blob: 32038f8eb1b02a04e030d3cc9d845a245ffb4ebf [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
41#include "mbedtls/bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050042#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000043#include "mbedtls/error.h"
Gabor Mezeic0ae1cf2021-10-20 12:09:35 +020044#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000045
Tom Cosgrove58efe612021-11-15 09:59:53 +000046#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000047#include <string.h>
48
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000049#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020050
Hanno Becker73d7d792018-12-11 10:35:51 +000051#define MPI_VALIDATE_RET( cond ) \
52 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
53#define MPI_VALIDATE( cond ) \
54 MBEDTLS_INTERNAL_VALIDATE( cond )
55
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020056#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
Paul Bakker5121ce52009-01-03 21:22:43 +000057#define biL (ciL << 3) /* bits in limb */
58#define biH (ciL << 2) /* half limb size */
59
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010060#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
61
Paul Bakker5121ce52009-01-03 21:22:43 +000062/*
63 * Convert between bits/chars and number of limbs
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +020064 * Divide first in order to avoid potential overflows
Paul Bakker5121ce52009-01-03 21:22:43 +000065 */
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +020066#define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
67#define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
Paul Bakker5121ce52009-01-03 21:22:43 +000068
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050069/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050070static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
71{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050072 mbedtls_platform_zeroize( v, ciL * n );
73}
74
Paul Bakker5121ce52009-01-03 21:22:43 +000075/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000076 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000077 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020078void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000079{
Hanno Becker73d7d792018-12-11 10:35:51 +000080 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000081
Paul Bakker6c591fa2011-05-05 11:49:20 +000082 X->s = 1;
83 X->n = 0;
84 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000085}
86
87/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000088 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000089 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020090void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000091{
Paul Bakker6c591fa2011-05-05 11:49:20 +000092 if( X == NULL )
93 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000094
Paul Bakker6c591fa2011-05-05 11:49:20 +000095 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000096 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020097 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020098 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000099 }
100
Paul Bakker6c591fa2011-05-05 11:49:20 +0000101 X->s = 1;
102 X->n = 0;
103 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000104}
105
106/*
107 * Enlarge to the specified number of limbs
108 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200109int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000110{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200111 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000112 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000113
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200114 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200115 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000116
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 if( X->n < nblimbs )
118 {
Simon Butcher29176892016-05-20 00:19:09 +0100119 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200120 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000121
Paul Bakker5121ce52009-01-03 21:22:43 +0000122 if( X->p != NULL )
123 {
124 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200125 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200126 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000127 }
128
129 X->n = nblimbs;
130 X->p = p;
131 }
132
133 return( 0 );
134}
135
136/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100137 * Resize down as much as possible,
138 * while keeping at least the specified number of limbs
139 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200140int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100141{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200142 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000144 MPI_VALIDATE_RET( X != NULL );
145
146 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
147 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100148
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100149 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100150 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200151 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100152 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100153
154 for( i = X->n - 1; i > 0; i-- )
155 if( X->p[i] != 0 )
156 break;
157 i++;
158
159 if( i < nblimbs )
160 i = nblimbs;
161
Simon Butcher29176892016-05-20 00:19:09 +0100162 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200163 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100164
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100165 if( X->p != NULL )
166 {
167 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200168 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200169 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100170 }
171
172 X->n = i;
173 X->p = p;
174
175 return( 0 );
176}
177
Gilles Peskine3130ce22021-06-02 22:17:52 +0200178/* Resize X to have exactly n limbs and set it to 0. */
179static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
180{
181 if( limbs == 0 )
182 {
183 mbedtls_mpi_free( X );
184 return( 0 );
185 }
186 else if( X->n == limbs )
187 {
188 memset( X->p, 0, limbs * ciL );
189 X->s = 1;
190 return( 0 );
191 }
192 else
193 {
194 mbedtls_mpi_free( X );
195 return( mbedtls_mpi_grow( X, limbs ) );
196 }
197}
198
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100199/*
Gilles Peskinef643e8e2021-06-08 23:17:42 +0200200 * Copy the contents of Y into X.
201 *
202 * This function is not constant-time. Leading zeros in Y may be removed.
203 *
204 * Ensure that X does not shrink. This is not guaranteed by the public API,
205 * but some code in the bignum module relies on this property, for example
206 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000207 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200208int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000209{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100210 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000211 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000212 MPI_VALIDATE_RET( X != NULL );
213 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000214
215 if( X == Y )
216 return( 0 );
217
Gilles Peskinedb420622020-01-20 21:12:50 +0100218 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200219 {
Gilles Peskinef643e8e2021-06-08 23:17:42 +0200220 if( X->n != 0 )
221 {
222 X->s = 1;
223 memset( X->p, 0, X->n * ciL );
224 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200225 return( 0 );
226 }
227
Paul Bakker5121ce52009-01-03 21:22:43 +0000228 for( i = Y->n - 1; i > 0; i-- )
229 if( Y->p[i] != 0 )
230 break;
231 i++;
232
233 X->s = Y->s;
234
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100235 if( X->n < i )
236 {
237 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
238 }
239 else
240 {
241 memset( X->p + i, 0, ( X->n - i ) * ciL );
242 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000243
Paul Bakker5121ce52009-01-03 21:22:43 +0000244 memcpy( X->p, Y->p, i * ciL );
245
246cleanup:
247
248 return( ret );
249}
250
251/*
252 * Swap the contents of X and Y
253 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200254void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000255{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200256 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000257 MPI_VALIDATE( X != NULL );
258 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000259
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200260 memcpy( &T, X, sizeof( mbedtls_mpi ) );
261 memcpy( X, Y, sizeof( mbedtls_mpi ) );
262 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000263}
264
Gilles Peskineae7cbd72022-11-15 23:25:27 +0100265static inline mbedtls_mpi_uint mpi_sint_abs( mbedtls_mpi_sint z )
266{
267 if( z >= 0 )
268 return( z );
269 /* Take care to handle the most negative value (-2^(biL-1)) correctly.
270 * A naive -z would have undefined behavior.
271 * Write this in a way that makes popular compilers happy (GCC, Clang,
272 * MSVC). */
273 return( (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z );
274}
275
Paul Bakker5121ce52009-01-03 21:22:43 +0000276/*
277 * Set value from integer
278 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200279int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000280{
Janos Follath24eed8d2019-11-22 13:21:35 +0000281 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000282 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000283
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200284 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000285 memset( X->p, 0, X->n * ciL );
286
Gilles Peskineae7cbd72022-11-15 23:25:27 +0100287 X->p[0] = mpi_sint_abs( z );
Paul Bakker5121ce52009-01-03 21:22:43 +0000288 X->s = ( z < 0 ) ? -1 : 1;
289
290cleanup:
291
292 return( ret );
293}
294
295/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296 * Get a specific bit
297 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200298int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000299{
Hanno Becker73d7d792018-12-11 10:35:51 +0000300 MPI_VALIDATE_RET( X != NULL );
301
Paul Bakker2f5947e2011-05-18 15:47:11 +0000302 if( X->n * biL <= pos )
303 return( 0 );
304
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200305 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000306}
307
Gilles Peskine11cdb052018-11-20 16:47:47 +0100308/* Get a specific byte, without range checks. */
309#define GET_BYTE( X, i ) \
310 ( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff )
311
Paul Bakker2f5947e2011-05-18 15:47:11 +0000312/*
313 * Set a bit to a specific value of 0 or 1
314 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200315int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000316{
317 int ret = 0;
318 size_t off = pos / biL;
319 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000320 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000321
322 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200323 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200324
Paul Bakker2f5947e2011-05-18 15:47:11 +0000325 if( X->n * biL <= pos )
326 {
327 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200328 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000329
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200330 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000331 }
332
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200333 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
334 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000335
336cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200337
Paul Bakker2f5947e2011-05-18 15:47:11 +0000338 return( ret );
339}
340
341/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200342 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000343 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200344size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000345{
Paul Bakker23986e52011-04-24 08:57:21 +0000346 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000347 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000348
349 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000350 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000351 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
352 return( count );
353
354 return( 0 );
355}
356
357/*
Simon Butcher15b15d12015-11-26 19:35:03 +0000358 * Count leading zero bits in a given integer
359 */
360static size_t mbedtls_clz( const mbedtls_mpi_uint x )
361{
362 size_t j;
Manuel Pégourié-Gonnarde3e8edf2015-12-01 09:31:52 +0100363 mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
Simon Butcher15b15d12015-11-26 19:35:03 +0000364
365 for( j = 0; j < biL; j++ )
366 {
367 if( x & mask ) break;
368
369 mask >>= 1;
370 }
371
372 return j;
373}
374
375/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200376 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000377 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200378size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000379{
Paul Bakker23986e52011-04-24 08:57:21 +0000380 size_t i, j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000381
Manuel Pégourié-Gonnard770b5e12015-04-29 17:02:01 +0200382 if( X->n == 0 )
383 return( 0 );
384
Paul Bakker5121ce52009-01-03 21:22:43 +0000385 for( i = X->n - 1; i > 0; i-- )
386 if( X->p[i] != 0 )
387 break;
388
Simon Butcher15b15d12015-11-26 19:35:03 +0000389 j = biL - mbedtls_clz( X->p[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +0000390
Paul Bakker23986e52011-04-24 08:57:21 +0000391 return( ( i * biL ) + j );
Paul Bakker5121ce52009-01-03 21:22:43 +0000392}
393
394/*
395 * Return the total size in bytes
396 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200397size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000398{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200399 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000400}
401
402/*
403 * Convert an ASCII character to digit value
404 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200405static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000406{
407 *d = 255;
408
409 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
410 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
411 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
412
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200413 if( *d >= (mbedtls_mpi_uint) radix )
414 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000415
416 return( 0 );
417}
418
419/*
420 * Import from an ASCII string
421 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200422int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000423{
Janos Follath24eed8d2019-11-22 13:21:35 +0000424 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000425 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200426 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200427 mbedtls_mpi_uint d;
428 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000429 MPI_VALIDATE_RET( X != NULL );
430 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000431
432 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000433 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000434
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200435 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000436
Gilles Peskined4876132021-06-08 18:32:34 +0200437 if( s[0] == 0 )
438 {
439 mbedtls_mpi_free( X );
440 return( 0 );
441 }
442
Gilles Peskine80f56732021-04-03 18:26:13 +0200443 if( s[0] == '-' )
444 {
445 ++s;
446 sign = -1;
447 }
448
Paul Bakkerff60ee62010-03-16 21:09:09 +0000449 slen = strlen( s );
450
Paul Bakker5121ce52009-01-03 21:22:43 +0000451 if( radix == 16 )
452 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100453 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200454 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
455
Paul Bakkerff60ee62010-03-16 21:09:09 +0000456 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000457
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200458 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
459 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000460
Paul Bakker23986e52011-04-24 08:57:21 +0000461 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000462 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200463 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200464 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000465 }
466 }
467 else
468 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200469 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000470
Paul Bakkerff60ee62010-03-16 21:09:09 +0000471 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000472 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200473 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
474 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200475 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000476 }
477 }
478
Gilles Peskine80f56732021-04-03 18:26:13 +0200479 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
480 X->s = -1;
481
Paul Bakker5121ce52009-01-03 21:22:43 +0000482cleanup:
483
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200484 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000485
486 return( ret );
487}
488
489/*
Ron Eldora16fa292018-11-20 14:07:01 +0200490 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000491 */
Ron Eldora16fa292018-11-20 14:07:01 +0200492static int mpi_write_hlp( mbedtls_mpi *X, int radix,
493 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000494{
Janos Follath24eed8d2019-11-22 13:21:35 +0000495 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200496 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200497 size_t length = 0;
498 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000499
Ron Eldora16fa292018-11-20 14:07:01 +0200500 do
501 {
502 if( length >= buflen )
503 {
504 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
505 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000506
Ron Eldora16fa292018-11-20 14:07:01 +0200507 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
508 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
509 /*
510 * Write the residue in the current position, as an ASCII character.
