| /* ecc.c - TinyCrypt implementation of common ECC functions */ |
| |
| /* |
| * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved. |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| /* |
| * Copyright (c) 2014, Kenneth MacKay |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * * Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR |
| * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Copyright (C) 2017 by Intel Corporation, All Rights Reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * - Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * - Neither the name of Intel Corporation nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #if !defined(MBEDTLS_CONFIG_FILE) |
| #include "mbedtls/config.h" |
| #else |
| #include MBEDTLS_CONFIG_FILE |
| #endif |
| |
| #if defined(MBEDTLS_USE_TINYCRYPT) |
| #include <tinycrypt/ecc.h> |
| #include "mbedtls/platform_util.h" |
| #include "mbedtls/sha256.h" |
| #include <string.h> |
| #include "mbedtls/platform_util.h" |
| |
| #if defined(MBEDTLS_PLATFORM_FAULT_CALLBACKS) |
| #include "platform_fault.h" |
| #else |
| static void mbedtls_platform_fault(){} |
| #endif |
| |
| #if defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM |
| #ifndef asm |
| #define asm __asm |
| #endif |
| #endif /* MBEDTLS_OPTIMIZE_TINYCRYPT_ASM */ |
| |
| /* Parameters for curve NIST P-256 aka secp256r1 */ |
| const uECC_word_t curve_p[NUM_ECC_WORDS] = { |
| BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF), |
| BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00), |
| BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00), |
| BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF) |
| }; |
| const uECC_word_t curve_n[NUM_ECC_WORDS] = { |
| BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3), |
| BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC), |
| BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF), |
| BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF) |
| }; |
| const uECC_word_t curve_G[2 * NUM_ECC_WORDS] = { |
| BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4), |
| BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77), |
| BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8), |
| BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B), |
| BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB), |
| BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B), |
| BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E), |
| BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F) |
| }; |
| const uECC_word_t curve_b[NUM_ECC_WORDS] = { |
| BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B), |
| BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65), |
| BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3), |
| BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A) |
| }; |
| |
| static int uECC_update_param_sha256(mbedtls_sha256_context *ctx, |
| const uECC_word_t val[NUM_ECC_WORDS]) |
| { |
| uint8_t bytes[NUM_ECC_BYTES]; |
| |
| uECC_vli_nativeToBytes(bytes, NUM_ECC_BYTES, val); |
| return mbedtls_sha256_update_ret(ctx, bytes, NUM_ECC_BYTES); |
| } |
| |
| static int uECC_compute_param_sha256(unsigned char output[32]) |
| { |
| int ret = UECC_FAILURE; |
| mbedtls_sha256_context ctx; |
| |
| mbedtls_sha256_init( &ctx ); |
| |
| if (mbedtls_sha256_starts_ret(&ctx, 0) != 0) { |
| goto exit; |
| } |
| |
| if (uECC_update_param_sha256(&ctx, curve_p) != 0 || |
| uECC_update_param_sha256(&ctx, curve_n) != 0 || |
| uECC_update_param_sha256(&ctx, curve_G) != 0 || |
| uECC_update_param_sha256(&ctx, curve_G + NUM_ECC_WORDS) != 0 || |
| uECC_update_param_sha256(&ctx, curve_b) != 0) |
| { |
| goto exit; |
| } |
| |
| if (mbedtls_sha256_finish_ret(&ctx, output) != 0) { |
| goto exit; |
| } |
| |
| ret = UECC_SUCCESS; |
| |
| exit: |
| mbedtls_sha256_free( &ctx ); |
| |
| return ret; |
| } |
| |
| /* |
| * Check integrity of curve parameters. |
| * Return 0 if everything's OK, non-zero otherwise. |
| */ |
| static int uECC_check_curve_integrity(void) |
| { |
| unsigned char computed[32]; |
| static const unsigned char reference[32] = { |
| 0x2d, 0xa1, 0xa4, 0x64, 0x45, 0x28, 0x0d, 0xe1, |
| 0x93, 0xf9, 0x29, 0x2f, 0xac, 0x3e, 0xe2, 0x92, |
| 0x76, 0x0a, 0xe2, 0xbc, 0xce, 0x2a, 0xa2, 0xc6, |
| 0x38, 0xf2, 0x19, 0x1d, 0x76, 0x72, 0x93, 0x49, |
| }; |
| int diff = 0; |
| unsigned char tmp1, tmp2; |
| volatile unsigned i; |
| |
| if (uECC_compute_param_sha256(computed) != UECC_SUCCESS) { |
| return UECC_FAILURE; |
| } |
| |
| for (i = 0; i < 32; i++) { |
| /* make sure the order of volatile accesses is well-defined */ |
| tmp1 = computed[i]; |
| tmp2 = reference[i]; |
| diff |= tmp1 ^ tmp2; |
| } |
| |
| /* i should be 32 */ |
| mbedtls_platform_random_delay(); |
