blob: 5a487436aaf970c52dd2b4b769c9ac4ea8629aa9 [file] [log] [blame]
Jarno Lamsa18987a42019-04-24 15:40:43 +03001/* ecc.h - TinyCrypt interface to common ECC functions */
2
Simon Butcher92c3d1f2019-09-09 17:25:08 +01003/*
4 * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved.
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
Jarno Lamsa18987a42019-04-24 15:40:43 +03008/* Copyright (c) 2014, Kenneth MacKay
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice, this
15 * list of conditions and the following disclaimer.
16 *
17 * * Redistributions in binary form must reproduce the above copyright notice,
18 * this list of conditions and the following disclaimer in the documentation
19 * and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34/*
35 * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions are met:
39 *
40 * - Redistributions of source code must retain the above copyright notice,
41 * this list of conditions and the following disclaimer.
42 *
43 * - Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 *
47 * - Neither the name of Intel Corporation nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
52 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
55 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64/**
65 * @file
66 * @brief -- Interface to common ECC functions.
67 *
68 * Overview: This software is an implementation of common functions
69 * necessary to elliptic curve cryptography. This implementation uses
70 * curve NIST p-256.
71 *
72 * Security: The curve NIST p-256 provides approximately 128 bits of security.
73 *
74 */
75
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +020076#if defined(MBEDTLS_USE_TINYCRYPT)
Jarno Lamsa18987a42019-04-24 15:40:43 +030077#ifndef __TC_UECC_H__
78#define __TC_UECC_H__
79
80#include <stdint.h>
81
82#ifdef __cplusplus
83extern "C" {
84#endif
85
Manuel Pégourié-Gonnardc05f1502019-11-06 10:15:26 +010086/* Return values for functions, chosen with large Hamming distances between
87 * them (especially to SUCESS) to mitigate the impact of fault injection
88 * attacks flipping a low number of bits. */
89#define UECC_SUCCESS 0
90#define UECC_FAILURE 0x75555555
91#define UECC_ATTACK_DETECTED 0x7aaaaaaa
92
Jarno Lamsa18987a42019-04-24 15:40:43 +030093/* Word size (4 bytes considering 32-bits architectures) */
94#define uECC_WORD_SIZE 4
95
96/* setting max number of calls to prng: */
97#ifndef uECC_RNG_MAX_TRIES
98#define uECC_RNG_MAX_TRIES 64
99#endif
100
101/* defining data types to store word and bit counts: */
102typedef int8_t wordcount_t;
103typedef int16_t bitcount_t;
104/* defining data type for comparison result: */
105typedef int8_t cmpresult_t;
106/* defining data type to store ECC coordinate/point in 32bits words: */
107typedef unsigned int uECC_word_t;
108/* defining data type to store an ECC coordinate/point in 64bits words: */
109typedef uint64_t uECC_dword_t;
110
111/* defining masks useful for ecc computations: */
112#define HIGH_BIT_SET 0x80000000
113#define uECC_WORD_BITS 32
114#define uECC_WORD_BITS_SHIFT 5
115#define uECC_WORD_BITS_MASK 0x01F
116
117/* Number of words of 32 bits to represent an element of the the curve p-256: */
118#define NUM_ECC_WORDS 8
119/* Number of bytes to represent an element of the the curve p-256: */
120#define NUM_ECC_BYTES (uECC_WORD_SIZE*NUM_ECC_WORDS)
Manuel Pégourié-Gonnard78a7e352019-11-04 12:31:06 +0100121#define NUM_ECC_BITS 256
Jarno Lamsa18987a42019-04-24 15:40:43 +0300122
Manuel Pégourié-Gonnardbc3f4902019-11-21 11:34:43 +0100123/* curve identifier (for API compatility - only P-256 is supported) */
124typedef enum {
125 curve_invalid = 0,
126 curve_secp256r1 = 0xff
127} uECC_Curve;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300128
129/*
130 * @brief computes doubling of point ion jacobian coordinates, in place.