511 */
512 if( r < 0xA )
513 *(--p_end) = (char)( '0' + r );
514 else
515 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000516
Ron Eldora16fa292018-11-20 14:07:01 +0200517 length++;
518 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000519
Ron Eldora16fa292018-11-20 14:07:01 +0200520 memmove( *p, p_end, length );
521 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000522
523cleanup:
524
525 return( ret );
526}
527
528/*
529 * Export into an ASCII string
530 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100531int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
532 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000533{
Paul Bakker23986e52011-04-24 08:57:21 +0000534 int ret = 0;
535 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000536 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200537 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000538 MPI_VALIDATE_RET( X != NULL );
539 MPI_VALIDATE_RET( olen != NULL );
540 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000541
542 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000543 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000544
Hanno Becker23cfea02019-02-04 09:45:07 +0000545 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
546 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
547 * `n`. If radix > 4, this might be a strict
548 * overapproximation of the number of
549 * radix-adic digits needed to present `n`. */
550 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
551 * present `n`. */
552
Janos Follath80470622019-03-06 13:43:02 +0000553 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000554 n += 1; /* Compensate for the divisions above, which round down `n`
555 * in case it's not even. */
556 n += 1; /* Potential '-'-sign. */
557 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
558 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000559
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100560 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000561 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100562 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200563 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000564 }
565
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100566 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200567 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000568
569 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000570 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000571 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000572 buflen--;
573 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000574
575 if( radix == 16 )
576 {
Paul Bakker23986e52011-04-24 08:57:21 +0000577 int c;
578 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000579
Paul Bakker23986e52011-04-24 08:57:21 +0000580 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000581 {
Paul Bakker23986e52011-04-24 08:57:21 +0000582 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000583 {
Paul Bakker23986e52011-04-24 08:57:21 +0000584 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000585
Paul Bakker6c343d72014-07-10 14:36:19 +0200586 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000587 continue;
588
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000589 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000590 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000591 k = 1;
592 }
593 }
594 }
595 else
596 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200597 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000598
599 if( T.s == -1 )
600 T.s = 1;
601
Ron Eldora16fa292018-11-20 14:07:01 +0200602 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000603 }
604
605 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100606 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000607
608cleanup:
609
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200610 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000611
612 return( ret );
613}
614
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200615#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000616/*
617 * Read X from an opened file
618 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200619int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000620{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200621 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000622 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000623 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000624 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000625 * Buffer should have space for (short) label and decimal formatted MPI,
626 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000627 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200628 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000629
Hanno Becker73d7d792018-12-11 10:35:51 +0000630 MPI_VALIDATE_RET( X != NULL );
631 MPI_VALIDATE_RET( fin != NULL );
632
633 if( radix < 2 || radix > 16 )
634 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
635
Paul Bakker5121ce52009-01-03 21:22:43 +0000636 memset( s, 0, sizeof( s ) );
637 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200638 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000639
640 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000641 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200642 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000643
Hanno Beckerb2034b72017-04-26 11:46:46 +0100644 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
645 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000646
647 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100648 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000649 if( mpi_get_digit( &d, radix, *p ) != 0 )
650 break;
651
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200652 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000653}
654
655/*
656 * Write X into an opened file (or stdout if fout == NULL)
657 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200658int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000659{
Janos Follath24eed8d2019-11-22 13:21:35 +0000660 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000661 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000662 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000663 * Buffer should have space for (short) label and decimal formatted MPI,
664 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000665 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200666 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000667 MPI_VALIDATE_RET( X != NULL );
668
669 if( radix < 2 || radix > 16 )
670 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000671
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100672 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000673
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100674 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000675
676 if( p == NULL ) p = "";
677
678 plen = strlen( p );
679 slen = strlen( s );
680 s[slen++] = '\r';
681 s[slen++] = '\n';
682
683 if( fout != NULL )
684 {
685 if( fwrite( p, 1, plen, fout ) != plen ||
686 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200687 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000688 }
689 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200690 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000691
692cleanup:
693
694 return( ret );
695}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200696#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000697
Hanno Beckerda1655a2017-10-18 14:21:44 +0100698
699/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
700 * into the storage form used by mbedtls_mpi. */
Hanno Beckerf8720072018-11-08 11:53:49 +0000701
702static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x )
703{
704 uint8_t i;
Hanno Becker031d6332019-05-01 17:09:11 +0100705 unsigned char *x_ptr;
Hanno Beckerf8720072018-11-08 11:53:49 +0000706 mbedtls_mpi_uint tmp = 0;
Hanno Becker031d6332019-05-01 17:09:11 +0100707
708 for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ )
709 {
710 tmp <<= CHAR_BIT;
711 tmp |= (mbedtls_mpi_uint) *x_ptr;
712 }
713
Hanno Beckerf8720072018-11-08 11:53:49 +0000714 return( tmp );
715}
716
717static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x )
718{
719#if defined(__BYTE_ORDER__)
720
721/* Nothing to do on bigendian systems. */
722#if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
723 return( x );
724#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
725
726#if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
727
728/* For GCC and Clang, have builtins for byte swapping. */
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000729#if defined(__GNUC__) && defined(__GNUC_PREREQ)
730#if __GNUC_PREREQ(4,3)
Hanno Beckerf8720072018-11-08 11:53:49 +0000731#define have_bswap
732#endif
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000733#endif
734
735#if defined(__clang__) && defined(__has_builtin)
736#if __has_builtin(__builtin_bswap32) && \
737 __has_builtin(__builtin_bswap64)
738#define have_bswap
739#endif
740#endif
741
Hanno Beckerf8720072018-11-08 11:53:49 +0000742#if defined(have_bswap)
743 /* The compiler is hopefully able to statically evaluate this! */
744 switch( sizeof(mbedtls_mpi_uint) )
745 {
746 case 4:
747 return( __builtin_bswap32(x) );
748 case 8:
749 return( __builtin_bswap64(x) );
750 }
751#endif
752#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
753#endif /* __BYTE_ORDER__ */
754
755 /* Fall back to C-based reordering if we don't know the byte order
756 * or we couldn't use a compiler-specific builtin. */
757 return( mpi_uint_bigendian_to_host_c( x ) );
758}
759
Hanno Becker2be8a552018-10-25 12:40:09 +0100760static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs )
Hanno Beckerda1655a2017-10-18 14:21:44 +0100761{
Hanno Beckerda1655a2017-10-18 14:21:44 +0100762 mbedtls_mpi_uint *cur_limb_left;
763 mbedtls_mpi_uint *cur_limb_right;
Hanno Becker2be8a552018-10-25 12:40:09 +0100764 if( limbs == 0 )
765 return;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100766
767 /*
768 * Traverse limbs and
769 * - adapt byte-order in each limb
770 * - swap the limbs themselves.
771 * For that, simultaneously traverse the limbs from left to right
772 * and from right to left, as long as the left index is not bigger
773 * than the right index (it's not a problem if limbs is odd and the
774 * indices coincide in the last iteration).
775 */
Hanno Beckerda1655a2017-10-18 14:21:44 +0100776 for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 );
777 cur_limb_left <= cur_limb_right;
778 cur_limb_left++, cur_limb_right-- )
779 {
Hanno Beckerf8720072018-11-08 11:53:49 +0000780 mbedtls_mpi_uint tmp;
781 /* Note that if cur_limb_left == cur_limb_right,
782 * this code effectively swaps the bytes only once. */
783 tmp = mpi_uint_bigendian_to_host( *cur_limb_left );
784 *cur_limb_left = mpi_uint_bigendian_to_host( *cur_limb_right );
785 *cur_limb_right = tmp;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100786 }
Hanno Beckerda1655a2017-10-18 14:21:44 +0100787}
788
Paul Bakker5121ce52009-01-03 21:22:43 +0000789/*
Janos Follatha778a942019-02-13 10:28:28 +0000790 * Import X from unsigned binary data, little endian
791 */
792int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
793 const unsigned char *buf, size_t buflen )
794{
Janos Follath24eed8d2019-11-22 13:21:35 +0000795 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follatha778a942019-02-13 10:28:28 +0000796 size_t i;
797 size_t const limbs = CHARS_TO_LIMBS( buflen );
798
799 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200800 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000801
802 for( i = 0; i < buflen; i++ )
803 X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
804
805cleanup:
806
Janos Follath171a7ef2019-02-15 16:17:45 +0000807 /*
808 * This function is also used to import keys. However, wiping the buffers
809 * upon failure is not necessary because failure only can happen before any
810 * input is copied.
811 */
Janos Follatha778a942019-02-13 10:28:28 +0000812 return( ret );
813}
814
815/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000816 * Import X from unsigned binary data, big endian
817 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200818int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000819{
Janos Follath24eed8d2019-11-22 13:21:35 +0000820 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100821 size_t const limbs = CHARS_TO_LIMBS( buflen );
822 size_t const overhead = ( limbs * ciL ) - buflen;
823 unsigned char *Xp;
Paul Bakker5121ce52009-01-03 21:22:43 +0000824
Hanno Becker8ce11a32018-12-19 16:18:52 +0000825 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000826 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
827
Hanno Becker073c1992017-10-17 15:17:27 +0100828 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200829 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000830
Gilles Peskine3130ce22021-06-02 22:17:52 +0200831 /* Avoid calling `memcpy` with NULL source or destination argument,
Hanno Becker0e810b92019-01-03 17:13:11 +0000832 * even if buflen is 0. */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200833 if( buflen != 0 )
Hanno Becker0e810b92019-01-03 17:13:11 +0000834 {
835 Xp = (unsigned char*) X->p;
836 memcpy( Xp + overhead, buf, buflen );
Hanno Beckerda1655a2017-10-18 14:21:44 +0100837
Hanno Becker0e810b92019-01-03 17:13:11 +0000838 mpi_bigendian_to_host( X->p, limbs );
839 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000840
841cleanup:
842
Janos Follath171a7ef2019-02-15 16:17:45 +0000843 /*
844 * This function is also used to import keys. However, wiping the buffers
845 * upon failure is not necessary because failure only can happen before any
846 * input is copied.
847 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000848 return( ret );
849}
850
851/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000852 * Export X into unsigned binary data, little endian
853 */
854int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
855 unsigned char *buf, size_t buflen )
856{
857 size_t stored_bytes = X->n * ciL;
858 size_t bytes_to_copy;
859 size_t i;
860
861 if( stored_bytes < buflen )
862 {
863 bytes_to_copy = stored_bytes;
864 }
865 else
866 {
867 bytes_to_copy = buflen;
868
869 /* The output buffer is smaller than the allocated size of X.
