift, mod, num_words);
476 }
477
478 for (index = 1; shift >= 0; --shift) {
479 uECC_word_t borrow = 0;
480 wordcount_t i;
481 for (i = 0; i < num_words * 2; ++i) {
482 uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow;
483 if (diff != v[index][i]) {
484 borrow = (diff > v[index][i]);
485 }
486 v[1 - index][i] = diff;
487 }
488 /* Swap the index if there was no borrow */
489 index = !(index ^ borrow);
490 uECC_vli_rshift1(mod_multiple, num_words);
491 mod_multiple[num_words - 1] |= mod_multiple[num_words] <<
492 (uECC_WORD_BITS - 1);
493 uECC_vli_rshift1(mod_multiple + num_words, num_words);
494 }
495 uECC_vli_set(result, v[index], num_words);
496}
497
498void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
499 const uECC_word_t *right, const uECC_word_t *mod,
500 wordcount_t num_words)
501{
502 uECC_word_t product[2 * NUM_ECC_WORDS];
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100503 uECC_vli_mult_rnd(product, left, right, NULL);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300504 uECC_vli_mmod(result, product, mod, num_words);
505}
506
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100507static void uECC_vli_modMult_rnd(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnardd5e503e2019-10-31 12:53:44 +0100508 const uECC_word_t *right, ecc_wait_state_t *s)
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100509{
510 uECC_word_t product[2 * NUM_ECC_WORDS];
511 uECC_vli_mult_rnd(product, left, right, s);
512
513 vli_mmod_fast_secp256r1(result, product);
514}
515
Jarno Lamsa18987a42019-04-24 15:40:43 +0300516void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
517 const uECC_word_t *right, uECC_Curve curve)
518{
519 uECC_word_t product[2 * NUM_ECC_WORDS];
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100520 uECC_vli_mult_rnd(product, left, right, NULL);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300521
522 curve->mmod_fast(result, product);
523}
524
Jarno Lamsa18987a42019-04-24 15:40:43 +0300525#define EVEN(vli) (!(vli[0] & 1))
526
527static void vli_modInv_update(uECC_word_t *uv,
528 const uECC_word_t *mod,
529 wordcount_t num_words)
530{
531
532 uECC_word_t carry = 0;
533
534 if (!EVEN(uv)) {
535 carry = uECC_vli_add(uv, uv, mod, num_words);
536 }
537 uECC_vli_rshift1(uv, num_words);
538 if (carry) {
539 uv[num_words - 1] |= HIGH_BIT_SET;
540 }
541}
542
543void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
544 const uECC_word_t *mod, wordcount_t num_words)
545{
546 uECC_word_t a[NUM_ECC_WORDS], b[NUM_ECC_WORDS];
547 uECC_word_t u[NUM_ECC_WORDS], v[NUM_ECC_WORDS];
548 cmpresult_t cmpResult;
549
550 if (uECC_vli_isZero(input, num_words)) {
551 uECC_vli_clear(result, num_words);
552 return;
553 }
554
555 uECC_vli_set(a, input, num_words);
556 uECC_vli_set(b, mod, num_words);
557 uECC_vli_clear(u, num_words);
558 u[0] = 1;
559 uECC_vli_clear(v, num_words);
560 while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) {
561 if (EVEN(a)) {
562 uECC_vli_rshift1(a, num_words);
563 vli_modInv_update(u, mod, num_words);
564 } else if (EVEN(b)) {
565 uECC_vli_rshift1(b, num_words);
566 vli_modInv_update(v, mod, num_words);
567 } else if (cmpResult > 0) {
568 uECC_vli_sub(a, a, b, num_words);
569 uECC_vli_rshift1(a, num_words);
570 if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) {
571 uECC_vli_add(u, u, mod, num_words);
572 }
573 uECC_vli_sub(u, u, v, num_words);
574 vli_modInv_update(u, mod, num_words);
575 } else {
576 uECC_vli_sub(b, b, a, num_words);
577 uECC_vli_rshift1(b, num_words);
578 if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) {
579 uECC_vli_add(v, v, mod, num_words);
580 }
581 uECC_vli_sub(v, v, u, num_words);
582 vli_modInv_update(v, mod, num_words);
583 }
584 }
585 uECC_vli_set(result, u, num_words);
586}
587
588/* ------ Point operations ------ */
589
590void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
591 uECC_word_t * Z1, uECC_Curve curve)
592{
593 /* t1 = X, t2 = Y, t3 = Z */
594 uECC_word_t t4[NUM_ECC_WORDS];
595 uECC_word_t t5[NUM_ECC_WORDS];
596 wordcount_t num_words = curve->num_words;
597