| diff |= i ^ 32; |
| |
| return diff; |
| } |
| |
| /* IMPORTANT: Make sure a cryptographically-secure PRNG is set and the platform |
| * has access to enough entropy in order to feed the PRNG regularly. */ |
| #if default_RNG_defined |
| static uECC_RNG_Function g_rng_function = &default_CSPRNG; |
| #else |
| static uECC_RNG_Function g_rng_function = 0; |
| #endif |
| |
| void uECC_set_rng(uECC_RNG_Function rng_function) |
| { |
| g_rng_function = rng_function; |
| } |
| |
| uECC_RNG_Function uECC_get_rng(void) |
| { |
| return g_rng_function; |
| } |
| |
| int uECC_curve_private_key_size(void) |
| { |
| return BITS_TO_BYTES(NUM_ECC_BITS); |
| } |
| |
| int uECC_curve_public_key_size(void) |
| { |
| return 2 * NUM_ECC_BYTES; |
| } |
| |
| #if defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __CC_ARM |
| __asm void uECC_vli_clear(uECC_word_t *vli) |
| { |
| #if NUM_ECC_WORDS != 8 |
| #error adjust ARM assembly to handle NUM_ECC_WORDS != 8 |
| #endif |
| #if !defined __thumb__ || __TARGET_ARCH_THUMB < 4 |
| MOVS r1,#0 |
| MOVS r2,#0 |
| STMIA r0!,{r1,r2} |
| STMIA r0!,{r1,r2} |
| STMIA r0!,{r1,r2} |
| STMIA r0!,{r1,r2} |
| BX lr |
| #else |
| MOVS r1,#0 |
| STRD r1,r1,[r0,#0] // Only Thumb2 STRD can store same reg twice, not ARM |
| STRD r1,r1,[r0,#8] |
| STRD r1,r1,[r0,#16] |
| STRD r1,r1,[r0,#24] |
| BX lr |
| #endif |
| } |
| #elif defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __GNUC__ && defined __arm__ |
| void uECC_vli_clear(uECC_word_t *vli) |
| { |
| #if NUM_ECC_WORDS != 8 |
| #error adjust ARM assembly to handle NUM_ECC_WORDS != 8 |
| #endif |
| #if !defined __thumb__ || !defined __thumb2__ |
| register uECC_word_t *r0 asm("r0") = vli; |
| register uECC_word_t r1 asm("r1") = 0; |
| register uECC_word_t r2 asm("r2") = 0; |
| asm volatile ( |
| ".syntax unified \n\t" |
| "STMIA r0!,{r1,r2} \n\t" |
| "STMIA r0!,{r1,r2} \n\t" |
| "STMIA r0!,{r1,r2} \n\t" |
| "STMIA r0!,{r1,r2} \n\t" |
| ".syntax divided \n\t" |
| : "+r" (r0) |
| : "r" (r1), "r" (r2) |
| : "memory" |
| #else |
| register uECC_word_t *r0 asm("r0") = vli; |
| register uECC_word_t r1 asm("r1") = 0; |
| asm volatile ( |
| "STRD r1,r1,[r0,#0] \n\t" // Only Thumb2 STRD can store same reg twice, not ARM |
| "STRD r1,r1,[r0,#8] \n\t" |
| "STRD r1,r1,[r0,#16] \n\t" |
| "STRD r1,r1,[r0,#24] \n\t" |
| : |
| : "r" (r0), "r" (r1) |
| : "memory" |
| #endif |
| ); |
| } |
| #else |
| void uECC_vli_clear(uECC_word_t *vli) |
| { |
| wordcount_t i; |
| for (i = 0; i < NUM_ECC_WORDS; ++i) { |
| vli[i] = 0; |
| } |
| } |
| #endif |
| |
| #if defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __CC_ARM |
| __asm uECC_word_t uECC_vli_isZero(const uECC_word_t *vli) |
| { |
| #if NUM_ECC_WORDS != 8 |
| #error adjust ARM assembly to handle NUM_ECC_WORDS != 8 |
| #endif |
| #if defined __thumb__ && __TARGET_ARCH_THUMB < 4 |
| LDMIA r0!,{r1,r2,r3} |
| ORRS r1,r2 |
| ORRS r1,r3 |
| LDMIA r0!,{r2,r3} |
| ORRS r1,r2 |
| ORRS r1,r3 |
| LDMIA r0,{r0,r2,r3} |
| ORRS r1,r0 |
| ORRS r1,r2 |
| ORRS r1,r3 |
| RSBS r1,r1,#0 // C set if zero |
| MOVS r0,#0 |
| ADCS r0,r0 |
| BX lr |
| #else |
| LDMIA r0!,{r1,r2,r3,ip} |
| ORRS r1,r2 |
| ORRS r1,r3 |
| ORRS r1,ip |
| LDMIA r0,{r0,r2,r3,ip} |
| ORRS r1,r0 |
| ORRS r1,r2 |
| ORRS r1,r3 |
| ORRS r1,ip |
| #ifdef __ARM_FEATURE_CLZ |
| CLZ r0,r1 // 32 if zero |
| LSRS r0,r0,#5 |
| #else |
| RSBS r1,r1,#0 // C set if zero |
| MOVS r0,#0 |
| ADCS r0,r0 |
| #endif |
| BX lr |
| #endif |
| } |
| #elif defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __GNUC__ && defined __arm__ |
| uECC_word_t uECC_vli_isZero(const uECC_word_t *vli) |
| { |
| uECC_word_t ret; |
| #if NUM_ECC_WORDS != 8 |
| #error adjust ARM assembly to handle NUM_ECC_WORDS != 8 |
| #endif |
| #if defined __thumb__ && !defined __thumb2__ |
| register uECC_word_t r1 asm ("r1"); |
| register uECC_word_t r2 asm ("r2"); |
| register uECC_word_t r3 asm ("r3"); |
| asm volatile ( |
| ".syntax unified \n\t" |
| "LDMIA %[vli]!,{%[r1],%[r2],%[r3]} \n\t" |
| "ORRS %[r1],%[r2] \n\t" |
| "ORRS %[r1],%[r3] \n\t" |
| "LDMIA %[vli]!,{%[r2],%[r3]} \n\t" |
| "ORRS %[r1],%[r2] \n\t" |
| "ORRS %[r1],%[r3] \n\t" |
| "LDMIA %[vli],{%[vli],%[r2],%[r3]} \n\t" |
| "ORRS %[r1],%[vli] \n\t" |
| "ORRS %[r1],%[r2] \n\t" |
| "ORRS %[r1],%[r3] \n\t" |
| "RSBS %[r1],%[r1],#0 \n\t" // C set if zero |
| "MOVS %[ret],#0 \n\t" |
| "ADCS %[ret],r0 \n\t" |
| ".syntax divided \n\t" |
| : [ret]"=r" (ret), [r1]"=r" (r1), [r2]"=r" (r2), [r3]"=r" (r3) |
| : [vli]"[ret]" (vli) |
| : "cc", "memory" |
| ); |
| #else |
| register uECC_word_t r1 asm ("r1"); |
| register uECC_word_t r2 asm ("r2"); |
| register uECC_word_t r3 asm ("r3"); |
| register uECC_word_t ip asm ("ip"); |
| asm volatile ( |
| "LDMIA %[vli]!,{%[r1],%[r2],%[r3],%[ip]}\n\t" |