870 * However X may fit if its leading bytes are zero. */
871 for( i = bytes_to_copy; i < stored_bytes; i++ )
872 {
873 if( GET_BYTE( X, i ) != 0 )
874 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
875 }
876 }
877
878 for( i = 0; i < bytes_to_copy; i++ )
879 buf[i] = GET_BYTE( X, i );
880
881 if( stored_bytes < buflen )
882 {
883 /* Write trailing 0 bytes */
884 memset( buf + stored_bytes, 0, buflen - stored_bytes );
885 }
886
887 return( 0 );
888}
889
890/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000891 * Export X into unsigned binary data, big endian
892 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100893int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
894 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000895{
Hanno Becker73d7d792018-12-11 10:35:51 +0000896 size_t stored_bytes;
Gilles Peskine11cdb052018-11-20 16:47:47 +0100897 size_t bytes_to_copy;
898 unsigned char *p;
899 size_t i;
Paul Bakker5121ce52009-01-03 21:22:43 +0000900
Hanno Becker73d7d792018-12-11 10:35:51 +0000901 MPI_VALIDATE_RET( X != NULL );
902 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
903
904 stored_bytes = X->n * ciL;
905
Gilles Peskine11cdb052018-11-20 16:47:47 +0100906 if( stored_bytes < buflen )
907 {
908 /* There is enough space in the output buffer. Write initial
909 * null bytes and record the position at which to start
910 * writing the significant bytes. In this case, the execution
911 * trace of this function does not depend on the value of the
912 * number. */
913 bytes_to_copy = stored_bytes;
914 p = buf + buflen - stored_bytes;
915 memset( buf, 0, buflen - stored_bytes );
916 }
917 else
918 {
919 /* The output buffer is smaller than the allocated size of X.
920 * However X may fit if its leading bytes are zero. */
921 bytes_to_copy = buflen;
922 p = buf;
923 for( i = bytes_to_copy; i < stored_bytes; i++ )
924 {
925 if( GET_BYTE( X, i ) != 0 )
926 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
927 }
928 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000929
Gilles Peskine11cdb052018-11-20 16:47:47 +0100930 for( i = 0; i < bytes_to_copy; i++ )
931 p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
Paul Bakker5121ce52009-01-03 21:22:43 +0000932
933 return( 0 );
934}
935
936/*
937 * Left-shift: X <<= count
938 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200939int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000940{
Janos Follath24eed8d2019-11-22 13:21:35 +0000941 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000942 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200943 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000944 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000945
946 v0 = count / (biL );
947 t1 = count & (biL - 1);
948
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200949 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000950
Paul Bakkerf9688572011-05-05 10:00:45 +0000951 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200952 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000953
954 ret = 0;
955
956 /*
957 * shift by count / limb_size
958 */
959 if( v0 > 0 )
960 {
Paul Bakker23986e52011-04-24 08:57:21 +0000961 for( i = X->n; i > v0; i-- )
962 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000963
Paul Bakker23986e52011-04-24 08:57:21 +0000964 for( ; i > 0; i-- )
965 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000966 }
967
968 /*
969 * shift by count % limb_size
970 */
971 if( t1 > 0 )
972 {
973 for( i = v0; i < X->n; i++ )
974 {
975 r1 = X->p[i] >> (biL - t1);
976 X->p[i] <<= t1;
977 X->p[i] |= r0;
978 r0 = r1;
979 }
980 }
981
982cleanup:
983
984 return( ret );
985}
986
987/*
988 * Right-shift: X >>= count
989 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200990int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000991{
Paul Bakker23986e52011-04-24 08:57:21 +0000992 size_t i, v0, v1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200993 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000994 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000995
996 v0 = count / biL;
997 v1 = count & (biL - 1);
998
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100999 if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001000 return mbedtls_mpi_lset( X, 0 );
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +01001001
Paul Bakker5121ce52009-01-03 21:22:43 +00001002 /*
1003 * shift by count / limb_size
1004 */
1005 if( v0 > 0 )
1006 {
1007 for( i = 0; i < X->n - v0; i++ )
1008 X->p[i] = X->p[i + v0];
1009
1010 for( ; i < X->n; i++ )
1011 X->p[i] = 0;
1012 }
1013
1014 /*
1015 * shift by count % limb_size
1016 */
1017 if( v1 > 0 )
1018 {
Paul Bakker23986e52011-04-24 08:57:21 +00001019 for( i = X->n; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001020 {
Paul Bakker23986e52011-04-24 08:57:21 +00001021 r1 = X->p[i - 1] << (biL - v1);
1022 X->p[i - 1] >>= v1;
1023 X->p[i - 1] |= r0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001024 r0 = r1;
1025 }
1026 }
1027
1028 return( 0 );
1029}
1030
1031/*
1032 * Compare unsigned values
1033 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001034int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +00001035{
Paul Bakker23986e52011-04-24 08:57:21 +00001036 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +00001037 MPI_VALIDATE_RET( X != NULL );
1038 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001039
Paul Bakker23986e52011-04-24 08:57:21 +00001040 for( i = X->n; i > 0; i-- )
1041 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001042 break;
1043
Paul Bakker23986e52011-04-24 08:57:21 +00001044 for( j = Y->n; j > 0; j-- )
1045 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001046 break;
1047
Paul Bakker23986e52011-04-24 08:57:21 +00001048 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001049 return( 0 );
1050
1051 if( i > j ) return( 1 );
1052 if( j > i ) return( -1 );
1053
Paul Bakker23986e52011-04-24 08:57:21 +00001054 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001055 {
Paul Bakker23986e52011-04-24 08:57:21 +00001056 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
1057 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001058 }
1059
1060 return( 0 );
1061}
1062
1063/*
1064 * Compare signed values
1065 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001066int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +00001067{
Paul Bakker23986e52011-04-24 08:57:21 +00001068 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +00001069 MPI_VALIDATE_RET( X != NULL );
1070 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001071
Paul Bakker23986e52011-04-24 08:57:21 +00001072 for( i = X->n; i > 0; i-- )
1073 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001074 break;
1075
Paul Bakker23986e52011-04-24 08:57:21 +00001076 for( j = Y->n; j > 0; j-- )
1077 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001078 break;
1079
Paul Bakker23986e52011-04-24 08:57:21 +00001080 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001081 return( 0 );
1082
1083 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +00001084 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +00001085
1086 if( X->s > 0 && Y->s < 0 ) return( 1 );
1087 if( Y->s > 0 && X->s < 0 ) return( -1 );
1088
Paul Bakker23986e52011-04-24 08:57:21 +00001089 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001090 {
Paul Bakker23986e52011-04-24 08:57:21 +00001091 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
1092 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +00001093 }
1094
1095 return( 0 );
1096}
1097
Janos Follathee6abce2019-09-05 14:47:19 +01001098/*
Paul Bakker5121ce52009-01-03 21:22:43 +00001099 * Compare signed values
1100 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001101int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +00001102{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001103 mbedtls_mpi Y;
1104 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001105 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001106
Gilles Peskineae7cbd72022-11-15 23:25:27 +01001107 *p = mpi_sint_abs( z );
Paul Bakker5121ce52009-01-03 21:22:43 +00001108 Y.s = ( z < 0 ) ? -1 : 1;
1109 Y.n = 1;
1110 Y.p = p;
1111
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001112 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001113}
1114
1115/*
1116 * Unsigned addition: X = |A| + |B| (HAC 14.7)
1117 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001118int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001119{
Janos Follath24eed8d2019-11-22 13:21:35 +00001120 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001121 size_t i, j;
Janos Follath6c922682015-10-30 17:43:11 +01001122 mbedtls_mpi_uint *o, *p, c, tmp;
Hanno Becker73d7d792018-12-11 10:35:51 +00001123 MPI_VALIDATE_RET( X != NULL );
1124 MPI_VALIDATE_RET( A != NULL );
1125 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001126
1127 if( X == B )
1128 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001129 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +00001130 }
1131
1132 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001133 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +02001134
Paul Bakkerf7ca7b92009-06-20 10:31:06 +00001135 /*
1136 * X should always be positive as a result of unsigned additions.
1137 */
1138 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001139
Paul Bakker23986e52011-04-24 08:57:21 +00001140 for( j = B->n; j > 0; j-- )
1141 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001142 break;
1143
Gilles Peskine103cf592022-11-15 22:59:00 +01001144 /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
1145 * and B is 0 (of any size). */
1146 if( j == 0 )
1147 return( 0 );
1148
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001149 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001150
1151 o = B->p; p = X->p; c = 0;
1152
Janos Follath6c922682015-10-30 17:43:11 +01001153 /*
1154 * tmp is used because it might happen that p == o
1155 */
Paul Bakker23986e52011-04-24 08:57:21 +00001156 for( i = 0; i < j; i++, o++, p++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001157 {
Janos Follath6c922682015-10-30 17:43:11 +01001158 tmp= *o;
Paul Bakker5121ce52009-01-03 21:22:43 +00001159 *p += c; c = ( *p < c );
Janos Follath6c922682015-10-30 17:43:11 +01001160 *p += tmp; c += ( *p < tmp );
Paul Bakker5121ce52009-01-03 21:22:43 +00001161 }
1162
1163 while( c != 0 )
1164 {
1165 if( i >= X->n )
1166 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001167 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001168 p = X->p + i;
1169 }
1170
Paul Bakker2d319fd2012-09-16 21:34:26 +00001171 *p += c; c = ( *p < c ); i++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +00001172 }
1173
1174cleanup:
1175
1176 return( ret );
1177}
1178
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001179/**
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001180 * Helper for mbedtls_mpi subtraction.
1181 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001182 * Calculate l - r where l and r have the same size.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001183 * This function operates modulo (2^ciL)^n and returns the carry
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001184 * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001185 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001186 * d may be aliased to l or r.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001187 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001188 * \param n Number of limbs of \p d, \p l and \p r.
1189 * \param[out] d The result of the subtraction.
1190 * \param[in] l The left operand.
1191 * \param[in] r The right operand.
1192 *
1193 * \return 1 if `l < r`.
1194 * 0 if `l >= r`.
Paul Bakker5121ce52009-01-03 21:22:43 +00001195 */
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001196static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
1197 mbedtls_mpi_uint *d,
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001198 const mbedtls_mpi_uint *l,
1199 const mbedtls_mpi_uint *r )
Paul Bakker5121ce52009-01-03 21:22:43 +00001200{
Paul Bakker23986e52011-04-24 08:57:21 +00001201 size_t i;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001202 mbedtls_mpi_uint c = 0, t, z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001203
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001204 for( i = 0; i < n; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001205 {
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001206 z = ( l[i] < c ); t = l[i] - c;
1207 c = ( t < r[i] ) + z; d[i] = t - r[i];
Paul Bakker5121ce52009-01-03 21:22:43 +00001208 }
1209
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001210 return( c );
Paul Bakker5121ce52009-01-03 21:22:43 +00001211}
1212
1213/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001214 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +00001215 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001216int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001217{
Janos Follath24eed8d2019-11-22 13:21:35 +00001218 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001219 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001220 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +00001221 MPI_VALIDATE_RET( X != NULL );
1222 MPI_VALIDATE_RET( A != NULL );
1223 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001224
Paul Bakker23986e52011-04-24 08:57:21 +00001225 for( n = B->n; n > 0; n-- )
1226 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001227 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +01001228 if( n > A->n )
1229 {
1230 /* B >= (2^ciL)^n > A */
1231 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1232 goto cleanup;
1233 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001234
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001235 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
1236
1237 /* Set the high limbs of X to match A. Don't touch the lower limbs
1238 * because X might be aliased to B, and we must not overwrite the
1239 * significant digits of B. */
1240 if( A->n > n )
1241 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
1242 if( X->n > A->n )
1243 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
1244
1245 carry = mpi_sub_hlp( n, X->p, A->p, B->p );
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001246 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001247 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001248 /* Propagate the carry to the first nonzero limb of X. */
1249 for( ; n < X->n && X->p[n] == 0; n++ )
1250 --X->p[n];
1251 /* If we ran out of space for the carry, it means that the result
1252 * is negative. */
1253 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +02001254 {
1255 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1256 goto cleanup;
1257 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001258 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001259 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001260
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001261 /* X should always be positive as a result of unsigned subtractions. */
1262 X->s = 1;
1263
Paul Bakker5121ce52009-01-03 21:22:43 +00001264cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +00001265 return( ret );
1266}
1267
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001268/* Common function for signed addition and subtraction.