131 * @param X1 IN/OUT -- x coordinate
132 * @param Y1 IN/OUT -- y coordinate
133 * @param Z1 IN/OUT -- z coordinate
134 * @param curve IN -- elliptic curve
135 */
136void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
Manuel Pégourié-Gonnardbe5f8332019-11-21 11:02:38 +0100137 uECC_word_t * Z1);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300138
139/*
Jarno Lamsa18987a42019-04-24 15:40:43 +0300140 * @brief Computes result = product % curve_p
141 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
142 * @param result OUT -- product % curve_p
143 * @param product IN -- value to be reduced mod curve_p
144 */
145void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product);
146
147/* Bytes to words ordering: */
148#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e
149#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a
150#define BITS_TO_WORDS(num_bits) \
151 ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
152#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
153
Manuel Pégourié-Gonnard4d8777c2019-11-21 10:02:58 +0100154extern const uECC_word_t curve_p[NUM_ECC_WORDS];
Manuel Pégourié-Gonnard356d8592019-11-21 10:23:05 +0100155extern const uECC_word_t curve_n[NUM_ECC_WORDS];
Manuel Pégourié-Gonnarda6115082019-11-21 10:29:14 +0100156extern const uECC_word_t curve_G[2 * NUM_ECC_WORDS];
Manuel Pégourié-Gonnardffd13992019-11-21 10:39:06 +0100157extern const uECC_word_t curve_b[NUM_ECC_WORDS];
Manuel Pégourié-Gonnard4d8777c2019-11-21 10:02:58 +0100158
Jarno Lamsa18987a42019-04-24 15:40:43 +0300159uECC_Curve uECC_secp256r1(void);
160
161/*
162 * @brief Generates a random integer in the range 0 < random < top.
163 * Both random and top have num_words words.
164 * @param random OUT -- random integer in the range 0 < random < top
165 * @param top IN -- upper limit
166 * @param num_words IN -- number of words
167 * @return a random integer in the range 0 < random < top
168 */
169int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
170 wordcount_t num_words);
171
172
173/* uECC_RNG_Function type
174 * The RNG function should fill 'size' random bytes into 'dest'. It should
175 * return 1 if 'dest' was filled with random data, or 0 if the random data could
176 * not be generated. The filled-in values should be either truly random, or from
177 * a cryptographically-secure PRNG.
178 *
179 * A correctly functioning RNG function must be set (using uECC_set_rng())
180 * before calling uECC_make_key() or uECC_sign().
181 *
182 * Setting a correctly functioning RNG function improves the resistance to
183 * side-channel attacks for uECC_shared_secret().
184 *
185 * A correct RNG function is set by default. If you are building on another
186 * POSIX-compliant system that supports /dev/random or /dev/urandom, you can
187 * define uECC_POSIX to use the predefined RNG.
188 */
189typedef int(*uECC_RNG_Function)(uint8_t *dest, unsigned int size);
190
191/*
192 * @brief Set the function that will be used to generate random bytes. The RNG
193 * function should return 1 if the random data was generated, or 0 if the random
194 * data could not be generated.
195 *
196 * @note On platforms where there is no predefined RNG function, this must be
197 * called before uECC_make_key() or uECC_sign() are used.
198 *
199 * @param rng_function IN -- function that will be used to generate random bytes
200 */
201void uECC_set_rng(uECC_RNG_Function rng_function);
202
203/*
204 * @brief provides current uECC_RNG_Function.
205 * @return Returns the function that will be used to generate random bytes.
206 */
207uECC_RNG_Function uECC_get_rng(void);
208
209/*
210 * @brief computes the size of a private key for the curve in bytes.
211 * @param curve IN -- elliptic curve
212 * @return size of a private key for the curve in bytes.
213 */
214int uECC_curve_private_key_size(uECC_Curve curve);
215
216/*
217 * @brief computes the size of a public key for the curve in bytes.
218 * @param curve IN -- elliptic curve
219 * @return the size of a public key for the curve in bytes.
220 */
221int uECC_curve_public_key_size(uECC_Curve curve);
222
223/*
224 * @brief Compute the corresponding public key for a private key.
225 * @param private_key IN -- The private key to compute the public key for
226 * @param public_key OUT -- Will be filled in with the corresponding public key
227 * @param curve
228 * @return Returns 1 if key was computed successfully, 0 if an error occurred.
229 */
230int uECC_compute_public_key(const uint8_t *private_key,
231 uint8_t *public_key, uECC_Curve curve);
232
233/*
234 * @brief Compute public-key.
235 * @return corresponding public-key.
236 * @param result OUT -- public-key
237 * @param private_key IN -- private-key
238 * @param curve IN -- elliptic curve
239 */
240uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
241 uECC_word_t *private_key, uECC_Curve curve);
242
243/*
Manuel Pégourié-Gonnardef238282019-11-04 11:19:30 +0100244 * @brief Point multiplication algorithm using Montgomery's ladder with co-Z
245 * coordinates. See http://eprint.iacr.org/2011/338.pdf.
246 * Uses scalar regularization and coordinate randomization (if a global RNG
247 * function is set) in order to protect against some side channel attacks.
248 * @note Result may overlap point.
249 * @param result OUT -- returns scalar*point
250 * @param point IN -- elliptic curve point
251 * @param scalar IN -- scalar
252 * @param curve IN -- elliptic curve
253 */
254int EccPoint_mult_safer(uECC_word_t * result, const uECC_word_t * point,
255 const uECC_word_t * scalar, uECC_Curve curve);
256
257/*
Jarno Lamsa18987a42019-04-24 15:40:43 +0300258 * @brief Constant-time comparison to zero - secure way to compare long integers
259 * @param vli IN -- very long integer
260 * @param num_words IN -- number of words in the vli
261 * @return 1 if vli == 0, 0 otherwise.