| "ORRS %[r1],%[r2] \n\t" |
| "ORRS %[r1],%[r3] \n\t" |
| "ORRS %[r1],%[ip] \n\t" |
| "LDMIA %[vli],{%[vli],%[r2],%[r3],%[ip]}\n\t" |
| "ORRS %[r1],%[vli] \n\t" |
| "ORRS %[r1],%[r2] \n\t" |
| "ORRS %[r1],%[r3] \n\t" |
| "ORRS %[r1],%[ip] \n\t" |
| #if __ARM_ARCH >= 5 |
| "CLZ %[ret],%[r1] \n\t" // r0 = 32 if zero |
| "LSRS %[ret],%[ret],#5 \n\t" |
| #else |
| "RSBS %[r1],%[r1],#0 \n\t" // C set if zero |
| "MOVS %[ret],#0 \n\t" |
| "ADCS %[ret],r0 \n\t" |
| #endif |
| : [ret]"=r" (ret), [r1]"=r" (r1), [r2]"=r" (r2), [r3]"=r" (r3), [ip]"=r" (ip) |
| : [vli]"[ret]" (vli) |
| : "cc", "memory" |
| ); |
| #endif |
| return ret; |
| } |
| #else |
| uECC_word_t uECC_vli_isZero(const uECC_word_t *vli) |
| { |
| uECC_word_t bits = 0; |
| wordcount_t i; |
| for (i = 0; i < NUM_ECC_WORDS; ++i) { |
| bits |= vli[i]; |
| } |
| return (bits == 0); |
| } |
| #endif |
| |
| uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit) |
| { |
| return (vli[bit >> uECC_WORD_BITS_SHIFT] & |
| ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK))); |
| } |
| |
| /* Counts the number of words in vli. */ |
| static wordcount_t vli_numDigits(const uECC_word_t *vli) |
| { |
| |
| wordcount_t i; |
| /* Search from the end until we find a non-zero digit. We do it in reverse |
| * because we expect that most digits will be nonzero. */ |
| for (i = NUM_ECC_WORDS - 1; i >= 0 && vli[i] == 0; --i) { |
| } |
| |
| return (i + 1); |
| } |
| |
| bitcount_t uECC_vli_numBits(const uECC_word_t *vli) |
| { |
| |
| uECC_word_t i; |
| uECC_word_t digit; |
| |
| wordcount_t num_digits = vli_numDigits(vli); |
| if (num_digits == 0) { |
| return 0; |
| } |
| |
| digit = vli[num_digits - 1]; |
| #if defined __GNUC__ || defined __clang__ || defined __CC_ARM |
| i = uECC_WORD_BITS - __builtin_clz(digit); |
| #else |
| for (i = 0; digit; ++i) { |
| digit >>= 1; |
| } |
| #endif |
| |
| return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i); |
| } |
| |
| void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src) |
| { |
| wordcount_t i; |
| |
| for (i = 0; i < NUM_ECC_WORDS; ++i) { |
| dest[i] = src[i]; |
| } |
| } |
| |
| cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, |
| const uECC_word_t *right) |
| { |
| wordcount_t i; |
| |
| for (i = NUM_ECC_WORDS - 1; i >= 0; --i) { |
| if (left[i] > right[i]) { |
| return 1; |
| } else if (left[i] < right[i]) { |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right) |
| { |
| |
| uECC_word_t diff = 0; |
| uECC_word_t flow_monitor = 0; |
| uECC_word_t tmp1, tmp2; |
| volatile int i; |
| |
| /* Start from a random location and check the correct number of iterations */ |
| int start_offset = mbedtls_platform_random_in_range(NUM_ECC_WORDS); |
| |
| for (i = start_offset; i < NUM_ECC_WORDS; ++i) { |
| tmp1 = left[i]; |
| tmp2 = right[i]; |
| flow_monitor++; |
| diff |= (tmp1 ^ tmp2); |
| } |
| |
| for (i = 0; i < start_offset; ++i) { |
| tmp1 = left[i]; |
| tmp2 = right[i]; |
| flow_monitor++; |
| diff |= (tmp1 ^ tmp2); |
| } |
| |
| /* Random delay to increase security */ |
| mbedtls_platform_random_delay(); |
| |
| /* Return 0 only when diff is 0 and flow_counter is equal to NUM_ECC_WORDS */ |
| return (diff | (flow_monitor ^ NUM_ECC_WORDS)); |
| } |
| |
| uECC_word_t cond_set(uECC_word_t p_true, uECC_word_t p_false, unsigned int cond) |
| { |
| return (p_true*(cond)) | (p_false*(cond ^ 1)); |
| } |
| |
| /* Computes result = left - right, returning borrow, in constant time. |
| * Can modify in place. */ |
| #if defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __CC_ARM |
| __asm uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right) |
| { |
| #if NUM_ECC_WORDS != 8 |
| #error adjust ARM assembly to handle NUM_ECC_WORDS != 8 |
| #endif |
| #if defined __thumb__ && __TARGET_ARCH_THUMB < 4 |
| PUSH {r4-r6,lr} |
| FRAME PUSH {r4-r6,lr} |
| LDMIA r1!,{r3,r4} |
| LDMIA r2!,{r5,r6} |
| SUBS r3,r5 |
| SBCS r4,r6 |
| STMIA r0!,{r3,r4} |
| LDMIA r1!,{r3,r4} |
| LDMIA r2!,{r5,r6} |
| SBCS r3,r5 |
| SBCS r4,r6 |
| STMIA r0!,{r3,r4} |
| LDMIA r1!,{r3,r4} |
| LDMIA r2!,{r5,r6} |
| SBCS r3,r5 |
| SBCS r4,r6 |
| STMIA r0!,{r3,r4} |
| LDMIA r1!,{r3,r4} |
| LDMIA r2!,{r5,r6} |
| SBCS r3,r5 |
| SBCS r4,r6 |
| STMIA r0!,{r3,r4} |
| SBCS r0,r0 // r0 := r0 - r0 - borrow = -borrow |
| RSBS r0,r0,#0 // r0 := borrow |
| POP {r4-r6,pc} |
| #else |
| PUSH {r4-r8,lr} |
| FRAME PUSH {r4-r8,lr} |
| LDMIA r1!,{r3-r6} |
| LDMIA r2!,{r7,r8,r12,lr} |
| SUBS r3,r7 |
| SBCS r4,r8 |
| SBCS r5,r12 |
| SBCS r6,lr |
| STMIA r0!,{r3-r6} |
| LDMIA r1!,{r3-r6} |
| LDMIA r2!,{r7,r8,r12,lr} |
| SBCS r3,r7 |
| SBCS r4,r8 |
| SBCS r5,r12 |
| SBCS r6,lr |
| STMIA r0!,{r3-r6} |
| SBCS r0,r0 // r0 := r0 - r0 - borrow = -borrow |
| RSBS r0,r0,#0 // r0 := borrow |