1269 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001270 */
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001271static int add_sub_mpi( mbedtls_mpi *X,
1272 const mbedtls_mpi *A, const mbedtls_mpi *B,
1273 int flip_B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001274{
Hanno Becker73d7d792018-12-11 10:35:51 +00001275 int ret, s;
1276 MPI_VALIDATE_RET( X != NULL );
1277 MPI_VALIDATE_RET( A != NULL );
1278 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001279
Hanno Becker73d7d792018-12-11 10:35:51 +00001280 s = A->s;
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001281 if( A->s * B->s * flip_B < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001282 {
Gilles Peskine581c4602022-11-09 22:02:16 +01001283 int cmp = mbedtls_mpi_cmp_abs( A, B );
1284 if( cmp >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001285 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001286 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Gilles Peskine581c4602022-11-09 22:02:16 +01001287 /* If |A| = |B|, the result is 0 and we must set the sign bit
1288 * to +1 regardless of which of A or B was negative. Otherwise,
1289 * since |A| > |B|, the sign is the sign of A. */
1290 X->s = cmp == 0 ? 1 : s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001291 }
1292 else
1293 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001294 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Gilles Peskine581c4602022-11-09 22:02:16 +01001295 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001296 X->s = -s;
1297 }
1298 }
1299 else
1300 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001301 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001302 X->s = s;
1303 }
1304
1305cleanup:
1306
1307 return( ret );
1308}
1309
1310/*
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001311 * Signed addition: X = A + B
1312 */
1313int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
1314{
1315 return( add_sub_mpi( X, A, B, 1 ) );
1316}
1317
1318/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001319 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001320 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001321int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001322{
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001323 return( add_sub_mpi( X, A, B, -1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001324}
1325
1326/*
1327 * Signed addition: X = A + b
1328 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001329int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001330{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001331 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001332 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001333 MPI_VALIDATE_RET( X != NULL );
1334 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001335
Gilles Peskineae7cbd72022-11-15 23:25:27 +01001336 p[0] = mpi_sint_abs( b );
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001337 B.s = ( b < 0 ) ? -1 : 1;
1338 B.n = 1;
1339 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001340
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001341 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001342}
1343
1344/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001345 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001346 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001347int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001348{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001349 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001350 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001351 MPI_VALIDATE_RET( X != NULL );
1352 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001353
Gilles Peskineae7cbd72022-11-15 23:25:27 +01001354 p[0] = mpi_sint_abs( b );
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001355 B.s = ( b < 0 ) ? -1 : 1;
1356 B.n = 1;
1357 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001358
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001359 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001360}
1361
Gilles Peskinea5d8d892020-07-23 21:27:15 +02001362/** Helper for mbedtls_mpi multiplication.
1363 *
1364 * Add \p b * \p s to \p d.
1365 *
1366 * \param i The number of limbs of \p s.
1367 * \param[in] s A bignum to multiply, of size \p i.
1368 * It may overlap with \p d, but only if
1369 * \p d <= \p s.
1370 * Its leading limb must not be \c 0.
1371 * \param[in,out] d The bignum to add to.
1372 * It must be sufficiently large to store the
1373 * result of the multiplication. This means
1374 * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
1375 * is not known a priori.
1376 * \param b A scalar to multiply.
Paul Bakkerfc4f46f2013-06-24 19:23:56 +02001377 */
1378static
1379#if defined(__APPLE__) && defined(__arm__)
1380/*
1381 * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
1382 * appears to need this to prevent bad ARM code generation at -O3.
1383 */
1384__attribute__ ((noinline))
1385#endif
Gilles Peskinea5d8d892020-07-23 21:27:15 +02001386void mpi_mul_hlp( size_t i,
1387 const mbedtls_mpi_uint *s,
1388 mbedtls_mpi_uint *d,
1389 mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001390{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001391 mbedtls_mpi_uint c = 0, t = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001392
1393#if defined(MULADDC_HUIT)
1394 for( ; i >= 8; i -= 8 )
1395 {
1396 MULADDC_INIT
1397 MULADDC_HUIT
1398 MULADDC_STOP
1399 }
1400
1401 for( ; i > 0; i-- )
1402 {
1403 MULADDC_INIT
1404 MULADDC_CORE
1405 MULADDC_STOP
1406 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001407#else /* MULADDC_HUIT */
Paul Bakker5121ce52009-01-03 21:22:43 +00001408 for( ; i >= 16; i -= 16 )
1409 {
1410 MULADDC_INIT
1411 MULADDC_CORE MULADDC_CORE
1412 MULADDC_CORE MULADDC_CORE
1413 MULADDC_CORE MULADDC_CORE
1414 MULADDC_CORE MULADDC_CORE
1415
1416 MULADDC_CORE MULADDC_CORE
1417 MULADDC_CORE MULADDC_CORE
1418 MULADDC_CORE MULADDC_CORE
1419 MULADDC_CORE MULADDC_CORE
1420 MULADDC_STOP
1421 }
1422
1423 for( ; i >= 8; i -= 8 )
1424 {
1425 MULADDC_INIT
1426 MULADDC_CORE MULADDC_CORE
1427 MULADDC_CORE MULADDC_CORE
1428
1429 MULADDC_CORE MULADDC_CORE
1430 MULADDC_CORE MULADDC_CORE
1431 MULADDC_STOP
1432 }
1433
1434 for( ; i > 0; i-- )
1435 {
1436 MULADDC_INIT
1437 MULADDC_CORE
1438 MULADDC_STOP
1439 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001440#endif /* MULADDC_HUIT */
Paul Bakker5121ce52009-01-03 21:22:43 +00001441
1442 t++;
1443
Gilles Peskine8e464c42020-07-24 00:08:38 +02001444 while( c != 0 )
1445 {
Paul Bakker5121ce52009-01-03 21:22:43 +00001446 *d += c; c = ( *d < c ); d++;
1447 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001448}
1449
1450/*
1451 * Baseline multiplication: X = A * B (HAC 14.12)
1452 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001453int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001454{
Janos Follath24eed8d2019-11-22 13:21:35 +00001455 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001456 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001457 mbedtls_mpi TA, TB;
Gilles Peskined65b5002021-06-15 21:44:32 +02001458 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001459 MPI_VALIDATE_RET( X != NULL );
1460 MPI_VALIDATE_RET( A != NULL );
1461 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001462
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001463 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001464
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001465 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1466 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001467
Paul Bakker23986e52011-04-24 08:57:21 +00001468 for( i = A->n; i > 0; i-- )
1469 if( A->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001470 break;
Gilles Peskine38a384d2021-06-17 14:35:25 +02001471 if( i == 0 )
Gilles Peskined65b5002021-06-15 21:44:32 +02001472 result_is_zero = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001473
Paul Bakker23986e52011-04-24 08:57:21 +00001474 for( j = B->n; j > 0; j-- )
1475 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001476 break;
Gilles Peskine38a384d2021-06-17 14:35:25 +02001477 if( j == 0 )
Gilles Peskined65b5002021-06-15 21:44:32 +02001478 result_is_zero = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001479
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001480 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
1481 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001482
Alexey Skalozub8e75e682016-01-13 21:59:27 +02001483 for( ; j > 0; j-- )
1484 mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001485
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001486 /* If the result is 0, we don't shortcut the operation, which reduces
1487 * but does not eliminate side channels leaking the zero-ness. We do
1488 * need to take care to set the sign bit properly since the library does
1489 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskined65b5002021-06-15 21:44:32 +02001490 if( result_is_zero )
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001491 X->s = 1;
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001492 else
1493 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001494
1495cleanup:
1496
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001497 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001498
1499 return( ret );
1500}
1501
1502/*
1503 * Baseline multiplication: X = A * b
1504 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001505int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001506{
Hanno Becker73d7d792018-12-11 10:35:51 +00001507 MPI_VALIDATE_RET( X != NULL );
1508 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001509
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001510 /* mpi_mul_hlp can't deal with a leading 0. */
1511 size_t n = A->n;
1512 while( n > 0 && A->p[n - 1] == 0 )
1513 --n;
Paul Bakker5121ce52009-01-03 21:22:43 +00001514
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001515 /* The general method below doesn't work if n==0 or b==0. By chance
1516 * calculating the result is trivial in those cases. */
1517 if( b == 0 || n == 0 )
1518 {
Paul Elliott986b55a2021-04-20 21:46:29 +01001519 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001520 }
1521
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001522 /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001523 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001524 /* In general, A * b requires 1 limb more than b. If
1525 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1526 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001527 * copy() will take care of the growth if needed. However, experimentally,
1528 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001529 * calls to calloc() in ECP code, presumably because it reuses the
1530 * same mpi for a while and this way the mpi is more likely to directly
1531 * grow to its final size. */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001532 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
1533 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
1534 mpi_mul_hlp( n, A->p, X->p, b - 1 );
1535
1536cleanup:
1537 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001538}
1539
1540/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001541 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1542 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001543 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001544static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1545 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001546{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001547#if defined(MBEDTLS_HAVE_UDBL)
1548 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001549#else
Simon Butcher9803d072016-01-03 00:24:34 +00001550 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1551 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001552 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1553 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001554 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001555#endif
1556
Simon Butcher15b15d12015-11-26 19:35:03 +00001557 /*
1558 * Check for overflow
1559 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001560 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001561 {
Glenn Straussb6466c82023-01-06 11:29:04 +00001562 if (r != NULL) *r = ~(mbedtls_mpi_uint)0u;
Simon Butcher15b15d12015-11-26 19:35:03 +00001563
Glenn Straussb6466c82023-01-06 11:29:04 +00001564 return ( ~(mbedtls_mpi_uint)0u );
Simon Butcher15b15d12015-11-26 19:35:03 +00001565 }
1566
1567#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001568 dividend = (mbedtls_t_udbl) u1 << biL;
1569 dividend |= (mbedtls_t_udbl) u0;
1570 quotient = dividend / d;
1571 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1572 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1573
1574 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001575 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001576
1577 return (mbedtls_mpi_uint) quotient;
1578#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001579
1580 /*
1581 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1582 * Vol. 2 - Seminumerical Algorithms, Knuth
1583 */
1584
1585 /*
1586 * Normalize the divisor, d, and dividend, u0, u1
1587 */
1588 s = mbedtls_clz( d );
1589 d = d << s;
1590
1591 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001592 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001593 u0 = u0 << s;
1594
1595 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001596 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001597
1598 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001599 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001600
1601 /*
1602 * Find the first quotient and remainder
1603 */
1604 q1 = u1 / d1;
1605 r0 = u1 - d1 * q1;
1606
1607 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1608 {
1609 q1 -= 1;
1610 r0 += d1;
1611
1612 if ( r0 >= radix ) break;
1613 }
1614
Simon Butcherf5ba0452015-12-27 23:01:55 +00001615 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001616 q0 = rAX / d1;
1617 r0 = rAX - q0 * d1;
1618
1619 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1620 {
1621 q0 -= 1;
1622 r0 += d1;
1623
1624 if ( r0 >= radix ) break;
1625 }
1626
1627 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001628 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001629
1630 quotient = q1 * radix + q0;
1631
1632 return quotient;
1633#endif
1634}
1635
1636/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001637 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001638 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001639int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1640 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001641{
Janos Follath24eed8d2019-11-22 13:21:35 +00001642 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001643 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001644 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001645 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001646 MPI_VALIDATE_RET( A != NULL );
1647 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001648
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001649 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1650 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001651
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001652 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001653 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001654 /*
1655 * Avoid dynamic memory allocations for constant-size T2.