598 if (uECC_vli_isZero(Z1, num_words)) {
599 return;
600 }
601
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100602 uECC_vli_modMult_fast(t4, Y1, Y1, curve); /* t4 = y1^2 */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300603 uECC_vli_modMult_fast(t5, X1, t4, curve); /* t5 = x1*y1^2 = A */
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100604 uECC_vli_modMult_fast(t4, t4, t4, curve); /* t4 = y1^4 */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300605 uECC_vli_modMult_fast(Y1, Y1, Z1, curve); /* t2 = y1*z1 = z3 */
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100606 uECC_vli_modMult_fast(Z1, Z1, Z1, curve); /* t3 = z1^2 */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300607
608 uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = x1 + z1^2 */
609 uECC_vli_modAdd(Z1, Z1, Z1, curve->p, num_words); /* t3 = 2*z1^2 */
610 uECC_vli_modSub(Z1, X1, Z1, curve->p, num_words); /* t3 = x1 - z1^2 */
611 uECC_vli_modMult_fast(X1, X1, Z1, curve); /* t1 = x1^2 - z1^4 */
612
613 uECC_vli_modAdd(Z1, X1, X1, curve->p, num_words); /* t3 = 2*(x1^2 - z1^4) */
614 uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = 3*(x1^2 - z1^4) */
615 if (uECC_vli_testBit(X1, 0)) {
616 uECC_word_t l_carry = uECC_vli_add(X1, X1, curve->p, num_words);
617 uECC_vli_rshift1(X1, num_words);
618 X1[num_words - 1] |= l_carry << (uECC_WORD_BITS - 1);
619 } else {
620 uECC_vli_rshift1(X1, num_words);
621 }
622
623 /* t1 = 3/2*(x1^2 - z1^4) = B */
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100624 uECC_vli_modMult_fast(Z1, X1, X1, curve); /* t3 = B^2 */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300625 uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - A */
626 uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - 2A = x3 */
627 uECC_vli_modSub(t5, t5, Z1, curve->p, num_words); /* t5 = A - x3 */
628 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = B * (A - x3) */
629 /* t4 = B * (A - x3) - y1^4 = y3: */
630 uECC_vli_modSub(t4, X1, t4, curve->p, num_words);
631
632 uECC_vli_set(X1, Z1, num_words);
633 uECC_vli_set(Z1, Y1, num_words);
634 uECC_vli_set(Y1, t4, num_words);
635}
636
637void x_side_default(uECC_word_t *result,
638 const uECC_word_t *x,
639 uECC_Curve curve)
640{
641 uECC_word_t _3[NUM_ECC_WORDS] = {3}; /* -a = 3 */
642 wordcount_t num_words = curve->num_words;
643
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100644 uECC_vli_modMult_fast(result, x, x, curve); /* r = x^2 */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300645 uECC_vli_modSub(result, result, _3, curve->p, num_words); /* r = x^2 - 3 */
646 uECC_vli_modMult_fast(result, result, x, curve); /* r = x^3 - 3x */
647 /* r = x^3 - 3x + b: */
648 uECC_vli_modAdd(result, result, curve->b, curve->p, num_words);
649}
650
651uECC_Curve uECC_secp256r1(void)
652{
653 return &curve_secp256r1;
654}
655
656void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int*product)
657{
658 unsigned int tmp[NUM_ECC_WORDS];
659 int carry;
660
661 /* t */
662 uECC_vli_set(result, product, NUM_ECC_WORDS);
663
664 /* s1 */
665 tmp[0] = tmp[1] = tmp[2] = 0;
666 tmp[3] = product[11];
667 tmp[4] = product[12];
668 tmp[5] = product[13];
669 tmp[6] = product[14];
670 tmp[7] = product[15];
671 carry = uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
672 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
673
674 /* s2 */
675 tmp[3] = product[12];
676 tmp[4] = product[13];
677 tmp[5] = product[14];
678 tmp[6] = product[15];
679 tmp[7] = 0;
680 carry += uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
681 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
682
683 /* s3 */
684 tmp[0] = product[8];
685 tmp[1] = product[9];
686 tmp[2] = product[10];
687 tmp[3] = tmp[4] = tmp[5] = 0;
688 tmp[6] = product[14];
689 tmp[7] = product[15];
690 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
691
692 /* s4 */
693 tmp[0] = product[9];
694 tmp[1] = product[10];
695 tmp[2] = product[11];
696 tmp[3] = product[13];
697 tmp[4] = product[14];
698 tmp[5] = product[15];
699 tmp[6] = product[13];
700 tmp[7] = product[8];