| POP {r4-r8,pc} |
| #endif |
| } |
| #elif defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __GNUC__ && defined __arm__ |
| uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right) |
| { |
| #if NUM_ECC_WORDS != 8 |
| #error adjust ARM assembly to handle NUM_ECC_WORDS != 8 |
| #endif |
| register uECC_word_t *r0 asm ("r0") = result; |
| register const uECC_word_t *r1 asm ("r1") = left; |
| register const uECC_word_t *r2 asm ("r2") = right; |
| asm volatile ( |
| #if defined __thumb__ && !defined __thumb2__ |
| ".syntax unified \n\t" |
| "LDMIA r1!,{r3,r4} \n\t" |
| "LDMIA r2!,{r5,r6} \n\t" |
| "SUBS r3,r5 \n\t" |
| "SBCS r4,r6 \n\t" |
| "STMIA r0!,{r3,r4} \n\t" |
| "LDMIA r1!,{r3,r4} \n\t" |
| "LDMIA r2!,{r5,r6} \n\t" |
| "SBCS r3,r5 \n\t" |
| "SBCS r4,r6 \n\t" |
| "STMIA r0!,{r3,r4} \n\t" |
| "LDMIA r1!,{r3,r4} \n\t" |
| "LDMIA r2!,{r5,r6} \n\t" |
| "SBCS r3,r5 \n\t" |
| "SBCS r4,r6 \n\t" |
| "STMIA r0!,{r3,r4} \n\t" |
| "LDMIA r1!,{r3,r4} \n\t" |
| "LDMIA r2!,{r5,r6} \n\t" |
| "SBCS r3,r5 \n\t" |
| "SBCS r4,r6 \n\t" |
| "STMIA r0!,{r3,r4} \n\t" |
| "SBCS r0,r0 \n\t" // r0 := r0 - r0 - borrow = -borrow |
| "RSBS r0,r0,#0 \n\t" // r0 := borrow |
| ".syntax divided \n\t" |
| : "+r" (r0), "+r" (r1), "+r" (r2) |
| : |
| : "r3", "r4", "r5", "r6", "cc", "memory" |
| #else |
| "LDMIA r1!,{r3-r6} \n\t" |
| "LDMIA r2!,{r7,r8,r12,lr} \n\t" |
| "SUBS r3,r7 \n\t" |
| "SBCS r4,r8 \n\t" |
| "SBCS r5,r12 \n\t" |
| "SBCS r6,lr \n\t" |
| "STMIA r0!,{r3-r6} \n\t" |
| "LDMIA r1!,{r3-r6} \n\t" |
| "LDMIA r2!,{r7,r8,r12,lr} \n\t" |
| "SBCS r3,r7 \n\t" |
| "SBCS r4,r8 \n\t" |
| "SBCS r5,r12 \n\t" |
| "SBCS r6,lr \n\t" |
| "STMIA r0!,{r3-r6} \n\t" |
| "SBCS r0,r0 \n\t" // r0 := r0 - r0 - borrow = -borrow |
| "RSBS r0,r0,#0 \n\t" // r0 := borrow |
| : "+r" (r0), "+r" (r1), "+r" (r2) |
| : |
| : "r3", "r4", "r5", "r6", "r7", "r8", "r12", "lr", "cc", "memory" |
| #endif |
| ); |
| return (uECC_word_t) r0; |
| } |
| #else |
| uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right) |
| { |
| uECC_word_t borrow = 0; |
| wordcount_t i; |
| for (i = 0; i < NUM_ECC_WORDS; ++i) { |
| uECC_word_t diff = left[i] - right[i] - borrow; |
| uECC_word_t val = (diff > left[i]); |
| borrow = cond_set(val, borrow, (diff != left[i])); |
| |
| result[i] = diff; |
| } |
| return borrow; |
| } |
| #endif |
| |
| /* Computes result = left + right, returning carry, in constant time. |
| * Can modify in place. */ |
| #if defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __CC_ARM |
| static __asm uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right) |
| { |
| #if NUM_ECC_WORDS != 8 |
| #error adjust ARM assembly to handle NUM_ECC_WORDS != 8 |
| #endif |
| #if defined __thumb__ && __TARGET_ARCH_THUMB < 4 |
| PUSH {r4-r6,lr} |
| FRAME PUSH {r4-r6,lr} |
| LDMIA r1!,{r3,r4} |
| LDMIA r2!,{r5,r6} |
| ADDS r3,r5 |
| ADCS r4,r6 |
| STMIA r0!,{r3,r4} |
| LDMIA r1!,{r3,r4} |
| LDMIA r2!,{r5,r6} |
| ADCS r3,r5 |
| ADCS r4,r6 |
| STMIA r0!,{r3,r4} |
| LDMIA r1!,{r3,r4} |
| LDMIA r2!,{r5,r6} |
| ADCS r3,r5 |
| ADCS r4,r6 |
| STMIA r0!,{r3,r4} |
| LDMIA r1!,{r3,r4} |
| LDMIA r2!,{r5,r6} |
| ADCS r3,r5 |
| ADCS r4,r6 |
| STMIA r0!,{r3,r4} |
| MOVS r0,#0 // does not affect C flag |
| ADCS r0,r0 // r0 := 0 + 0 + C = carry |
| POP {r4-r6,pc} |
| #else |
| PUSH {r4-r8,lr} |
| FRAME PUSH {r4-r8,lr} |
| LDMIA r1!,{r3-r6} |
| LDMIA r2!,{r7,r8,r12,lr} |
| ADDS r3,r7 |
| ADCS r4,r8 |
| ADCS r5,r12 |
| ADCS r6,lr |
| STMIA r0!,{r3-r6} |
| LDMIA r1!,{r3-r6} |
| LDMIA r2!,{r7,r8,r12,lr} |
| ADCS r3,r7 |
| ADCS r4,r8 |
| ADCS r5,r12 |
| ADCS r6,lr |
| STMIA r0!,{r3-r6} |
| MOVS r0,#0 // does not affect C flag |
| ADCS r0,r0 // r0 := 0 + 0 + C = carry |
| POP {r4-r8,pc} |
| #endif |
| } |
| #elif defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __GNUC__ && defined __arm__ |
| static uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right) |
| { |
| register uECC_word_t *r0 asm ("r0") = result; |
| register const uECC_word_t *r1 asm ("r1") = left; |
| register const uECC_word_t *r2 asm ("r2") = right; |
| |
| asm volatile ( |
| #if defined __thumb__ && !defined __thumb2__ |
| ".syntax unified \n\t" |
| "LDMIA r1!,{r3,r4} \n\t" |
| "LDMIA r2!,{r5,r6} \n\t" |
| "ADDS r3,r5 \n\t" |
| "ADCS r4,r6 \n\t" |
| "STMIA r0!,{r3,r4} \n\t" |
| "LDMIA r1!,{r3,r4} \n\t" |
| "LDMIA r2!,{r5,r6} \n\t" |
| "ADCS r3,r5 \n\t" |
| "ADCS r4,r6 \n\t" |
| "STMIA r0!,{r3,r4} \n\t" |
| "LDMIA r1!,{r3,r4} \n\t" |
| "LDMIA r2!,{r5,r6} \n\t" |
| "ADCS r3,r5 \n\t" |
| "ADCS r4,r6 \n\t" |
| "STMIA r0!,{r3,r4} \n\t" |
| "LDMIA r1!,{r3,r4} \n\t" |
| "LDMIA r2!,{r5,r6} \n\t" |
| "ADCS r3,r5 \n\t" |
| "ADCS r4,r6 \n\t" |
| "STMIA r0!,{r3,r4} \n\t" |
| "MOVS r0,#0 \n\t" // does not affect C flag |
| "ADCS r0,r0 \n\t" // r0 := 0 + 0 + C = carry |