1656 *
1657 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1658 * so nobody increase the size of the MPI and we're safe to use an on-stack
1659 * buffer.
1660 */
Alexander K35d6d462019-10-31 14:46:45 +03001661 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001662 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1663 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001664
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001665 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001666 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001667 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1668 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001669 return( 0 );
1670 }
1671
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001672 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1673 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001674 X.s = Y.s = 1;
1675
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001676 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1677 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001678 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001679
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001680 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001681 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001682 {
1683 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001684 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1685 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001686 }
1687 else k = 0;
1688
1689 n = X.n - 1;
1690 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001691 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001692
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001693 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001694 {
1695 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001696 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001697 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001698 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001699
1700 for( i = n; i > t ; i-- )
1701 {
1702 if( X.p[i] >= Y.p[t] )
Glenn Straussb6466c82023-01-06 11:29:04 +00001703 Z.p[i - t - 1] = ~(mbedtls_mpi_uint)0u;
Paul Bakker5121ce52009-01-03 21:22:43 +00001704 else
1705 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001706 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1707 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001708 }
1709
Alexander K35d6d462019-10-31 14:46:45 +03001710 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1711 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1712 T2.p[2] = X.p[i];
1713
Paul Bakker5121ce52009-01-03 21:22:43 +00001714 Z.p[i - t - 1]++;
1715 do
1716 {
1717 Z.p[i - t - 1]--;
1718
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001719 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001720 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001721 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001722 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001723 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001724 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001725
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001726 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1727 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1728 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001729
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001730 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001731 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001732 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1733 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1734 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001735 Z.p[i - t - 1]--;
1736 }
1737 }
1738
1739 if( Q != NULL )
1740 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001741 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001742 Q->s = A->s * B->s;
1743 }
1744
1745 if( R != NULL )
1746 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001747 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001748 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001749 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001750
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001751 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001752 R->s = 1;
1753 }
1754
1755cleanup:
1756
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001757 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001758 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001759 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001760
1761 return( ret );
1762}
1763
1764/*
1765 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001766 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001767int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1768 const mbedtls_mpi *A,
1769 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001770{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001771 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001772 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001773 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001774
Gilles Peskineae7cbd72022-11-15 23:25:27 +01001775 p[0] = mpi_sint_abs( b );
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001776 B.s = ( b < 0 ) ? -1 : 1;
1777 B.n = 1;
1778 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001779
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001780 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001781}
1782
1783/*
1784 * Modulo: R = A mod B
1785 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001786int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001787{
Janos Follath24eed8d2019-11-22 13:21:35 +00001788 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001789 MPI_VALIDATE_RET( R != NULL );
1790 MPI_VALIDATE_RET( A != NULL );
1791 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001792
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001793 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1794 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001795
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001796 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001797
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001798 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1799 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001800
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001801 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1802 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001803
1804cleanup:
1805
1806 return( ret );
1807}
1808
1809/*
1810 * Modulo: r = A mod b
1811 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001812int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001813{
Paul Bakker23986e52011-04-24 08:57:21 +00001814 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001815 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001816 MPI_VALIDATE_RET( r != NULL );
1817 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001818
1819 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001820 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001821
1822 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001823 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001824
1825 /*
1826 * handle trivial cases
1827 */
Gilles Peskinec9529f92022-06-09 19:32:46 +02001828 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001829 {
1830 *r = 0;
1831 return( 0 );
1832 }
1833
1834 if( b == 2 )
1835 {
1836 *r = A->p[0] & 1;
1837 return( 0 );
1838 }
1839
1840 /*
1841 * general case
1842 */
Paul Bakker23986e52011-04-24 08:57:21 +00001843 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001844 {
Paul Bakker23986e52011-04-24 08:57:21 +00001845 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001846 y = ( y << biH ) | ( x >> biH );
1847 z = y / b;
1848 y -= z * b;
1849
1850 x <<= biH;
1851 y = ( y << biH ) | ( x >> biH );
1852 z = y / b;
1853 y -= z * b;
1854 }
1855
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001856 /*
1857 * If A is negative, then the current y represents a negative value.
1858 * Flipping it to the positive side.
1859 */
1860 if( A->s < 0 && y != 0 )
1861 y = b - y;
1862
Paul Bakker5121ce52009-01-03 21:22:43 +00001863 *r = y;
1864
1865 return( 0 );
1866}
1867
1868/*
1869 * Fast Montgomery initialization (thanks to Tom St Denis)
1870 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001871static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001872{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001873 mbedtls_mpi_uint x, m0 = N->p[0];
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001874 unsigned int i;
Paul Bakker5121ce52009-01-03 21:22:43 +00001875
1876 x = m0;
1877 x += ( ( m0 + 2 ) & 4 ) << 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001878
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001879 for( i = biL; i >= 8; i /= 2 )
1880 x *= ( 2 - ( m0 * x ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001881
1882 *mm = ~x + 1;
1883}
1884
Gilles Peskine2a82f722020-06-04 15:00:49 +02001885/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1886 *
1887 * \param[in,out] A One of the numbers to multiply.
Gilles Peskine221626f2020-06-08 22:37:50 +02001888 * It must have at least as many limbs as N
1889 * (A->n >= N->n), and any limbs beyond n are ignored.
Gilles Peskine2a82f722020-06-04 15:00:49 +02001890 * On successful completion, A contains the result of
1891 * the multiplication A * B * R^-1 mod N where
1892 * R = (2^ciL)^n.
1893 * \param[in] B One of the numbers to multiply.
1894 * It must be nonzero and must not have more limbs than N
1895 * (B->n <= N->n).
1896 * \param[in] N The modulo. N must be odd.
1897 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1898 * This is -N^-1 mod 2^ciL.
1899 * \param[in,out] T A bignum for temporary storage.
1900 * It must be at least twice the limb size of N plus 2
1901 * (T->n >= 2 * (N->n + 1)).
1902 * Its initial content is unused and
1903 * its final content is indeterminate.
1904 * Note that unlike the usual convention in the library
1905 * for `const mbedtls_mpi*`, the content of T can change.
Paul Bakker5121ce52009-01-03 21:22:43 +00001906 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001907static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001908 const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001909{
Paul Bakker23986e52011-04-24 08:57:21 +00001910 size_t i, n, m;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001911 mbedtls_mpi_uint u0, u1, *d;
Paul Bakker5121ce52009-01-03 21:22:43 +00001912
1913 memset( T->p, 0, T->n * ciL );
1914
1915 d = T->p;
1916 n = N->n;
1917 m = ( B->n < n ) ? B->n : n;
1918
1919 for( i = 0; i < n; i++ )
1920 {
1921 /*
1922 * T = (T + u0*B + u1*N) / 2^biL
1923 */
1924 u0 = A->p[i];
1925 u1 = ( d[0] + u0 * B->p[0] ) * mm;
1926
1927 mpi_mul_hlp( m, B->p, d, u0 );
1928 mpi_mul_hlp( n, N->p, d, u1 );
1929
1930 *d++ = u0; d[n + 1] = 0;
1931 }
1932
Gilles Peskine221626f2020-06-08 22:37:50 +02001933 /* At this point, d is either the desired result or the desired result
1934 * plus N. We now potentially subtract N, avoiding leaking whether the
1935 * subtraction is performed through side channels. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001936
Gilles Peskine221626f2020-06-08 22:37:50 +02001937 /* Copy the n least significant limbs of d to A, so that
1938 * A = d if d < N (recall that N has n limbs). */
1939 memcpy( A->p, d, n * ciL );
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001940 /* If d >= N then we want to set A to d - N. To prevent timing attacks,
Gilles Peskine221626f2020-06-08 22:37:50 +02001941 * do the calculation without using conditional tests. */
1942 /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
Gilles Peskine132c0972020-06-04 21:05:24 +02001943 d[n] += 1;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001944 d[n] -= mpi_sub_hlp( n, d, d, N->p );
Gilles Peskine221626f2020-06-08 22:37:50 +02001945 /* If d0 < N then d < (2^biL)^n
1946 * so d[n] == 0 and we want to keep A as it is.
1947 * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
1948 * so d[n] == 1 and we want to set A to the result of the subtraction
1949 * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
1950 * This exactly corresponds to a conditional assignment. */
Gabor Mezei18a44942021-10-20 11:59:27 +02001951 mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001952}
1953
1954/*
1955 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001956 *
1957 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001958 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001959static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
1960 mbedtls_mpi_uint mm, const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001961{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001962 mbedtls_mpi_uint z = 1;
1963 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001964
Paul Bakker8ddb6452013-02-27 14:56:33 +01001965 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001966 U.p = &z;
1967
Gilles Peskine4e91d472020-06-04 20:55:15 +02001968 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001969}
1970
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01001971/**
1972 * Select an MPI from a table without leaking the index.
1973 *
1974 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1975 * reads the entire table in order to avoid leaking the value of idx to an
1976 * attacker able to observe memory access patterns.
1977 *
1978 * \param[out] R Where to write the selected MPI.
1979 * \param[in] T The table to read from.
1980 * \param[in] T_size The number of elements in the table.
1981 * \param[in] idx The index of the element to select;
1982 * this must satisfy 0 <= idx < T_size.
1983 *
1984 * \return \c 0 on success, or a negative error code.