701 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
702
703 /* d1 */
704 tmp[0] = product[11];
705 tmp[1] = product[12];
706 tmp[2] = product[13];
707 tmp[3] = tmp[4] = tmp[5] = 0;
708 tmp[6] = product[8];
709 tmp[7] = product[10];
710 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
711
712 /* d2 */
713 tmp[0] = product[12];
714 tmp[1] = product[13];
715 tmp[2] = product[14];
716 tmp[3] = product[15];
717 tmp[4] = tmp[5] = 0;
718 tmp[6] = product[9];
719 tmp[7] = product[11];
720 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
721
722 /* d3 */
723 tmp[0] = product[13];
724 tmp[1] = product[14];
725 tmp[2] = product[15];
726 tmp[3] = product[8];
727 tmp[4] = product[9];
728 tmp[5] = product[10];
729 tmp[6] = 0;
730 tmp[7] = product[12];
731 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
732
733 /* d4 */
734 tmp[0] = product[14];
735 tmp[1] = product[15];
736 tmp[2] = 0;
737 tmp[3] = product[9];
738 tmp[4] = product[10];
739 tmp[5] = product[11];
740 tmp[6] = 0;
741 tmp[7] = product[13];
742 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
743
744 if (carry < 0) {
745 do {
746 carry += uECC_vli_add(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
747 }
748 while (carry < 0);
749 } else {
750 while (carry ||
751 uECC_vli_cmp_unsafe(curve_secp256r1.p, result, NUM_ECC_WORDS) != 1) {
752 carry -= uECC_vli_sub(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
753 }
754 }
755}
756
757uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve)
758{
759 return uECC_vli_isZero(point, curve->num_words * 2);
760}
761
762void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z,
763 uECC_Curve curve)
764{
765 uECC_word_t t1[NUM_ECC_WORDS];
766
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100767 uECC_vli_modMult_fast(t1, Z, Z, curve); /* z^2 */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300768 uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
769 uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */
770 uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
771}
772
773/* P = (x1, y1) => 2P, (x2, y2) => P' */
774static void XYcZ_initial_double(uECC_word_t * X1, uECC_word_t * Y1,
775 uECC_word_t * X2, uECC_word_t * Y2,
776 const uECC_word_t * const initial_Z,
777 uECC_Curve curve)
778{
779 uECC_word_t z[NUM_ECC_WORDS];
780 wordcount_t num_words = curve->num_words;
781 if (initial_Z) {
782 uECC_vli_set(z, initial_Z, num_words);
783 } else {
784 uECC_vli_clear(z, num_words);
785 z[0] = 1;
786 }
787
788 uECC_vli_set(X2, X1, num_words);
789 uECC_vli_set(Y2, Y1, num_words);
790
791 apply_z(X1, Y1, z, curve);
792 curve->double_jacobian(X1, Y1, z, curve);
793 apply_z(X2, Y2, z, curve);
794}
795
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100796static void XYcZ_add_rnd(uECC_word_t * X1, uECC_word_t * Y1,
797 uECC_word_t * X2, uECC_word_t * Y2,
Manuel Pégourié-Gonnardd5e503e2019-10-31 12:53:44 +0100798 ecc_wait_state_t *s)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300799{
800 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
801 uECC_word_t t5[NUM_ECC_WORDS];
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100802 const uECC_Curve curve = &curve_secp256r1;
803 const wordcount_t num_words = 8;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300804
805 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100806 uECC_vli_modMult_rnd(t5, t5, t5, s); /* t5 = (x2 - x1)^2 = A */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100807 uECC_vli_modMult_rnd(X1, X1, t5, s); /* t1 = x1*A = B */
808 uECC_vli_modMult_rnd(X2, X2, t5, s); /* t3 = x2*A = C */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300809 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100810 uECC_vli_modMult_rnd(t5, Y2, Y2, s); /* t5 = (y2 - y1)^2 = D */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300811
812 uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
813 uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