| ".syntax divided \n\t" |
| : "+r" (r0), "+r" (r1), "+r" (r2) |
| : |
| : "r3", "r4", "r5", "r6", "cc", "memory" |
| #else |
| "LDMIA r1!,{r3-r6} \n\t" |
| "LDMIA r2!,{r7,r8,r12,lr} \n\t" |
| "ADDS r3,r7 \n\t" |
| "ADCS r4,r8 \n\t" |
| "ADCS r5,r12 \n\t" |
| "ADCS r6,lr \n\t" |
| "STMIA r0!,{r3-r6} \n\t" |
| "LDMIA r1!,{r3-r6} \n\t" |
| "LDMIA r2!,{r7,r8,r12,lr} \n\t" |
| "ADCS r3,r7 \n\t" |
| "ADCS r4,r8 \n\t" |
| "ADCS r5,r12 \n\t" |
| "ADCS r6,lr \n\t" |
| "STMIA r0!,{r3-r6} \n\t" |
| "MOVS r0,#0 \n\t" // does not affect C flag |
| "ADCS r0,r0 \n\t" // r0 := 0 + 0 + C = carry |
| : "+r" (r0), "+r" (r1), "+r" (r2) |
| : |
| : "r3", "r4", "r5", "r6", "r7", "r8", "r12", "lr", "cc", "memory" |
| #endif |
| ); |
| return (uECC_word_t) r0; |
| } |
| #else |
| static uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right) |
| { |
| uECC_word_t carry = 0; |
| wordcount_t i; |
| for (i = 0; i < NUM_ECC_WORDS; ++i) { |
| uECC_word_t sum = left[i] + right[i] + carry; |
| uECC_word_t val = (sum < left[i]); |
| carry = cond_set(val, carry, (sum != left[i])); |
| result[i] = sum; |
| } |
| return carry; |
| } |
| #endif |
| |
| cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right) |
| { |
| uECC_word_t tmp[NUM_ECC_WORDS]; |
| uECC_word_t neg = uECC_vli_sub(tmp, left, right); |
| uECC_word_t equal = uECC_vli_isZero(tmp); |
| return ((equal ^ 1) - 2 * neg); |
| } |
| |
| /* Computes vli = vli >> 1. */ |
| #if defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __CC_ARM |
| static __asm void uECC_vli_rshift1(uECC_word_t *vli) |
| { |
| #if defined __thumb__ && __TARGET_ARCH_THUMB < 4 |
| // RRX instruction is not available, so although we |
| // can use C flag, it's not that effective. Does at |
| // least save one working register, meaning we don't need stack |
| MOVS r3,#0 // initial carry = 0 |
| MOVS r2,#__cpp(4 * (NUM_ECC_WORDS - 1)) |
| 01 LDR r1,[r0,r2] |
| LSRS r1,r1,#1 // r2 = word >> 1 |
| ORRS r1,r3 // merge in the previous carry |
| STR r1,[r0,r2] |
| ADCS r3,r3 // put C into bottom bit of r3 |
| LSLS r3,r3,#31 // shift it up to the top ready for next word |
| SUBS r2,r2,#4 |
| BPL %B01 |
| BX lr |
| #else |
| #if NUM_ECC_WORDS != 8 |
| #error adjust ARM assembly to handle NUM_ECC_WORDS != 8 |
| #endif |
| // Smooth multiword operation, lots of 32-bit instructions |
| ADDS r0,#32 |
| LDMDB r0,{r1-r3,ip} |
| LSRS ip,ip,#1 |
| RRXS r3,r3 |
| RRXS r2,r2 |
| RRXS r1,r1 |
| STMDB r0!,{r1-r3,ip} |
| LDMDB r0,{r1-r3,ip} |
| RRXS ip,ip |
| RRXS r3,r3 |
| RRXS r2,r2 |
| RRX r1,r1 |
| STMDB r0!,{r1-r3,ip} |
| BX lr |
| #endif |
| } |
| #elif defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __GNUC__ && defined __arm__ && defined __thumb2__ |
| static void uECC_vli_rshift1(uECC_word_t *vli) |
| { |
| register uECC_word_t *r0 asm ("r0") = vli; |
| #if NUM_ECC_WORDS != 8 |
| #error adjust ARM assembly to handle NUM_ECC_WORDS != 8 |
| #endif |
| asm volatile ( |
| "ADDS r0,#32 \n\t" |
| "LDMDB r0,{r1-r3,ip} \n\t" |
| "LSRS ip,ip,#1 \n\t" |
| "RRXS r3,r3 \n\t" |
| "RRXS r2,r2 \n\t" |
| "RRXS r1,r1 \n\t" |
| "STMDB r0!,{r1-r3,ip} \n\t" |
| "LDMDB r0,{r1-r3,ip} \n\t" |
| "RRXS ip,ip \n\t" |
| "RRXS r3,r3 \n\t" |
| "RRXS r2,r2 \n\t" |
| "RRX r1,r1 \n\t" |
| "STMDB r0!,{r1-r3,ip} \n\t" |
| : "+r" (r0) |
| : |
| : "r1", "r2", "r3", "ip", "cc", "memory" |
| ); |
| } |
| #else |
| static void uECC_vli_rshift1(uECC_word_t *vli) |
| { |
| uECC_word_t *end = vli; |
| uECC_word_t carry = 0; |
| |
| vli += NUM_ECC_WORDS; |
| while (vli-- > end) { |
| uECC_word_t temp = *vli; |
| *vli = (temp >> 1) | carry; |
| carry = temp << (uECC_WORD_BITS - 1); |
| } |
| } |
| #endif |
| |
| /* Compute a * b + r, where r is a triple-word with high-order word r[2] and |
| * low-order word r[0], and store the result in the same triple-word. |
| * |
| * r[2..0] = a * b + r[2..0]: |
| * [in] a, b: operands to be multiplied |
| * [in] r: 3 words of operand to add |
| * [out] r: 3 words of result |
| */ |
| #if defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __CC_ARM |
| static __asm void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t r[3]) |
| { |
| #if defined __thumb__ && __TARGET_ARCH_THUMB < 4 |
| PUSH {r4-r5} |
| FRAME PUSH {r4-r5} |
| // __ARM_common_mul_uu replacement - inline, faster, don't touch R2 |
| // Separate operands into halfwords |
| UXTH r3,r0 // r3 := a.lo |
| LSRS r4,r0,#16 // r4 := a.hi |
| UXTH r5,r1 // r5 := b.lo |
| LSRS r1,r1,#16 // r1 := b.hi |
| // Multiply halfword pairs |
| MOVS r0,r3 |
| MULS r0,r5,r0 // r0 := a.lo * b.lo |
| MULS r3,r1,r3 // r3 := a.lo * b.hi |
| MULS r5,r4,r5 // r5 := a.hi * b.lo |
| MULS r1,r4,r1 // r1 := a.hi * b.hi |
| // Split, shift and add a.lo * b.hi |
| LSRS r4,r3,#16 // r4 := (a.lo * b.hi).hi |