1985 */
1986static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1987{
1988 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1989
1990 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnardeaafa492021-06-03 10:42:46 +02001991 {
1992 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei18a44942021-10-20 11:59:27 +02001993 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnardeaafa492021-06-03 10:42:46 +02001994 }
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01001995
1996cleanup:
1997 return( ret );
1998}
1999
Paul Bakker5121ce52009-01-03 21:22:43 +00002000/*
2001 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
2002 */
Hanno Becker73d7d792018-12-11 10:35:51 +00002003int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
2004 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano284857e2021-07-14 10:20:09 +01002005 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00002006{
Janos Follath24eed8d2019-11-22 13:21:35 +00002007 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follathd88e2192022-11-21 15:54:20 +00002008 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00002009 size_t i, j, nblimbs;
2010 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002011 mbedtls_mpi_uint ei, mm, state;
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002012 mbedtls_mpi RR, T, W[ (size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00002013 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00002014
Hanno Becker73d7d792018-12-11 10:35:51 +00002015 MPI_VALIDATE_RET( X != NULL );
2016 MPI_VALIDATE_RET( A != NULL );
2017 MPI_VALIDATE_RET( E != NULL );
2018 MPI_VALIDATE_RET( N != NULL );
2019
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01002020 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002021 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002022
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002023 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
2024 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00002025
Chris Jones9246d042020-11-25 15:12:39 +00002026 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
2027 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
2028 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2029
Paul Bakkerf6198c12012-05-16 08:02:29 +00002030 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002031 * Init temps and window size
2032 */
2033 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002034 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
2035 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002036 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00002037 memset( W, 0, sizeof( W ) );
2038
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002039 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00002040
Janos Follath66323832022-11-21 14:48:02 +00002041 window_bitsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
Paul Bakker5121ce52009-01-03 21:22:43 +00002042 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
2043
Peter Kolbuse6bcad32018-12-11 14:01:44 -06002044#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Janos Follath66323832022-11-21 14:48:02 +00002045 if( window_bitsize > MBEDTLS_MPI_WINDOW_SIZE )
2046 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06002047#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00002048
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002049 const size_t w_table_used_size = (size_t) 1 << window_bitsize;
Janos Follath6fa7a762022-11-22 10:18:06 +00002050
Paul Bakker5121ce52009-01-03 21:22:43 +00002051 /*
Janos Follath6e2d8e32022-11-21 16:14:54 +00002052 * This function is not constant-trace: its memory accesses depend on the
2053 * exponent value. To defend against timing attacks, callers (such as RSA
2054 * and DHM) should use exponent blinding. However this is not enough if the
2055 * adversary can find the exponent in a single trace, so this function
2056 * takes extra precautions against adversaries who can observe memory
2057 * access patterns.
Janos Follath3a3c50c2022-11-11 15:56:38 +00002058 *
Janos Follath6e2d8e32022-11-21 16:14:54 +00002059 * This function performs a series of multiplications by table elements and
2060 * squarings, and we want the prevent the adversary from finding out which
2061 * table element was used, and from distinguishing between multiplications
2062 * and squarings. Firstly, when multiplying by an element of the window
2063 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
2064 * squarings as having a different memory access patterns from other
2065 * multiplications. So secondly, we put the accumulator X in the table as
2066 * well, and also do a constant-trace table lookup to multiply by X.
2067 *
2068 * This way, all multiplications take the form of a lookup-and-multiply.
2069 * The number of lookup-and-multiply operations inside each iteration of
2070 * the main loop still depends on the bits of the exponent, but since the
2071 * other operations in the loop don't have an easily recognizable memory
2072 * trace, an adversary is unlikely to be able to observe the exact
2073 * patterns.
2074 *
2075 * An adversary may still be able to recover the exponent if they can
2076 * observe both memory accesses and branches. However, branch prediction
2077 * exploitation typically requires many traces of execution over the same
2078 * data, which is defeated by randomized blinding.
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002079 *
2080 * To achieve this, we make a copy of X and we use the table entry in each
2081 * calculation from this point on.
Janos Follath91c02862022-10-04 13:27:40 +01002082 */
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002083 const size_t x_index = 0;
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002084 mbedtls_mpi_init( &W[x_index] );
2085 mbedtls_mpi_copy( &W[x_index], X );
2086
2087 j = N->n + 1;
2088 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
2089 * and mpi_montred() calls later. Here we ensure that W[1] and X are
2090 * large enough, and later we'll grow other W[i] to the same length.
2091 * They must not be shrunk midway through this function!
Janos Follath3a3c50c2022-11-11 15:56:38 +00002092 */
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002093 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[x_index], j ) );
2094 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
2095 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Janos Follath91c02862022-10-04 13:27:40 +01002096
2097 /*
Paul Bakker50546922012-05-19 08:40:49 +00002098 * Compensate for negative A (and correct at the end)
2099 */
2100 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00002101 if( neg )
2102 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002103 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00002104 Apos.s = 1;
2105 A = &Apos;
2106 }
2107
2108 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002109 * If 1st call, pre-compute R^2 mod N
2110 */
Yuto Takano284857e2021-07-14 10:20:09 +01002111 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00002112 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002113 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
2114 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
2115 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002116
Yuto Takano284857e2021-07-14 10:20:09 +01002117 if( prec_RR != NULL )
2118 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002119 }
2120 else
Yuto Takano284857e2021-07-14 10:20:09 +01002121 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002122
2123 /*
2124 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
2125 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002126 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002127 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002128 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002129 /* This should be a no-op because W[1] is already that large before
2130 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
2131 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine0759cad2021-06-15 21:22:48 +02002132 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002133 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01002134 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002135 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002136
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002137 /* Note that this is safe because W[1] always has at least N->n limbs
2138 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine4e91d472020-06-04 20:55:15 +02002139 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002140
2141 /*
Janos Follath91c02862022-10-04 13:27:40 +01002142 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002143 */
Janos Follath91c02862022-10-04 13:27:40 +01002144 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[x_index], &RR ) );
2145 mpi_montred( &W[x_index], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002146
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002147
Janos Follath66323832022-11-21 14:48:02 +00002148 if( window_bitsize > 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002149 {
2150 /*
Janos Follathd88e2192022-11-21 15:54:20 +00002151 * W[i] = W[1] ^ i
2152 *
2153 * The first bit of the sliding window is always 1 and therefore we
2154 * only need to store the second half of the table.
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002155 *
2156 * (There are two special elements in the table: W[0] for the
2157 * accumulator/result and W[1] for A in Montgomery form. Both of these
2158 * are already set at this point.)
Paul Bakker5121ce52009-01-03 21:22:43 +00002159 */
Janos Follathd88e2192022-11-21 15:54:20 +00002160 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00002161
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002162 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
2163 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002164
Janos Follath66323832022-11-21 14:48:02 +00002165 for( i = 0; i < window_bitsize - 1; i++ )
Gilles Peskine4e91d472020-06-04 20:55:15 +02002166 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01002167
Paul Bakker5121ce52009-01-03 21:22:43 +00002168 /*
2169 * W[i] = W[i - 1] * W[1]
2170 */
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002171 for( i = j + 1; i < w_table_used_size; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002172 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002173 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
2174 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002175
Gilles Peskine4e91d472020-06-04 20:55:15 +02002176 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002177 }
2178 }
2179
2180 nblimbs = E->n;
2181 bufsize = 0;
2182 nbits = 0;
Janos Follath66323832022-11-21 14:48:02 +00002183 size_t exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00002184 state = 0;
2185
2186 while( 1 )
2187 {
2188 if( bufsize == 0 )
2189 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01002190 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002191 break;
2192
Paul Bakker0d7702c2013-10-29 16:18:35 +01002193 nblimbs--;
2194
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002195 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00002196 }
2197
2198 bufsize--;
2199
2200 ei = (E->p[nblimbs] >> bufsize) & 1;
2201
2202 /*
2203 * skip leading 0s
2204 */
2205 if( ei == 0 && state == 0 )
2206 continue;
2207
2208 if( ei == 0 && state == 1 )
2209 {
2210 /*
Janos Follath91c02862022-10-04 13:27:40 +01002211 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00002212 */
Janos Follathaadbadb2022-11-21 14:55:05 +00002213 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, x_index ) );
Janos Follath95655a22022-10-04 14:00:09 +01002214 mpi_montmul( &W[x_index], &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002215 continue;
2216 }
2217
2218 /*
2219 * add ei to current window
2220 */
2221 state = 2;
2222
2223 nbits++;
Janos Follath66323832022-11-21 14:48:02 +00002224 exponent_bits_in_window |= ( ei << ( window_bitsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002225
Janos Follath66323832022-11-21 14:48:02 +00002226 if( nbits == window_bitsize )
Paul Bakker5121ce52009-01-03 21:22:43 +00002227 {
2228 /*
Janos Follath66323832022-11-21 14:48:02 +00002229 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002230 */
Janos Follath66323832022-11-21 14:48:02 +00002231 for( i = 0; i < window_bitsize; i++ )
Janos Follath95655a22022-10-04 14:00:09 +01002232 {
Janos Follathaadbadb2022-11-21 14:55:05 +00002233 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size,
2234 x_index ) );
Janos Follath95655a22022-10-04 14:00:09 +01002235 mpi_montmul( &W[x_index], &WW, N, mm, &T );
2236 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002237
2238 /*
Janos Follath66323832022-11-21 14:48:02 +00002239 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002240 */
Janos Follathaadbadb2022-11-21 14:55:05 +00002241 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size,
Janos Follath66323832022-11-21 14:48:02 +00002242 exponent_bits_in_window ) );
Janos Follath91c02862022-10-04 13:27:40 +01002243 mpi_montmul( &W[x_index], &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002244
2245 state--;
2246 nbits = 0;
Janos Follath66323832022-11-21 14:48:02 +00002247 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00002248 }
2249 }
2250
2251 /*
2252 * process the remaining bits
2253 */
2254 for( i = 0; i < nbits; i++ )
2255 {
Janos Follathaadbadb2022-11-21 14:55:05 +00002256 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, x_index ) );
Janos Follath95655a22022-10-04 14:00:09 +01002257 mpi_montmul( &W[x_index], &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002258
Janos Follath66323832022-11-21 14:48:02 +00002259 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00002260
Janos Follathd88e2192022-11-21 15:54:20 +00002261 if( ( exponent_bits_in_window & ( (size_t) 1 << window_bitsize ) ) != 0 )
Janos Follath95655a22022-10-04 14:00:09 +01002262 {
Janos Follathaadbadb2022-11-21 14:55:05 +00002263 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, 1 ) );
Janos Follath95655a22022-10-04 14:00:09 +01002264 mpi_montmul( &W[x_index], &WW, N, mm, &T );
2265 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002266 }
2267
2268 /*
Janos Follath91c02862022-10-04 13:27:40 +01002269 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002270 */
Janos Follath91c02862022-10-04 13:27:40 +01002271 mpi_montred( &W[x_index], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002272
Hanno Beckera4af1c42017-04-18 09:07:45 +01002273 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00002274 {
Janos Follath91c02862022-10-04 13:27:40 +01002275 W[x_index].s = -1;
2276 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &W[x_index], N, &W[x_index] ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00002277 }
2278
Janos Follath91c02862022-10-04 13:27:40 +01002279 /*
2280 * Load the result in the output variable.
2281 */
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002282 mbedtls_mpi_copy( X, &W[x_index] );
Janos Follath91c02862022-10-04 13:27:40 +01002283
Paul Bakker5121ce52009-01-03 21:22:43 +00002284cleanup:
2285
Janos Follatha92f9152022-11-21 15:05:31 +00002286 /* The first bit of the sliding window is always 1 and therefore the first
2287 * half of the table was unused. */
2288 for( i = w_table_used_size/2; i < w_table_used_size; i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002289 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00002290
Janos Follathb118d542022-11-22 15:00:46 +00002291 mbedtls_mpi_free( &W[x_index] );
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002292 mbedtls_mpi_free( &W[1] );
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002293 mbedtls_mpi_free( &T );
2294 mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002295 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00002296
Yuto Takano284857e2021-07-14 10:20:09 +01002297 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002298 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002299
2300 return( ret );
2301}
2302
Paul Bakker5121ce52009-01-03 21:22:43 +00002303/*
2304 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
2305 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002306int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00002307{
Janos Follath24eed8d2019-11-22 13:21:35 +00002308 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00002309 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03002310 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00002311
Hanno Becker73d7d792018-12-11 10:35:51 +00002312 MPI_VALIDATE_RET( G != NULL );
2313 MPI_VALIDATE_RET( A != NULL );
2314 MPI_VALIDATE_RET( B != NULL );
2315
Alexander Ke8ad49f2019-08-16 16:16:07 +03002316 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00002317
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002318 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
2319 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002320
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002321 lz = mbedtls_mpi_lsb( &TA );
2322 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002323
Gilles Peskineb5e56ec2021-06-09 13:26:43 +02002324 /* The loop below gives the correct result when A==0 but not when B==0.