814 uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100815 uECC_vli_modMult_rnd(Y1, Y1, X2, s); /* t2 = y1*(C - B) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300816 uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100817 uECC_vli_modMult_rnd(Y2, Y2, X2, s); /* t4 = (y2 - y1)*(B - x3) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300818 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
819
820 uECC_vli_set(X2, t5, num_words);
821}
822
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100823void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1,
824 uECC_word_t * X2, uECC_word_t * Y2,
825 uECC_Curve curve)
826{
827 (void) curve;
828 XYcZ_add_rnd(X1, Y1, X2, Y2, NULL);
829}
830
Jarno Lamsa18987a42019-04-24 15:40:43 +0300831/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
832 Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
833 or P => P - Q, Q => P + Q
834 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100835static void XYcZ_addC_rnd(uECC_word_t * X1, uECC_word_t * Y1,
836 uECC_word_t * X2, uECC_word_t * Y2,
Manuel Pégourié-Gonnardd5e503e2019-10-31 12:53:44 +0100837 ecc_wait_state_t *s)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300838{
839 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
840 uECC_word_t t5[NUM_ECC_WORDS];
841 uECC_word_t t6[NUM_ECC_WORDS];
842 uECC_word_t t7[NUM_ECC_WORDS];
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100843 const uECC_Curve curve = &curve_secp256r1;
844 const wordcount_t num_words = 8;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300845
846 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100847 uECC_vli_modMult_rnd(t5, t5, t5, s); /* t5 = (x2 - x1)^2 = A */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100848 uECC_vli_modMult_rnd(X1, X1, t5, s); /* t1 = x1*A = B */
849 uECC_vli_modMult_rnd(X2, X2, t5, s); /* t3 = x2*A = C */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300850 uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
851 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
852
853 uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100854 uECC_vli_modMult_rnd(Y1, Y1, t6, s); /* t2 = y1 * (C - B) = E */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300855 uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100856 uECC_vli_modMult_rnd(X2, Y2, Y2, s); /* t3 = (y2 - y1)^2 = D */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300857 uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */
858
859 uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100860 uECC_vli_modMult_rnd(Y2, Y2, t7, s); /* t4 = (y2 - y1)*(B - x3) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300861 /* t4 = (y2 - y1)*(B - x3) - E = y3: */
862 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words);
863
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +0100864 uECC_vli_modMult_rnd(t7, t5, t5, s); /* t7 = (y2 + y1)^2 = F */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300865 uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */
866 uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100867 uECC_vli_modMult_rnd(t6, t6, t5, s); /* t6 = (y2+y1)*(x3' - B) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300868 /* t2 = (y2+y1)*(x3' - B) - E = y3': */
869 uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words);
870
871 uECC_vli_set(X1, t7, num_words);
872}
873
Manuel Pégourié-Gonnard27926d62019-11-04 11:26:46 +0100874static void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point,
Jarno Lamsa18987a42019-04-24 15:40:43 +0300875 const uECC_word_t * scalar,
876 const uECC_word_t * initial_Z,
Manuel Pégourié-Gonnardef238282019-11-04 11:19:30 +0100877 bitcount_t num_bits, uECC_Curve curve)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300878{
879 /* R0 and R1 */
880 uECC_word_t Rx[2][NUM_ECC_WORDS];
881 uECC_word_t Ry[2][NUM_ECC_WORDS];
882 uECC_word_t z[NUM_ECC_WORDS];
883 bitcount_t i;
884 uECC_word_t nb;
885 wordcount_t num_words = curve->num_words;
Manuel Pégourié-Gonnardd5e503e2019-10-31 12:53:44 +0100886 ecc_wait_state_t wait_state;
887 ecc_wait_state_t * const ws = g_rng_function ? &wait_state : NULL;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300888
889 uECC_vli_set(Rx[1], point, num_words);
