blob: 9a705c495b7ef8aa7950f4d90169ea2adc63c409 [file] [log] [blame]
Jarno Lamsa18987a42019-04-24 15:40:43 +03001/* ecc.h - TinyCrypt interface to common ECC functions */
2
Simon Butcher92c3d1f2019-09-09 17:25:08 +01003/*
4 * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved.
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
Jarno Lamsa18987a42019-04-24 15:40:43 +03008/* Copyright (c) 2014, Kenneth MacKay
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice, this
15 * list of conditions and the following disclaimer.
16 *
17 * * Redistributions in binary form must reproduce the above copyright notice,
18 * this list of conditions and the following disclaimer in the documentation
19 * and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34/*
35 * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions are met:
39 *
40 * - Redistributions of source code must retain the above copyright notice,
41 * this list of conditions and the following disclaimer.
42 *
43 * - Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 *
47 * - Neither the name of Intel Corporation nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
52 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
55 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64/**
65 * @file
66 * @brief -- Interface to common ECC functions.
67 *
68 * Overview: This software is an implementation of common functions
69 * necessary to elliptic curve cryptography. This implementation uses
70 * curve NIST p-256.
71 *
72 * Security: The curve NIST p-256 provides approximately 128 bits of security.
73 *
74 */
75
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +020076#if defined(MBEDTLS_USE_TINYCRYPT)
Jarno Lamsa18987a42019-04-24 15:40:43 +030077#ifndef __TC_UECC_H__
78#define __TC_UECC_H__
79
80#include <stdint.h>
81
82#ifdef __cplusplus
83extern "C" {
84#endif
85
Manuel Pégourié-Gonnardc05f1502019-11-06 10:15:26 +010086/* Return values for functions, chosen with large Hamming distances between
87 * them (especially to SUCESS) to mitigate the impact of fault injection
88 * attacks flipping a low number of bits. */
89#define UECC_SUCCESS 0
90#define UECC_FAILURE 0x75555555
91#define UECC_ATTACK_DETECTED 0x7aaaaaaa
92
Jarno Lamsa18987a42019-04-24 15:40:43 +030093/* Word size (4 bytes considering 32-bits architectures) */
94#define uECC_WORD_SIZE 4
95
96/* setting max number of calls to prng: */
97#ifndef uECC_RNG_MAX_TRIES
98#define uECC_RNG_MAX_TRIES 64
99#endif
100
101/* defining data types to store word and bit counts: */
102typedef int8_t wordcount_t;
103typedef int16_t bitcount_t;
104/* defining data type for comparison result: */
105typedef int8_t cmpresult_t;
106/* defining data type to store ECC coordinate/point in 32bits words: */
107typedef unsigned int uECC_word_t;
108/* defining data type to store an ECC coordinate/point in 64bits words: */
109typedef uint64_t uECC_dword_t;
110
111/* defining masks useful for ecc computations: */
112#define HIGH_BIT_SET 0x80000000
113#define uECC_WORD_BITS 32
114#define uECC_WORD_BITS_SHIFT 5
115#define uECC_WORD_BITS_MASK 0x01F
116
117/* Number of words of 32 bits to represent an element of the the curve p-256: */
118#define NUM_ECC_WORDS 8
119/* Number of bytes to represent an element of the the curve p-256: */
120#define NUM_ECC_BYTES (uECC_WORD_SIZE*NUM_ECC_WORDS)
Manuel Pégourié-Gonnard78a7e352019-11-04 12:31:06 +0100121#define NUM_ECC_BITS 256
Jarno Lamsa18987a42019-04-24 15:40:43 +0300122
123/* structure that represents an elliptic curve (e.g. p256):*/
124struct uECC_Curve_t;
125typedef const struct uECC_Curve_t * uECC_Curve;
126struct uECC_Curve_t {
127 wordcount_t num_words;
128 wordcount_t num_bytes;
129 bitcount_t num_n_bits;
130 uECC_word_t p[NUM_ECC_WORDS];
131 uECC_word_t n[NUM_ECC_WORDS];
132 uECC_word_t G[NUM_ECC_WORDS * 2];
133 uECC_word_t b[NUM_ECC_WORDS];
134 void (*double_jacobian)(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * Z1,
135 uECC_Curve curve);
136 void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve);
137 void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product);
138};
139
140/*
141 * @brief computes doubling of point ion jacobian coordinates, in place.
142 * @param X1 IN/OUT -- x coordinate
143 * @param Y1 IN/OUT -- y coordinate
144 * @param Z1 IN/OUT -- z coordinate
145 * @param curve IN -- elliptic curve
146 */
147void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
148 uECC_word_t * Z1, uECC_Curve curve);
149
150/*
151 * @brief Computes x^3 + ax + b. result must not overlap x.