2325 * So have a special case for B==0. Leverage the fact that we just
2326 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
2327 * slightly more efficient than cmp_int(). */
2328 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
2329 {
2330 ret = mbedtls_mpi_copy( G, A );
2331 goto cleanup;
2332 }
2333
Paul Bakker66d5d072014-06-17 16:39:18 +02002334 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002335 lz = lzt;
2336
Paul Bakker5121ce52009-01-03 21:22:43 +00002337 TA.s = TB.s = 1;
2338
Gilles Peskineea9aa142021-06-16 13:42:04 +02002339 /* We mostly follow the procedure described in HAC 14.54, but with some
2340 * minor differences:
2341 * - Sequences of multiplications or divisions by 2 are grouped into a
2342 * single shift operation.
Gilles Peskine37d690c2021-06-21 18:58:39 +02002343 * - The procedure in HAC assumes that 0 < TB <= TA.
2344 * - The condition TB <= TA is not actually necessary for correctness.
2345 * TA and TB have symmetric roles except for the loop termination
2346 * condition, and the shifts at the beginning of the loop body
2347 * remove any significance from the ordering of TA vs TB before
2348 * the shifts.
2349 * - If TA = 0, the loop goes through 0 iterations and the result is
2350 * correctly TB.
2351 * - The case TB = 0 was short-circuited above.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002352 *
2353 * For the correctness proof below, decompose the original values of
2354 * A and B as
2355 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2356 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2357 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2358 * and gcd(A',B') is odd or 0.
2359 *
2360 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2361 * The code maintains the following invariant:
2362 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine6537bdb2021-06-15 22:09:39 +02002363 */
2364
Gilles Peskineea9aa142021-06-16 13:42:04 +02002365 /* Proof that the loop terminates:
2366 * At each iteration, either the right-shift by 1 is made on a nonzero
2367 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2368 * by at least 1, or the right-shift by 1 is made on zero and then
2369 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2370 * since in that case TB is calculated from TB-TA with the condition TB>TA).
2371 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002372 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002373 {
Gilles Peskineea9aa142021-06-16 13:42:04 +02002374 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002375 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
2376 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002377
Gilles Peskineea9aa142021-06-16 13:42:04 +02002378 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2379 * TA-TB is even so the division by 2 has an integer result.
2380 * Invariant (I) is preserved since any odd divisor of both TA and TB
2381 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case0e7791f2021-12-20 21:14:10 -08002382 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskineea9aa142021-06-16 13:42:04 +02002383 * divides TA.
2384 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002385 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002386 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002387 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
2388 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002389 }
2390 else
2391 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002392 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
2393 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002394 }
Gilles Peskineea9aa142021-06-16 13:42:04 +02002395 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002396 }
2397
Gilles Peskineea9aa142021-06-16 13:42:04 +02002398 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2399 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2400 * - If there was at least one loop iteration, then one of TA or TB is odd,
2401 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2402 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2403 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskineb798b352021-06-21 11:40:38 +02002404 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002405 */
2406
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002407 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
2408 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002409
2410cleanup:
2411
Alexander Ke8ad49f2019-08-16 16:16:07 +03002412 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00002413
2414 return( ret );
2415}
2416
Gilles Peskine8f454702021-04-01 15:57:18 +02002417/* Fill X with n_bytes random bytes.
2418 * X must already have room for those bytes.
Gilles Peskine23422e42021-06-03 11:51:09 +02002419 * The ordering of the bytes returned from the RNG is suitable for
2420 * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
Gilles Peskinea16001e2021-04-13 21:55:35 +02002421 * The size and sign of X are unchanged.
Gilles Peskine8f454702021-04-01 15:57:18 +02002422 * n_bytes must not be 0.
2423 */
2424static int mpi_fill_random_internal(
2425 mbedtls_mpi *X, size_t n_bytes,
2426 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2427{
2428 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2429 const size_t limbs = CHARS_TO_LIMBS( n_bytes );
2430 const size_t overhead = ( limbs * ciL ) - n_bytes;
2431
2432 if( X->n < limbs )
2433 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Gilles Peskine8f454702021-04-01 15:57:18 +02002434
Gilles Peskinea16001e2021-04-13 21:55:35 +02002435 memset( X->p, 0, overhead );
2436 memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
Gilles Peskine8f454702021-04-01 15:57:18 +02002437 MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
2438 mpi_bigendian_to_host( X->p, limbs );
2439
2440cleanup:
2441 return( ret );
2442}
2443
Paul Bakker33dc46b2014-04-30 16:11:39 +02002444/*
2445 * Fill X with size bytes of random.
2446 *
2447 * Use a temporary bytes representation to make sure the result is the same
Paul Bakkerc37b0ac2014-05-01 14:19:23 +02002448 * regardless of the platform endianness (useful when f_rng is actually
Paul Bakker33dc46b2014-04-30 16:11:39 +02002449 * deterministic, eg for tests).
2450 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002451int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002452 int (*f_rng)(void *, unsigned char *, size_t),
2453 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00002454{
Janos Follath24eed8d2019-11-22 13:21:35 +00002455 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker6dab6202019-01-02 16:42:29 +00002456 size_t const limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01002457
Hanno Becker8ce11a32018-12-19 16:18:52 +00002458 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002459 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02002460
Hanno Beckerda1655a2017-10-18 14:21:44 +01002461 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +02002462 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine8f454702021-04-01 15:57:18 +02002463 if( size == 0 )
2464 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00002465
Gilles Peskine8f454702021-04-01 15:57:18 +02002466 ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00002467
2468cleanup:
2469 return( ret );
2470}
2471
Gilles Peskine4699fa42021-03-29 22:02:55 +02002472int mbedtls_mpi_random( mbedtls_mpi *X,
2473 mbedtls_mpi_sint min,
2474 const mbedtls_mpi *N,
2475 int (*f_rng)(void *, unsigned char *, size_t),
2476 void *p_rng )
2477{
Gilles Peskine4699fa42021-03-29 22:02:55 +02002478 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002479 int count;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002480 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002481 size_t n_bits = mbedtls_mpi_bitlen( N );
2482 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002483 mbedtls_mpi lower_bound;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002484
Gilles Peskine9312ba52021-03-29 22:14:51 +02002485 if( min < 0 )
2486 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2487 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
2488 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2489
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002490 /*
2491 * When min == 0, each try has at worst a probability 1/2 of failing
2492 * (the msb has a probability 1/2 of being 0, and then the result will
2493 * be < N), so after 30 tries failure probability is a most 2**(-30).
2494 *
2495 * When N is just below a power of 2, as is the case when generating
Gilles Peskine3f613632021-04-15 11:45:19 +02002496 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002497 * overwhelming probability. When N is just above a power of 2,
Gilles Peskine3f613632021-04-15 11:45:19 +02002498 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002499 * a probability of failing that is almost 1/2.
2500 *
2501 * The probabilities are almost the same if min is nonzero but negligible
2502 * compared to N. This is always the case when N is crypto-sized, but
2503 * it's convenient to support small N for testing purposes. When N
2504 * is small, use a higher repeat count, otherwise the probability of
2505 * failure is macroscopic.
2506 */
Gilles Peskine11779072021-06-02 21:18:59 +02002507 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002508
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002509 mbedtls_mpi_init( &lower_bound );
2510
Gilles Peskine8f454702021-04-01 15:57:18 +02002511 /* Ensure that target MPI has exactly the same number of limbs
2512 * as the upper bound, even if the upper bound has leading zeros.
2513 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskine3130ce22021-06-02 22:17:52 +02002514 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002515 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
2516 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine8f454702021-04-01 15:57:18 +02002517
Gilles Peskine4699fa42021-03-29 22:02:55 +02002518 /*
2519 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2520 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2521 * - use the same byte ordering;
2522 * - keep the leftmost n_bits bits of the generated octet string;
2523 * - try until result is in the desired range.
2524 * This also avoids any bias, which is especially important for ECDSA.