890 uECC_vli_set(Ry[1], point + num_words, num_words);
891
892 XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);
893
894 for (i = num_bits - 2; i > 0; --i) {
Manuel Pégourié-Gonnardd5e503e2019-10-31 12:53:44 +0100895 ecc_wait_state_reset(ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300896 nb = !uECC_vli_testBit(scalar, i);
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100897 XYcZ_addC_rnd(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], ws);
898 XYcZ_add_rnd(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300899 }
900
Manuel Pégourié-Gonnardd5e503e2019-10-31 12:53:44 +0100901 ecc_wait_state_reset(ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300902 nb = !uECC_vli_testBit(scalar, 0);
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100903 XYcZ_addC_rnd(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300904
905 /* Find final 1/Z value. */
906 uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
907 uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */
908 uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */
909 uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0))*/
910 /* yP / (xP * Yb * (X1 - X0)) */
911 uECC_vli_modMult_fast(z, z, point + num_words, curve);
912 /* Xb * yP / (xP * Yb * (X1 - X0)) */
913 uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve);
914 /* End 1/Z calculation */
915
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100916 XYcZ_add_rnd(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300917 apply_z(Rx[0], Ry[0], z, curve);
918
919 uECC_vli_set(result, Rx[0], num_words);
920 uECC_vli_set(result + num_words, Ry[0], num_words);
921}
922
Manuel Pégourié-Gonnard27926d62019-11-04 11:26:46 +0100923static uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
Jarno Lamsa18987a42019-04-24 15:40:43 +0300924 uECC_word_t *k1, uECC_Curve curve)
925{
926
927 wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
928
929 bitcount_t num_n_bits = curve->num_n_bits;
930
931 uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) ||
932 (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) &&
933 uECC_vli_testBit(k0, num_n_bits));
934
935 uECC_vli_add(k1, k0, curve->n, num_n_words);
936
937 return carry;
938}
939
Manuel Pégourié-Gonnardef238282019-11-04 11:19:30 +0100940int EccPoint_mult_safer(uECC_word_t * result, const uECC_word_t * point,
941 const uECC_word_t * scalar, uECC_Curve curve)
942{
943 uECC_word_t tmp[NUM_ECC_WORDS];
944 uECC_word_t s[NUM_ECC_WORDS];
945 uECC_word_t *k2[2] = {tmp, s};
946 wordcount_t num_words = curve->num_words;
947 bitcount_t num_n_bits = curve->num_n_bits;
948 uECC_word_t carry;
949 uECC_word_t *initial_Z = 0;
950 int r;
951
952 /* Regularize the bitcount for the private key so that attackers cannot use a
953 * side channel attack to learn the number of leading zeros. */
954 carry = regularize_k(scalar, tmp, s, curve);
955
956 /* If an RNG function was specified, get a random initial Z value to
957 * protect against side-channel attacks such as Template SPA */
958 if (g_rng_function) {
959 if (!uECC_generate_random_int(k2[carry], curve->p, num_words)) {
960 r = 0;
961 goto clear_and_out;
962 }
963 initial_Z = k2[carry];
964 }
965
966 EccPoint_mult(result, point, k2[!carry], initial_Z, num_n_bits + 1, curve);
967 r = 1;
968
969clear_and_out:
970 /* erasing temporary buffer used to store secret: */
971 mbedtls_platform_zeroize(k2, sizeof(k2));
972 mbedtls_platform_zeroize(tmp, sizeof(tmp));
973 mbedtls_platform_zeroize(s, sizeof(s));
974
975 return r;
976}
977
Jarno Lamsa18987a42019-04-24 15:40:43 +0300978uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
979 uECC_word_t *private_key,
980 uECC_Curve curve)
981{
982
983 uECC_word_t tmp1[NUM_ECC_WORDS];
984 uECC_word_t tmp2[NUM_ECC_WORDS];
985 uECC_word_t *p2[2] = {tmp1, tmp2};
986 uECC_word_t carry;
987
988 /* Regularize the bitcount for the private key so that attackers cannot
989 * use a side channel attack to learn the number of leading zeros. */
990 carry = regularize_k(private_key, tmp1, tmp2, curve);
991