152 * @param result OUT -- x^3 + ax + b
153 * @param x IN -- value of x
154 * @param curve IN -- elliptic curve
155 */
156void x_side_default(uECC_word_t *result, const uECC_word_t *x,
157 uECC_Curve curve);
158
159/*
160 * @brief Computes result = product % curve_p
161 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
162 * @param result OUT -- product % curve_p
163 * @param product IN -- value to be reduced mod curve_p
164 */
165void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product);
166
167/* Bytes to words ordering: */
168#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e
169#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a
170#define BITS_TO_WORDS(num_bits) \
171 ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
172#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
173
174/* definition of curve NIST p-256: */
175static const struct uECC_Curve_t curve_secp256r1 = {
176 NUM_ECC_WORDS,
177 NUM_ECC_BYTES,
178 256, /* num_n_bits */ {
179 BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
180 BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00),
181 BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
182 BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF)
183 }, {
184 BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3),
185 BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC),
186 BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
187 BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF)
188 }, {
189 BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4),
190 BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77),
191 BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8),
192 BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B),
193
194 BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB),
195 BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B),
196 BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E),
197 BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F)
198 }, {
199 BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B),
200 BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65),
201 BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3),
202 BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A)
203 },
204 &double_jacobian_default,
205 &x_side_default,
206 &vli_mmod_fast_secp256r1
207};
208
209uECC_Curve uECC_secp256r1(void);
210
211/*
212 * @brief Generates a random integer in the range 0 < random < top.
213 * Both random and top have num_words words.
214 * @param random OUT -- random integer in the range 0 < random < top
215 * @param top IN -- upper limit
216 * @param num_words IN -- number of words
217 * @return a random integer in the range 0 < random < top
218 */
219int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
220 wordcount_t num_words);
221
222
223/* uECC_RNG_Function type
224 * The RNG function should fill 'size' random bytes into 'dest'. It should
225 * return 1 if 'dest' was filled with random data, or 0 if the random data could
226 * not be generated. The filled-in values should be either truly random, or from
227 * a cryptographically-secure PRNG.
228 *
229 * A correctly functioning RNG function must be set (using uECC_set_rng())
230 * before calling uECC_make_key() or uECC_sign().
231 *
232 * Setting a correctly functioning RNG function improves the resistance to
233 * side-channel attacks for uECC_shared_secret().
234 *
235 * A correct RNG function is set by default. If you are building on another
236 * POSIX-compliant system that supports /dev/random or /dev/urandom, you can
237 * define uECC_POSIX to use the predefined RNG.
238 */
239typedef int(*uECC_RNG_Function)(uint8_t *dest, unsigned int size);
240
241/*
242 * @brief Set the function that will be used to generate random bytes. The RNG
243 * function should return 1 if the random data was generated, or 0 if the random
244 * data could not be generated.
245 *
246 * @note On platforms where there is no predefined RNG function, this must be
247 * called before uECC_make_key() or uECC_sign() are used.
248 *
249 * @param rng_function IN -- function that will be used to generate random bytes
250 */
251void uECC_set_rng(uECC_RNG_Function rng_function);
252
253/*
254 * @brief provides current uECC_RNG_Function.
255 * @return Returns the function that will be used to generate random bytes.
256 */
257uECC_RNG_Function uECC_get_rng(void);
258
259/*
260 * @brief computes the size of a private key for the curve in bytes.
261 * @param curve IN -- elliptic curve
262 * @return size of a private key for the curve in bytes.
263 */
264int uECC_curve_private_key_size(uECC_Curve curve);
265
266/*
267 * @brief computes the size of a public key for the curve in bytes.
268 * @param curve IN -- elliptic curve
269 * @return the size of a public key for the curve in bytes.
270 */
271int uECC_curve_public_key_size(uECC_Curve curve);
272
273/*
274 * @brief Compute the corresponding public key for a private key.
275 * @param private_key IN -- The private key to compute the public key for
276 * @param public_key OUT -- Will be filled in with the corresponding public key
277 * @param curve
278 * @return Returns 1 if key was computed successfully, 0 if an error occurred.
279 */
280int uECC_compute_public_key(const uint8_t *private_key,
281 uint8_t *public_key, uECC_Curve curve);
282
283/*
284 * @brief Compute public-key.
285 * @return corresponding public-key.
286 * @param result OUT -- public-key
287 * @param private_key IN -- private-key
288 * @param curve IN -- elliptic curve
289 */
290uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
291 uECC_word_t *private_key, uECC_Curve curve);
292
293/*
Manuel Pégourié-Gonnardef238282019-11-04 11:19:30 +0100294 * @brief Point multiplication algorithm using Montgomery's ladder with co-Z
295 * coordinates. See http://eprint.iacr.org/2011/338.pdf.