| LSLS r3,r3,#16 // r3 := (a.lo * b.hi).lo |
| ADDS r0,r0,r3 // r0 := a.lo * b.lo + (a.lo * b.hi).lo |
| ADCS r1,r4 // r1 := a.hi * b.hi + (a.lo * b.hi).hi + carry |
| // Split, shift and add a.hi * b.lo |
| LSRS r4,r5,#16 // r4 := (a.hi * b.lo).hi |
| LSLS r5,r5,#16 // r5 := (a.hi * b.lo).lo |
| ADDS r0,r0,r5 // r0 := a.lo * b.lo + (a.lo * b.hi).lo + (a.hi * b.lo).lo |
| ADCS r1,r4 // r1 := a.hi * b.hi + (a.lo * b.hi).hi + (a.hi * b.lo).hi + carries |
| // Finally add r[] |
| LDMIA r2!,{r3,r4,r5} |
| ADDS r3,r3,r0 |
| ADCS r4,r1 |
| MOVS r0,#0 |
| ADCS r5,r0 |
| SUBS r2,#12 |
| STMIA r2!,{r3,r4,r5} |
| POP {r4-r5} |
| FRAME POP {r4-r5} |
| BX lr |
| #else |
| UMULL r3,ip,r0,r1 // pre-ARMv6 requires Rd[Lo|Hi] != Rn |
| LDMIA r2,{r0,r1} |
| ADDS r0,r0,r3 |
| LDR r3,[r2,#8] |
| ADCS r1,r1,ip |
| ADC r3,r3,#0 |
| STMIA r2!,{r0,r1,r3} |
| BX lr |
| #endif |
| } |
| #elif defined MBEDTLS_OPTIMIZE_TINYCRYPT_ASM && defined __GNUC__ && defined __arm__ |
| static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t r[3]) |
| { |
| register uECC_word_t r0 asm ("r0") = a; |
| register uECC_word_t r1 asm ("r1") = b; |
| register uECC_word_t *r2 asm ("r2") = r; |
| asm volatile ( |
| #if defined __thumb__ && !defined(__thumb2__) |
| ".syntax unified \n\t" |
| // __ARM_common_mul_uu replacement - inline, faster, don't touch R2 |
| // Separate operands into halfwords |
| "UXTH r3,r0 \n\t" // r3 := a.lo |
| "LSRS r4,r0,#16 \n\t" // r4 := a.hi |
| "UXTH r5,r1 \n\t" // r5 := b.lo |
| "LSRS r1,r1,#16 \n\t" // r1 := b.hi |
| // Multiply halfword pairs |
| "MOVS r0,r3 \n\t" |
| "MULS r0,r5,r0 \n\t" // r0 := a.lo * b.lo |
| "MULS r3,r1,r3 \n\t" // r3 := a.lo * b.hi |
| "MULS r5,r4,r5 \n\t" // r5 := a.hi * b.lo |
| "MULS r1,r4,r1 \n\t" // r1 := a.hi * b.hi |
| // Split, shift and add a.lo * b.hi |
| "LSRS r4,r3,#16 \n\t" // r4 := (a.lo * b.hi).hi |
| "LSLS r3,r3,#16 \n\t" // r3 := (a.lo * b.hi).lo |
| "ADDS r0,r0,r3 \n\t" // r0 := a.lo * b.lo + (a.lo * b.hi).lo |
| "ADCS r1,r4 \n\t" // r1 := a.hi * b.hi + (a.lo * b.hi).hi + carry |
| // Split, shift and add a.hi * b.lo |
| "LSRS r4,r5,#16 \n\t" // r4 := (a.hi * b.lo).hi |
| "LSLS r5,r5,#16 \n\t" // r5 := (a.hi * b.lo).lo |
| "ADDS r0,r0,r5 \n\t" // r0 := a.lo * b.lo + (a.lo * b.hi).lo + (a.hi * b.lo).lo |
| "ADCS r1,r4 \n\t" // r1 := a.hi * b.hi + (a.lo * b.hi).hi + (a.hi * b.lo).hi + carries |
| // Finally add r[] |
| "LDMIA r2!,{r3,r4,r5} \n\t" |
| "ADDS r3,r3,r0 \n\t" |
| "ADCS r4,r1 \n\t" |
| "MOVS r0,#0 \n\t" |
| "ADCS r5,r0 \n\t" |
| "SUBS r2,#12 \n\t" |
| "STMIA r2!,{r3,r4,r5} \n\t" |
| ".syntax divided \n\t" |
| : "+r" (r0), "+r" (r1), "+r" (r2) |
| : |
| : "r3", "r4", "r5", "ip", "cc", "memory" |
| #else |
| "UMULL r3,ip,r0,r1 \n\t" // pre-ARMv6 requires Rd[Lo|Hi] != Rn |
| "LDMIA r2,{r0,r1} \n\t" |
| "ADDS r0,r0,r3 \n\t" |
| "LDR r3,[r2,#8] \n\t" |
| "ADCS r1,r1,ip \n\t" |
| "ADC r3,r3,#0 \n\t" |
| "STMIA r2!,{r0,r1,r3} \n\t" |
| : "+r" (r0), "+r" (r1), "+r" (r2) |
| : |
| : "r3", "ip", "cc", "memory" |
| #endif |
| ); |
| } |
| #else |
| static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t r[3]) |
| { |
| |
| uECC_dword_t p = (uECC_dword_t)a * b; |
| uECC_dword_t r01 = ((uECC_dword_t)(r[1]) << uECC_WORD_BITS) | r[0]; |
| r01 += p; |
| r[2] += (r01 < p); |
| r[1] = r01 >> uECC_WORD_BITS; |
| r[0] = (uECC_word_t)r01; |
| } |
| #endif |
| |
| /* State for implementing random delays in uECC_vli_mult_rnd(). |
| * |
| * The state is initialized by randomizing delays and setting i = 0. |
| * Each call to uECC_vli_mult_rnd() uses one byte of delays and increments i. |
| * |
| * Randomized vli multiplication is used only for point operations |
| * (XYcZ_add_rnd() * and XYcZ_addC_rnd()) in scalar multiplication |
| * (ECCPoint_mult()). Those go in pair, and each pair does 14 calls to |
| * uECC_vli_mult_rnd() (6 in XYcZ_add_rnd() and 8 in XYcZ_addC_rnd(), |
| * indirectly through uECC_vli_modMult_rnd(). |
| * |
| * Considering this, in order to minimize the number of calls to the RNG |
| * (which impact performance) while keeping the size of the structure low, |
| * make room for 14 randomized vli mults, which corresponds to one step in the |
| * scalar multiplication routine. |
| */ |
| typedef struct { |
| uint8_t i; |
| uint8_t delays[14]; |
| } ecc_wait_state_t; |
| |
| /* |
| * Reset wait_state so that it's ready to be used. |
| */ |
| void ecc_wait_state_reset(ecc_wait_state_t *ws) |
| { |
| if (ws == NULL) |
| return; |
| |
| ws->i = 0; |
| mbedtls_platform_random_buf(ws->delays, sizeof(ws->delays)); |
| } |
| |
| /* Computes result = left * right. Result must be 2 * num_words long. |
| * |
| * As a counter-measure against horizontal attacks, add noise by performing |