992 EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve);
993
994 if (EccPoint_isZero(result, curve)) {
995 return 0;
996 }
997 return 1;
998}
999
1000/* Converts an integer in uECC native format to big-endian bytes. */
1001void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
1002 const unsigned int *native)
1003{
1004 wordcount_t i;
1005 for (i = 0; i < num_bytes; ++i) {
1006 unsigned b = num_bytes - 1 - i;
1007 bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE));
1008 }
1009}
1010
1011/* Converts big-endian bytes to an integer in uECC native format. */
1012void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
1013 int num_bytes)
1014{
1015 wordcount_t i;
1016 uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE);
1017 for (i = 0; i < num_bytes; ++i) {
1018 unsigned b = num_bytes - 1 - i;
1019 native[b / uECC_WORD_SIZE] |=
1020 (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE));
1021 }
1022}
1023
1024int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
1025 wordcount_t num_words)
1026{
1027 uECC_word_t mask = (uECC_word_t)-1;
1028 uECC_word_t tries;
1029 bitcount_t num_bits = uECC_vli_numBits(top, num_words);
1030
1031 if (!g_rng_function) {
1032 return 0;
1033 }
1034
1035 for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
1036 if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) {
1037 return 0;
1038 }
1039 random[num_words - 1] &=
1040 mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits));
1041 if (!uECC_vli_isZero(random, num_words) &&
1042 uECC_vli_cmp(top, random, num_words) == 1) {
1043 return 1;
1044 }
1045 }
1046 return 0;
1047}
1048
1049
1050int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve)
1051{
1052 uECC_word_t tmp1[NUM_ECC_WORDS];
1053 uECC_word_t tmp2[NUM_ECC_WORDS];
1054 wordcount_t num_words = curve->num_words;
1055
1056 /* The point at infinity is invalid. */
1057 if (EccPoint_isZero(point, curve)) {
1058 return -1;
1059 }
1060
1061 /* x and y must be smaller than p. */
1062 if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
1063 uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
1064 return -2;
1065 }
1066
Manuel Pégourié-Gonnardc78d86b2019-11-04 10:18:42 +01001067 uECC_vli_modMult_fast(tmp1, point + num_words, point + num_words, curve);
Jarno Lamsa18987a42019-04-24 15:40:43 +03001068 curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
1069
1070 /* Make sure that y^2 == x^3 + ax + b */
1071 if (uECC_vli_equal(tmp1, tmp2, num_words) != 0)
1072 return -3;
1073
1074 return 0;
1075}
1076
1077int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve)
1078{
1079
1080 uECC_word_t _public[NUM_ECC_WORDS * 2];
1081
1082 uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
1083 uECC_vli_bytesToNative(
1084 _public + curve->num_words,
1085 public_key + curve->num_bytes,
1086 curve->num_bytes);
1087
1088 if (uECC_vli_cmp_unsafe(_public, curve->G, NUM_ECC_WORDS * 2) == 0) {
1089 return -4;
1090 }
1091
1092 return uECC_valid_point(_public, curve);
1093}
1094
1095int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
1096 uECC_Curve curve)
1097{
1098
1099 uECC_word_t _private[NUM_ECC_WORDS];
1100 uECC_word_t _public[NUM_ECC_WORDS * 2];
1101
1102 uECC_vli_bytesToNative(
1103 _private,
1104 private_key,
1105 BITS_TO_BYTES(curve->num_n_bits));
1106
1107 /* Make sure the private key is in the range [1, n-1]. */
1108 if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) {
1109 return 0;
1110 }
1111
1112 if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) {
1113 return 0;
1114 }
1115
1116 /* Compute public key. */
1117 if (!EccPoint_compute_public_key(_public, _private, curve)) {
1118 return 0;
1119 }
1120
1121 uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
1122 uECC_vli_nativeToBytes(
1123 public_key +
1124 curve->num_bytes, curve->num_bytes, _public + curve->num_words);
1125 return 1;
1126}
Jarno Lamsa46132202019-04-29 14:29:52 +03001127#else
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +02001128typedef int mbedtls_dummy_tinycrypt_def;
1129#endif /* MBEDTLS_USE_TINYCRYPT */
Jarno Lamsa18987a42019-04-24 15:40:43 +03001130