296 * Uses scalar regularization and coordinate randomization (if a global RNG
297 * function is set) in order to protect against some side channel attacks.
298 * @note Result may overlap point.
299 * @param result OUT -- returns scalar*point
300 * @param point IN -- elliptic curve point
301 * @param scalar IN -- scalar
302 * @param curve IN -- elliptic curve
303 */
304int EccPoint_mult_safer(uECC_word_t * result, const uECC_word_t * point,
305 const uECC_word_t * scalar, uECC_Curve curve);
306
307/*
Jarno Lamsa18987a42019-04-24 15:40:43 +0300308 * @brief Constant-time comparison to zero - secure way to compare long integers
309 * @param vli IN -- very long integer
310 * @param num_words IN -- number of words in the vli
311 * @return 1 if vli == 0, 0 otherwise.
312 */
Manuel Pégourié-Gonnardf3899fc2019-11-04 12:44:43 +0100313uECC_word_t uECC_vli_isZero(const uECC_word_t *vli);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300314
315/*
316 * @brief Check if 'point' is the point at infinity
317 * @param point IN -- elliptic curve point
318 * @param curve IN -- elliptic curve
319 * @return if 'point' is the point at infinity, 0 otherwise.
320 */
321uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve);
322
323/*
324 * @brief computes the sign of left - right, in constant time.
325 * @param left IN -- left term to be compared
326 * @param right IN -- right term to be compared
327 * @param num_words IN -- number of words
328 * @return the sign of left - right
329 */
Manuel Pégourié-Gonnard2cb3eea2019-11-04 14:43:35 +0100330cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300331
332/*
333 * @brief computes sign of left - right, not in constant time.
334 * @note should not be used if inputs are part of a secret
335 * @param left IN -- left term to be compared
336 * @param right IN -- right term to be compared
337 * @param num_words IN -- number of words
338 * @return the sign of left - right
339 */
Manuel Pégourié-Gonnarda7521912019-11-04 14:31:35 +0100340cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300341
342/*
343 * @brief Computes result = (left - right) % mod.
344 * @note Assumes that (left < mod) and (right < mod), and that result does not
345 * overlap mod.
346 * @param result OUT -- (left - right) % mod
347 * @param left IN -- leftright term in modular subtraction
348 * @param right IN -- right term in modular subtraction
349 * @param mod IN -- mod
350 * @param num_words IN -- number of words
351 */
352void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard1b0875d2019-11-04 14:50:54 +0100353 const uECC_word_t *right, const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300354
355/*
356 * @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or
357 * P => P', Q => P + Q
358 * @note assumes Input P = (x1, y1, Z), Q = (x2, y2, Z)
359 * @param X1 IN -- x coordinate of P
360 * @param Y1 IN -- y coordinate of P
361 * @param X2 IN -- x coordinate of Q
362 * @param Y2 IN -- y coordinate of Q
363 * @param curve IN -- elliptic curve
364 */
365void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2,
366 uECC_word_t * Y2, uECC_Curve curve);
367
368/*
369 * @brief Computes (x1 * z^2, y1 * z^3)
370 * @param X1 IN -- previous x1 coordinate
371 * @param Y1 IN -- previous y1 coordinate
372 * @param Z IN -- z value
373 * @param curve IN -- elliptic curve
374 */
Manuel Pégourié-Gonnardc3ec14c2019-11-04 12:12:00 +0100375void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300376
377/*
378 * @brief Check if bit is set.
379 * @return Returns nonzero if bit 'bit' of vli is set.
380 * @warning It is assumed that the value provided in 'bit' is within the
381 * boundaries of the word-array 'vli'.
382 * @note The bit ordering layout assumed for vli is: {31, 30, ..., 0},
383 * {63, 62, ..., 32}, {95, 94, ..., 64}, {127, 126,..., 96} for a vli consisting
384 * of 4 uECC_word_t elements.
385 */
386uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
387
388/*
389 * @brief Computes result = product % mod, where product is 2N words long.
390 * @param result OUT -- product % mod
391 * @param mod IN -- module
392 * @param num_words IN -- number of words
393 * @warning Currently only designed to work for curve_p or curve_n.
394 */
395void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
Manuel Pégourié-Gonnard10349e42019-11-04 14:57:53 +0100396 const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300397
398/*
399 * @brief Computes modular product (using curve->mmod_fast)
400 * @param result OUT -- (left * right) mod % curve_p
401 * @param left IN -- left term in product
402 * @param right IN -- right term in product
403 * @param curve IN -- elliptic curve
404 */
405void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnardc3ec14c2019-11-04 12:12:00 +0100406 const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300407
408/*
409 * @brief Computes result = left - right.
410 * @note Can modify in place.