| * a random number of extra computations performing random additional accesses |
| * to limbs of the input. |
| * |
| * Each of the two actual computation loops is surrounded by two |
| * similar-looking waiting loops, to make the beginning and end of the actual |
| * computation harder to spot. |
| * |
| * We add 4 waiting loops of between 0 and 3 calls to muladd() each. That |
| * makes an average of 6 extra calls. Compared to the main computation which |
| * makes 64 such calls, this represents an average performance degradation of |
| * less than 10%. |
| * |
| * Compared to the original uECC_vli_mult(), loose the num_words argument as we |
| * know it's always 8. This saves a bit of code size and execution speed. |
| */ |
| static void uECC_vli_mult_rnd(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right, ecc_wait_state_t *s) |
| { |
| |
| uECC_word_t r[3] = { 0, 0, 0 }; |
| wordcount_t i, k; |
| const uint8_t num_words = NUM_ECC_WORDS; |
| |
| /* Fetch 8 bit worth of delay from the state; 0 if we have no state */ |
| uint8_t delays = s ? s->delays[s->i++] : 0; |
| uECC_word_t rr[3] = { 0, 0, 0 }; |
| volatile uECC_word_t rdummy; |
| |
| /* Mimic start of next loop: k in [0, 3] */ |
| k = 0 + (delays & 0x03); |
| delays >>= 2; |
| /* k = 0 -> i in [1, 0] -> 0 extra muladd; |
| * k = 3 -> i in [1, 3] -> 3 extra muladd */ |
| for (i = 1; i <= k; ++i) { |
| muladd(left[i], right[k - i], rr); |
| } |
| rdummy = rr[0]; |
| rr[0] = rr[1]; |
| rr[1] = rr[2]; |
| rr[2] = 0; |
| |
| /* Compute each digit of result in sequence, maintaining the carries. */ |
| for (k = 0; k < num_words; ++k) { |
| for (i = 0; i <= k; ++i) { |
| muladd(left[i], right[k - i], r); |
| } |
| |
| result[k] = r[0]; |
| r[0] = r[1]; |
| r[1] = r[2]; |
| r[2] = 0; |
| } |
| |
| /* Mimic end of previous loop: k in [4, 7] */ |
| k = 4 + (delays & 0x03); |
| delays >>= 2; |
| /* k = 4 -> i in [5, 4] -> 0 extra muladd; |
| * k = 7 -> i in [5, 7] -> 3 extra muladd */ |
| for (i = 5; i <= k; ++i) { |
| muladd(left[i], right[k - i], rr); |
| } |
| rdummy = rr[0]; |
| rr[0] = rr[1]; |
| rr[1] = rr[2]; |
| rr[2] = 0; |
| |
| /* Mimic start of next loop: k in [8, 11] */ |
| k = 11 - (delays & 0x03); |
| delays >>= 2; |
| /* k = 8 -> i in [5, 7] -> 3 extra muladd; |
| * k = 11 -> i in [8, 7] -> 0 extra muladd */ |
| for (i = (k + 5) - num_words; i < num_words; ++i) { |
| muladd(left[i], right[k - i], rr); |
| } |
| rdummy = rr[0]; |
| rr[0] = rr[1]; |
| rr[1] = rr[2]; |
| rr[2] = 0; |
| |
| for (k = num_words; k < num_words * 2 - 1; ++k) { |
| |
| for (i = (k + 1) - num_words; i < num_words; ++i) { |
| muladd(left[i], right[k - i], r); |
| } |
| result[k] = r[0]; |
| r[0] = r[1]; |
| r[1] = r[2]; |
| r[2] = 0; |
| } |
| |
| result[num_words * 2 - 1] = r[0]; |
| |
| /* Mimic end of previous loop: k in [12, 15] */ |
| k = 15 - (delays & 0x03); |
| delays >>= 2; |
| /* k = 12 -> i in [5, 7] -> 3 extra muladd; |
| * k = 15 -> i in [8, 7] -> 0 extra muladd */ |
| for (i = (k + 1) - num_words; i < num_words; ++i) { |
| muladd(left[i], right[k - i], rr); |
| } |
| rdummy = rr[0]; |
| rr[0] = rr[1]; |
| rr[1] = rr[2]; |
| rr[2] = 0; |
| |
| /* avoid warning that rdummy is set but not used */ |
| (void) rdummy; |
| } |
| |
| void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right, const uECC_word_t *mod) |
| { |
| uECC_word_t carry = uECC_vli_add(result, left, right); |
| if (carry || uECC_vli_cmp_unsafe(mod, result) != 1) { |
| /* result > mod (result = mod + remainder), so subtract mod to get |
| * remainder. */ |
| uECC_vli_sub(result, result, mod); |
| } |
| } |
| |
| void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right, const uECC_word_t *mod) |
| { |
| uECC_word_t l_borrow = uECC_vli_sub(result, left, right); |
| if (l_borrow) { |
| /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x, |
| * we can get the correct result from result + mod (with overflow). */ |
| uECC_vli_add(result, result, mod); |
| } |
| } |
| |
| /* Computes result = product % mod, where product is 2N words long. */ |
| /* Currently only designed to work for curve_p or curve_n. */ |
| void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product, |
| const uECC_word_t *mod) |
| { |
| uECC_word_t mod_multiple[2 * NUM_ECC_WORDS]; |
| uECC_word_t tmp[2 * NUM_ECC_WORDS]; |
| uECC_word_t *v[2] = {tmp, product}; |
| uECC_word_t index; |
| const wordcount_t num_words = NUM_ECC_WORDS; |
| |
| /* Shift mod so its highest set bit is at the maximum position. */ |
| bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) - |
| uECC_vli_numBits(mod); |
| wordcount_t word_shift = shift / uECC_WORD_BITS; |
| wordcount_t bit_shift = shift % uECC_WORD_BITS; |
| uECC_word_t carry = 0; |
| |
| if(word_shift > NUM_ECC_WORDS) |
| { |
| mbedtls_platform_fault(); |