262 */
Manuel Pégourié-Gonnardf3899fc2019-11-04 12:44:43 +0100263uECC_word_t uECC_vli_isZero(const uECC_word_t *vli);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300264
265/*
266 * @brief Check if 'point' is the point at infinity
267 * @param point IN -- elliptic curve point
Jarno Lamsa18987a42019-04-24 15:40:43 +0300268 * @return if 'point' is the point at infinity, 0 otherwise.
269 */
Manuel Pégourié-Gonnardbe5f8332019-11-21 11:02:38 +0100270uECC_word_t EccPoint_isZero(const uECC_word_t *point);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300271
272/*
273 * @brief computes the sign of left - right, in constant time.
274 * @param left IN -- left term to be compared
275 * @param right IN -- right term to be compared
276 * @param num_words IN -- number of words
277 * @return the sign of left - right
278 */
Manuel Pégourié-Gonnard2cb3eea2019-11-04 14:43:35 +0100279cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300280
281/*
282 * @brief computes sign of left - right, not in constant time.
283 * @note should not be used if inputs are part of a secret
284 * @param left IN -- left term to be compared
285 * @param right IN -- right term to be compared
286 * @param num_words IN -- number of words
287 * @return the sign of left - right
288 */
Manuel Pégourié-Gonnarda7521912019-11-04 14:31:35 +0100289cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300290
291/*
292 * @brief Computes result = (left - right) % mod.
293 * @note Assumes that (left < mod) and (right < mod), and that result does not
294 * overlap mod.
295 * @param result OUT -- (left - right) % mod
296 * @param left IN -- leftright term in modular subtraction
297 * @param right IN -- right term in modular subtraction
298 * @param mod IN -- mod
299 * @param num_words IN -- number of words
300 */
301void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard1b0875d2019-11-04 14:50:54 +0100302 const uECC_word_t *right, const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300303
304/*
305 * @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or
306 * P => P', Q => P + Q
307 * @note assumes Input P = (x1, y1, Z), Q = (x2, y2, Z)
308 * @param X1 IN -- x coordinate of P
309 * @param Y1 IN -- y coordinate of P
310 * @param X2 IN -- x coordinate of Q
311 * @param Y2 IN -- y coordinate of Q
312 * @param curve IN -- elliptic curve
313 */
314void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2,
Manuel Pégourié-Gonnardbe5f8332019-11-21 11:02:38 +0100315 uECC_word_t * Y2);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300316
317/*
318 * @brief Computes (x1 * z^2, y1 * z^3)
319 * @param X1 IN -- previous x1 coordinate
320 * @param Y1 IN -- previous y1 coordinate
321 * @param Z IN -- z value
322 * @param curve IN -- elliptic curve
323 */
Manuel Pégourié-Gonnardc3ec14c2019-11-04 12:12:00 +0100324void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300325
326/*
327 * @brief Check if bit is set.
328 * @return Returns nonzero if bit 'bit' of vli is set.
329 * @warning It is assumed that the value provided in 'bit' is within the
330 * boundaries of the word-array 'vli'.
331 * @note The bit ordering layout assumed for vli is: {31, 30, ..., 0},
332 * {63, 62, ..., 32}, {95, 94, ..., 64}, {127, 126,..., 96} for a vli consisting
333 * of 4 uECC_word_t elements.
334 */
335uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
336
337/*
338 * @brief Computes result = product % mod, where product is 2N words long.
339 * @param result OUT -- product % mod
340 * @param mod IN -- module
341 * @param num_words IN -- number of words
342 * @warning Currently only designed to work for curve_p or curve_n.
343 */
344void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
Manuel Pégourié-Gonnard10349e42019-11-04 14:57:53 +0100345 const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300346
347/*
348 * @brief Computes modular product (using curve->mmod_fast)
349 * @param result OUT -- (left * right) mod % curve_p
350 * @param left IN -- left term in product
351 * @param right IN -- right term in product
352 * @param curve IN -- elliptic curve
353 */
354void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnardc3ec14c2019-11-04 12:12:00 +0100355 const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300356
357/*
358 * @brief Computes result = left - right.
359 * @note Can modify in place.
360 * @param result OUT -- left - right
361 * @param left IN -- left term in subtraction
362 * @param right IN -- right term in subtraction
363 * @param num_words IN -- number of words
364 * @return borrow
365 */
366uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard129b42e2019-11-04 14:41:45 +0100367 const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300368
369/*
370 * @brief Constant-time comparison function(secure way to compare long ints)
371 * @param left IN -- left term in comparison
372 * @param right IN -- right term in comparison
373 * @param num_words IN -- number of words
Manuel Pégourié-Gonnard2b6312b2019-11-06 10:42:02 +0100374 * @return Returns 0 if left == right, non-zero otherwise.