411 * @param result OUT -- left - right
412 * @param left IN -- left term in subtraction
413 * @param right IN -- right term in subtraction
414 * @param num_words IN -- number of words
415 * @return borrow
416 */
417uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard129b42e2019-11-04 14:41:45 +0100418 const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300419
420/*
421 * @brief Constant-time comparison function(secure way to compare long ints)
422 * @param left IN -- left term in comparison
423 * @param right IN -- right term in comparison
424 * @param num_words IN -- number of words
425 * @return Returns 0 if left == right, 1 otherwise.
426 */
Manuel Pégourié-Gonnard2eca3d32019-11-04 14:33:09 +0100427uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300428
429/*
430 * @brief Computes (left * right) % mod
431 * @param result OUT -- (left * right) % mod
432 * @param left IN -- left term in product
433 * @param right IN -- right term in product
434 * @param mod IN -- mod
435 * @param num_words IN -- number of words
436 */
437void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard3e20adf2019-11-04 15:00:43 +0100438 const uECC_word_t *right, const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300439
440/*
441 * @brief Computes (1 / input) % mod
442 * @note All VLIs are the same size.
443 * @note See "Euclid's GCD to Montgomery Multiplication to the Great Divide"
444 * @param result OUT -- (1 / input) % mod
445 * @param input IN -- value to be modular inverted
446 * @param mod IN -- mod
447 * @param num_words -- number of words
448 */
449void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
Manuel Pégourié-Gonnard91353482019-11-04 15:04:20 +0100450 const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300451
452/*
453 * @brief Sets dest = src.
454 * @param dest OUT -- destination buffer
455 * @param src IN -- origin buffer
456 * @param num_words IN -- number of words
457 */
Manuel Pégourié-Gonnardcbbb0f02019-11-04 13:02:04 +0100458void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300459
460/*
461 * @brief Computes (left + right) % mod.
462 * @note Assumes that (left < mod) and right < mod), and that result does not
463 * overlap mod.
464 * @param result OUT -- (left + right) % mod.
465 * @param left IN -- left term in addition
466 * @param right IN -- right term in addition
467 * @param mod IN -- mod
468 * @param num_words IN -- number of words
469 */
470void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
Manuel Pégourié-Gonnard0779be72019-11-04 14:48:22 +0100471 const uECC_word_t *right, const uECC_word_t *mod);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300472
473/*
474 * @brief Counts the number of bits required to represent vli.
475 * @param vli IN -- very long integer
476 * @param max_words IN -- number of words
477 * @return number of bits in given vli
478 */
Manuel Pégourié-Gonnard2bf5a122019-11-04 12:56:59 +0100479bitcount_t uECC_vli_numBits(const uECC_word_t *vli);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300480
481/*
482 * @brief Erases (set to 0) vli
483 * @param vli IN -- very long integer
484 * @param num_words IN -- number of words
485 */
Manuel Pégourié-Gonnard94e48492019-11-04 12:47:28 +0100486void uECC_vli_clear(uECC_word_t *vli);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300487
488/*
489 * @brief check if it is a valid point in the curve
490 * @param point IN -- point to be checked
491 * @param curve IN -- elliptic curve
492 * @return 0 if point is valid
493 * @exception returns -1 if it is a point at infinity
494 * @exception returns -2 if x or y is smaller than p,
495 * @exception returns -3 if y^2 != x^3 + ax + b.
496 */
497int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
498
499/*
500 * @brief Check if a public key is valid.
501 * @param public_key IN -- The public key to be checked.
502 * @return returns 0 if the public key is valid
503 * @exception returns -1 if it is a point at infinity
504 * @exception returns -2 if x or y is smaller than p,
505 * @exception returns -3 if y^2 != x^3 + ax + b.
506 * @exception returns -4 if public key is the group generator.
507 *
508 * @note Note that you are not required to check for a valid public key before
509 * using any other uECC functions. However, you may wish to avoid spending CPU
510 * time computing a shared secret or verifying a signature using an invalid
511 * public key.
512 */
513int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve);
514
515 /*
516 * @brief Converts an integer in uECC native format to big-endian bytes.
517 * @param bytes OUT -- bytes representation
518 * @param num_bytes IN -- number of bytes
519 * @param native IN -- uECC native representation
520 */
521void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
522 const unsigned int *native);
523
524/*
525 * @brief Converts big-endian bytes to an integer in uECC native format.
526 * @param native OUT -- uECC native representation
527 * @param bytes IN -- bytes representation
528 * @param num_bytes IN -- number of bytes
529 */
530void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
531 int num_bytes);
532
533#ifdef __cplusplus
534}
535#endif
536
537#endif /* __TC_UECC_H__ */
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +0200538#endif /* MBEDTLS_USE_TINYCRYPT */