2525 */
2526 do
2527 {
Gilles Peskine8f454702021-04-01 15:57:18 +02002528 MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002529 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2530
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002531 if( --count == 0 )
Gilles Peskine4699fa42021-03-29 22:02:55 +02002532 {
2533 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2534 goto cleanup;
2535 }
2536
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002537 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2538 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002539 }
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002540 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002541
2542cleanup:
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002543 mbedtls_mpi_free( &lower_bound );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002544 return( ret );
2545}
2546
Paul Bakker5121ce52009-01-03 21:22:43 +00002547/*
2548 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2549 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002550int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002551{
Janos Follath24eed8d2019-11-22 13:21:35 +00002552 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002553 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002554 MPI_VALIDATE_RET( X != NULL );
2555 MPI_VALIDATE_RET( A != NULL );
2556 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002557
Hanno Becker4bcb4912017-04-18 15:49:39 +01002558 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002559 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002560
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002561 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2562 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2563 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002564
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002565 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002566
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002567 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002568 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002569 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002570 goto cleanup;
2571 }
2572
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002573 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2574 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2575 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2576 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002577
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002578 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2579 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2580 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2581 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002582
2583 do
2584 {
2585 while( ( TU.p[0] & 1 ) == 0 )
2586 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002587 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002588
2589 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2590 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002591 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2592 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002593 }
2594
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002595 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2596 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002597 }
2598
2599 while( ( TV.p[0] & 1 ) == 0 )
2600 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002601 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002602
2603 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2604 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002605 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2606 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002607 }
2608
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002609 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2610 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002611 }
2612
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002613 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002614 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002615 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2616 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2617 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002618 }
2619 else
2620 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002621 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2622 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2623 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002624 }
2625 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002626 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002627
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002628 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2629 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002630
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002631 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2632 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002633
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002634 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002635
2636cleanup:
2637
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002638 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2639 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2640 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002641
2642 return( ret );
2643}
2644
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002645#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002646
Paul Bakker5121ce52009-01-03 21:22:43 +00002647static const int small_prime[] =
2648{
2649 3, 5, 7, 11, 13, 17, 19, 23,
2650 29, 31, 37, 41, 43, 47, 53, 59,
2651 61, 67, 71, 73, 79, 83, 89, 97,
2652 101, 103, 107, 109, 113, 127, 131, 137,
2653 139, 149, 151, 157, 163, 167, 173, 179,
2654 181, 191, 193, 197, 199, 211, 223, 227,
2655 229, 233, 239, 241, 251, 257, 263, 269,
2656 271, 277, 281, 283, 293, 307, 311, 313,
2657 317, 331, 337, 347, 349, 353, 359, 367,
2658 373, 379, 383, 389, 397, 401, 409, 419,
2659 421, 431, 433, 439, 443, 449, 457, 461,
2660 463, 467, 479, 487, 491, 499, 503, 509,
2661 521, 523, 541, 547, 557, 563, 569, 571,
2662 577, 587, 593, 599, 601, 607, 613, 617,
2663 619, 631, 641, 643, 647, 653, 659, 661,
2664 673, 677, 683, 691, 701, 709, 719, 727,
2665 733, 739, 743, 751, 757, 761, 769, 773,
2666 787, 797, 809, 811, 821, 823, 827, 829,
2667 839, 853, 857, 859, 863, 877, 881, 883,
2668 887, 907, 911, 919, 929, 937, 941, 947,
2669 953, 967, 971, 977, 983, 991, 997, -103
2670};
2671
2672/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002673 * Small divisors test (X must be positive)
2674 *
2675 * Return values:
2676 * 0: no small factor (possible prime, more tests needed)
2677 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002678 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002679 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002680 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002681static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002682{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002683 int ret = 0;
2684 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002685 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002686
Paul Bakker5121ce52009-01-03 21:22:43 +00002687 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002688 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002689
2690 for( i = 0; small_prime[i] > 0; i++ )
2691 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002692 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002693 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002694
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002695 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002696
2697 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002698 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002699 }
2700
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002701cleanup:
2702 return( ret );
2703}
2704
2705/*
2706 * Miller-Rabin pseudo-primality test (HAC 4.24)
2707 */
Janos Follathda31fa12018-09-03 14:45:23 +01002708static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002709 int (*f_rng)(void *, unsigned char *, size_t),
2710 void *p_rng )
2711{
Pascal Junodb99183d2015-03-11 16:49:45 +01002712 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002713 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002714 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002715
Hanno Becker8ce11a32018-12-19 16:18:52 +00002716 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002717 MPI_VALIDATE_RET( f_rng != NULL );
2718
2719 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2720 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002721 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002722
Paul Bakker5121ce52009-01-03 21:22:43 +00002723 /*
2724 * W = |X| - 1
2725 * R = W >> lsb( W )
2726 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002727 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2728 s = mbedtls_mpi_lsb( &W );
2729 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2730 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002731
Janos Follathda31fa12018-09-03 14:45:23 +01002732 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002733 {
2734 /*
2735 * pick a random A, 1 < A < |X| - 1
2736 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002737 count = 0;
2738 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002739 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002740
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002741 j = mbedtls_mpi_bitlen( &A );
2742 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002743 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002744 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002745 }
2746
2747 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002748 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2749 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002750 }
2751
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002752 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2753 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002754
2755 /*
2756 * A = A^R mod |X|
2757 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002758 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002759
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002760 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2761 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002762 continue;
2763
2764 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002765 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002766 {
2767 /*
2768 * A = A * A mod |X|
2769 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002770 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2771 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002772
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002773 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002774 break;
2775
2776 j++;
2777 }
2778
2779 /*
2780 * not prime if A != |X| - 1 or A == 1
2781 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002782 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2783 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002784 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002785 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002786 break;
2787 }
2788 }
2789
2790cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002791 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2792 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002793 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002794
2795 return( ret );
2796}
2797
2798/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002799 * Pseudo-primality test: small factors, then Miller-Rabin
2800 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002801int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2802 int (*f_rng)(void *, unsigned char *, size_t),
2803 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002804{
Janos Follath24eed8d2019-11-22 13:21:35 +00002805 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002806 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002807 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002808 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002809
2810 XX.s = 1;
2811 XX.n = X->n;
2812 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002813
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002814 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2815 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2816 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002817
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002818 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002819 return( 0 );
2820
2821 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2822 {
2823 if( ret == 1 )
2824 return( 0 );
2825
2826 return( ret );
2827 }
2828
Janos Follathda31fa12018-09-03 14:45:23 +01002829 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002830}
2831
Janos Follatha0b67c22018-09-18 14:48:23 +01002832#if !defined(MBEDTLS_DEPRECATED_REMOVED)
Janos Follathf301d232018-08-14 13:34:01 +01002833/*
2834 * Pseudo-primality test, error probability 2^-80
2835 */
2836int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
2837 int (*f_rng)(void *, unsigned char *, size_t),
2838 void *p_rng )
2839{
Hanno Becker8ce11a32018-12-19 16:18:52 +00002840 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002841 MPI_VALIDATE_RET( f_rng != NULL );
2842
Janos Follatha0b67c22018-09-18 14:48:23 +01002843 /*
2844 * In the past our key generation aimed for an error rate of at most
2845 * 2^-80. Since this function is deprecated, aim for the same certainty
2846 * here as well.
2847 */
Hanno Becker73d7d792018-12-11 10:35:51 +00002848 return( mbedtls_mpi_is_prime_ext( X, 40, f_rng, p_rng ) );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002849}
Janos Follatha0b67c22018-09-18 14:48:23 +01002850#endif
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002851
2852/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002853 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002854 *
Janos Follathf301d232018-08-14 13:34:01 +01002855 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2856 * be either 1024 bits or 1536 bits long, and flags must contain
2857 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002858 */
Janos Follath7c025a92018-08-14 11:08:41 +01002859int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002860 int (*f_rng)(void *, unsigned char *, size_t),
2861 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002862{
Jethro Beekman66689272018-02-14 19:24:10 -08002863#ifdef MBEDTLS_HAVE_INT64
2864// ceil(2^63.5)
2865#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2866#else
2867// ceil(2^31.5)
2868#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2869#endif
2870 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002871 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002872 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002873 mbedtls_mpi_uint r;
2874 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002875
Hanno Becker8ce11a32018-12-19 16:18:52 +00002876 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002877 MPI_VALIDATE_RET( f_rng != NULL );
2878
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002879 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2880 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002881
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002882 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002883
2884 n = BITS_TO_LIMBS( nbits );
2885
Janos Follathda31fa12018-09-03 14:45:23 +01002886 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2887 {
2888 /*
2889 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2890 */
2891 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2892 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2893 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2894 }
2895 else
2896 {
2897 /*
2898 * 2^-100 error probability, number of rounds computed based on HAC,
2899 * fact 4.48
2900 */
2901 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2902 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2903 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2904 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2905 }
2906
Jethro Beekman66689272018-02-14 19:24:10 -08002907 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002908 {
Jethro Beekman66689272018-02-14 19:24:10 -08002909 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2910 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2911 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2912
2913 k = n * biL;
2914 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2915 X->p[0] |= 1;
2916
Janos Follath7c025a92018-08-14 11:08:41 +01002917 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002918 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002919 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002920
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002921 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002922 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002923 }
Jethro Beekman66689272018-02-14 19:24:10 -08002924 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002925 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002926 /*
Tom Cosgrove5205c972022-07-28 06:12:08 +01002927 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002928 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2929 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002930 */
Jethro Beekman66689272018-02-14 19:24:10 -08002931
2932 X->p[0] |= 2;
2933
2934 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2935 if( r == 0 )
2936 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2937 else if( r == 1 )
2938 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2939
2940 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2941 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2942 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2943
2944 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002945 {
Jethro Beekman66689272018-02-14 19:24:10 -08002946 /*
2947 * First, check small factors for X and Y
2948 * before doing Miller-Rabin on any of them
2949 */
2950 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2951 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002952 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002953 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002954 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002955 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002956 goto cleanup;
2957
2958 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2959 goto cleanup;
2960
2961 /*
2962 * Next candidates. We want to preserve Y = (X-1) / 2 and
2963 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2964 * so up Y by 6 and X by 12.
2965 */
2966 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2967 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002968 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002969 }
2970 }
2971
2972cleanup:
2973
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002974 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002975
2976 return( ret );
2977}
2978
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002979#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002980
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002981#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002982
Paul Bakker23986e52011-04-24 08:57:21 +00002983#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002984
2985static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2986{
2987 { 693, 609, 21 },
2988 { 1764, 868, 28 },
2989 { 768454923, 542167814, 1 }
2990};
2991
Paul Bakker5121ce52009-01-03 21:22:43 +00002992/*
2993 * Checkup routine
2994 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002995int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002996{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002997 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002998 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002999
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003000 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
3001 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00003002
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003003 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003004 "EFE021C2645FD1DC586E69184AF4A31E" \
3005 "D5F53E93B5F123FA41680867BA110131" \
3006 "944FE7952E2517337780CB0DB80E61AA" \
3007 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
3008
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003009 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003010 "B2E7EFD37075B9F03FF989C7C5051C20" \
3011 "34D2A323810251127E7BF8625A4F49A5" \
3012 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
3013 "5B5C25763222FEFCCFC38B832366C29E" ) );
3014
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003015 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003016 "0066A198186C18C10B2F5ED9B522752A" \
3017 "9830B69916E535C8F047518A889A43A5" \
3018 "94B6BED27A168D31D4A52F88925AA8F5" ) );
3019
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003020 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00003021
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003022 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003023 "602AB7ECA597A3D6B56FF9829A5E8B85" \
3024 "9E857EA95A03512E2BAE7391688D264A" \
3025 "A5663B0341DB9CCFD2C4C5F421FEC814" \
3026 "8001B72E848A38CAE1C65F78E56ABDEF" \
3027 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
3028 "ECF677152EF804370C1A305CAF3B5BF1" \
3029 "30879B56C61DE584A0F53A2447A51E" ) );
3030
3031 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003032 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00003033
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003034 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003035 {
3036 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003037 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003038
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003039 ret = 1;
3040 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003041 }
3042
3043 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003044 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003045
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003046 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00003047
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003048 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003049 "256567336059E52CAE22925474705F39A94" ) );
3050
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003051 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003052 "6613F26162223DF488E9CD48CC132C7A" \
3053 "0AC93C701B001B092E4E5B9F73BCD27B" \
3054 "9EE50D0657C77F374E903CDFA4C642" ) );
3055
3056 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003057 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00003058
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003059 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
3060 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003061 {
3062 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003063 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003064
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003065 ret = 1;
3066 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003067 }
3068
3069 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003070 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003071
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003072 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00003073
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003074 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003075 "36E139AEA55215609D2816998ED020BB" \
3076 "BD96C37890F65171D948E9BC7CBAA4D9" \
3077 "325D24D6A3C12710F10A09FA08AB87" ) );
3078
3079 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003080 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00003081
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003082 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003083 {
3084 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003085 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003086
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003087 ret = 1;
3088 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003089 }
3090
3091 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003092 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003093
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003094 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00003095
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003096 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003097 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
3098 "C3DBA76456363A10869622EAC2DD84EC" \
3099 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
3100
3101 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003102 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00003103
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003104 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003105 {
3106 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003107 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003108
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003109 ret = 1;
3110 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003111 }
3112
3113 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003114 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003115
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003116 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003117 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003118
Paul Bakker66d5d072014-06-17 16:39:18 +02003119 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003120 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003121 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
3122 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003123
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003124 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003125
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003126 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003127 {
3128 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003129 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003130
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003131 ret = 1;
3132 goto cleanup;
3133 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003134 }
3135
3136 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003137 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003138
Paul Bakker5121ce52009-01-03 21:22:43 +00003139cleanup:
3140
3141 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02003142 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00003143
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003144 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
3145 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00003146
3147 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003148 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003149
3150 return( ret );
3151}
3152
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003153#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00003154
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003155#endif /* MBEDTLS_BIGNUM_C */