Jarno Lamsa18987a42019-04-24 15:40:43 +0300375 */
Manuel Pégourié-Gonnard2eca3d32019-11-04 14:33:09 +0100376uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300377
378/*
379 * @brief Computes (left * right) % mod
380 * @param result OUT -- (left * right) % mod
381 * @param left IN -- left term in product
382 * @param right IN -- right term in product
383 * @param mod IN -- mod
384 * @param num_words IN -- number of words
385 */
386void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard3e20adf2019-11-04 15:00:43 +0100387 const uECC_word_t *right, const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300388
389/*
390 * @brief Computes (1 / input) % mod
391 * @note All VLIs are the same size.
392 * @note See "Euclid's GCD to Montgomery Multiplication to the Great Divide"
393 * @param result OUT -- (1 / input) % mod
394 * @param input IN -- value to be modular inverted
395 * @param mod IN -- mod
396 * @param num_words -- number of words
397 */
398void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
Manuel Pégourié-Gonnard91353482019-11-04 15:04:20 +0100399 const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300400
401/*
402 * @brief Sets dest = src.
403 * @param dest OUT -- destination buffer
404 * @param src IN -- origin buffer
405 * @param num_words IN -- number of words
406 */
Manuel Pégourié-Gonnardcbbb0f02019-11-04 13:02:04 +0100407void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300408
409/*
410 * @brief Computes (left + right) % mod.
411 * @note Assumes that (left < mod) and right < mod), and that result does not
412 * overlap mod.
413 * @param result OUT -- (left + right) % mod.
414 * @param left IN -- left term in addition
415 * @param right IN -- right term in addition
416 * @param mod IN -- mod
417 * @param num_words IN -- number of words
418 */
419void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard0779be72019-11-04 14:48:22 +0100420 const uECC_word_t *right, const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300421
422/*
423 * @brief Counts the number of bits required to represent vli.
424 * @param vli IN -- very long integer
425 * @param max_words IN -- number of words
426 * @return number of bits in given vli
427 */
Manuel Pégourié-Gonnard2bf5a122019-11-04 12:56:59 +0100428bitcount_t uECC_vli_numBits(const uECC_word_t *vli);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300429
430/*
431 * @brief Erases (set to 0) vli
432 * @param vli IN -- very long integer
433 * @param num_words IN -- number of words
434 */
Manuel Pégourié-Gonnard94e48492019-11-04 12:47:28 +0100435void uECC_vli_clear(uECC_word_t *vli);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300436
437/*
438 * @brief check if it is a valid point in the curve
439 * @param point IN -- point to be checked
440 * @param curve IN -- elliptic curve
441 * @return 0 if point is valid
442 * @exception returns -1 if it is a point at infinity
443 * @exception returns -2 if x or y is smaller than p,
444 * @exception returns -3 if y^2 != x^3 + ax + b.
445 */
Manuel Pégourié-Gonnardbe5f8332019-11-21 11:02:38 +0100446int uECC_valid_point(const uECC_word_t *point);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300447
448/*
449 * @brief Check if a public key is valid.
450 * @param public_key IN -- The public key to be checked.
451 * @return returns 0 if the public key is valid
452 * @exception returns -1 if it is a point at infinity
453 * @exception returns -2 if x or y is smaller than p,
454 * @exception returns -3 if y^2 != x^3 + ax + b.
455 * @exception returns -4 if public key is the group generator.
456 *
457 * @note Note that you are not required to check for a valid public key before
458 * using any other uECC functions. However, you may wish to avoid spending CPU
459 * time computing a shared secret or verifying a signature using an invalid
460 * public key.
461 */
Manuel Pégourié-Gonnardbe5f8332019-11-21 11:02:38 +0100462int uECC_valid_public_key(const uint8_t *public_key);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300463
464 /*
465 * @brief Converts an integer in uECC native format to big-endian bytes.
466 * @param bytes OUT -- bytes representation
467 * @param num_bytes IN -- number of bytes
468 * @param native IN -- uECC native representation
469 */
470void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
471 const unsigned int *native);
472
473/*
474 * @brief Converts big-endian bytes to an integer in uECC native format.
475 * @param native OUT -- uECC native representation
476 * @param bytes IN -- bytes representation
477 * @param num_bytes IN -- number of bytes
478 */
479void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
480 int num_bytes);
481
482#ifdef __cplusplus
483}
484#endif
485
486#endif /* __TC_UECC_H__ */
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +0200487#endif /* MBEDTLS_USE_TINYCRYPT */