| } |
| |
| uECC_vli_clear(mod_multiple); |
| if (bit_shift > 0) { |
| for(index = 0; index < (uECC_word_t)num_words; ++index) { |
| mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry; |
| carry = mod[index] >> (uECC_WORD_BITS - bit_shift); |
| } |
| } else { |
| uECC_vli_set(mod_multiple + word_shift, mod); |
| } |
| |
| for (index = 1; shift >= 0; --shift) { |
| uECC_word_t borrow = 0; |
| wordcount_t i; |
| for (i = 0; i < num_words * 2; ++i) { |
| uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow; |
| if (diff != v[index][i]) { |
| borrow = (diff > v[index][i]); |
| } |
| v[1 - index][i] = diff; |
| } |
| /* Swap the index if there was no borrow */ |
| index = !(index ^ borrow); |
| uECC_vli_rshift1(mod_multiple); |
| mod_multiple[num_words - 1] |= mod_multiple[num_words] << |
| (uECC_WORD_BITS - 1); |
| uECC_vli_rshift1(mod_multiple + num_words); |
| } |
| uECC_vli_set(result, v[index]); |
| } |
| |
| void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right, const uECC_word_t *mod) |
| { |
| uECC_word_t product[2 * NUM_ECC_WORDS]; |
| uECC_vli_mult_rnd(product, left, right, NULL); |
| uECC_vli_mmod(result, product, mod); |
| } |
| |
| static void uECC_vli_modMult_rnd(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right, ecc_wait_state_t *s) |
| { |
| uECC_word_t product[2 * NUM_ECC_WORDS]; |
| uECC_vli_mult_rnd(product, left, right, s); |
| |
| vli_mmod_fast_secp256r1(result, product); |
| } |
| |
| void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left, |
| const uECC_word_t *right) |
| { |
| uECC_vli_modMult_rnd(result, left, right, NULL); |
| } |
| |
| #define EVEN(vli) (!(vli[0] & 1)) |
| |
| static void vli_modInv_update(uECC_word_t *uv, |
| const uECC_word_t *mod) |
| { |
| |
| uECC_word_t carry = 0; |
| |
| if (!EVEN(uv)) { |
| carry = uECC_vli_add(uv, uv, mod); |
| } |
| uECC_vli_rshift1(uv); |
| if (carry) { |
| uv[NUM_ECC_WORDS - 1] |= HIGH_BIT_SET; |
| } |
| } |
| |
| void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input, |
| const uECC_word_t *mod) |
| { |
| uECC_word_t a[NUM_ECC_WORDS], b[NUM_ECC_WORDS]; |
| uECC_word_t u[NUM_ECC_WORDS], v[NUM_ECC_WORDS]; |
| cmpresult_t cmpResult; |
| |
| if (uECC_vli_isZero(input)) { |
| uECC_vli_clear(result); |
| return; |
| } |
| |
| uECC_vli_set(a, input); |
| uECC_vli_set(b, mod); |
| uECC_vli_clear(u); |
| u[0] = 1; |
| uECC_vli_clear(v); |
| while ((cmpResult = uECC_vli_cmp_unsafe(a, b)) != 0) { |
| if (EVEN(a)) { |
| uECC_vli_rshift1(a); |
| vli_modInv_update(u, mod); |
| } else if (EVEN(b)) { |
| uECC_vli_rshift1(b); |
| vli_modInv_update(v, mod); |
| } else if (cmpResult > 0) { |
| uECC_vli_sub(a, a, b); |
| uECC_vli_rshift1(a); |
| if (uECC_vli_cmp_unsafe(u, v) < 0) { |
| uECC_vli_add(u, u, mod); |
| } |
| uECC_vli_sub(u, u, v); |
| vli_modInv_update(u, mod); |
| } else { |
| uECC_vli_sub(b, b, a); |
| uECC_vli_rshift1(b); |
| if (uECC_vli_cmp_unsafe(v, u) < 0) { |
| uECC_vli_add(v, v, mod); |
| } |
| uECC_vli_sub(v, v, u); |
| vli_modInv_update(v, mod); |
| } |
| } |
| uECC_vli_set(result, u); |
| } |
| |
| /* ------ Point operations ------ */ |
| |
| void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1, |
| uECC_word_t * Z1) |
| { |
| /* t1 = X, t2 = Y, t3 = Z */ |
| uECC_word_t t4[NUM_ECC_WORDS]; |
| uECC_word_t t5[NUM_ECC_WORDS]; |
| wordcount_t num_words = NUM_ECC_WORDS; |
| |
| if (uECC_vli_isZero(Z1)) { |
| return; |
| } |
| |
| uECC_vli_modMult_fast(t4, Y1, Y1); /* t4 = y1^2 */ |
| uECC_vli_modMult_fast(t5, X1, t4); /* t5 = x1*y1^2 = A */ |
| uECC_vli_modMult_fast(t4, t4, t4); /* t4 = y1^4 */ |
| uECC_vli_modMult_fast(Y1, Y1, Z1); /* t2 = y1*z1 = z3 */ |
| uECC_vli_modMult_fast(Z1, Z1, Z1); /* t3 = z1^2 */ |
| |
| uECC_vli_modAdd(X1, X1, Z1, curve_p); /* t1 = x1 + z1^2 */ |
| uECC_vli_modAdd(Z1, Z1, Z1, curve_p); /* t3 = 2*z1^2 */ |
| uECC_vli_modSub(Z1, X1, Z1, curve_p); /* t3 = x1 - z1^2 */ |
| uECC_vli_modMult_fast(X1, X1, Z1); /* t1 = x1^2 - z1^4 */ |
| |
| uECC_vli_modAdd(Z1, X1, X1, curve_p); /* t3 = 2*(x1^2 - z1^4) */ |
| uECC_vli_modAdd(X1, X1, Z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */ |
| if (uECC_vli_testBit(X1, 0)) { |
| uECC_word_t l_carry = uECC_vli_add(X1, X1, curve_p); |
| uECC_vli_rshift1(X1); |
| X1[num_words - 1] |= l_carry << (uECC_WORD_BITS - 1); |
| } else { |
| uECC_vli_rshift1(X1); |
| } |
| |
| /* t1 = 3/2*(x1^2 - z1^4) = B */ |
| uECC_vli_modMult_fast(Z1, X1, X1); /* t3 = B^2 */ |
| uECC_vli_modSub(Z1, Z1, t5, curve_p); /* t3 = B^2 - A */ |
| uECC_vli_modSub(Z1, Z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */ |
| uECC_vli_modSub(t5, t5, Z1, curve_p); /* t5 = A - x3 */ |
| uECC_vli_modMult_fast(X1, X1, t5); /* t1 = B * (A - x3) */ |
| /* t4 = B * (A - x3) - y1^4 = y3: */ |
| uECC_vli_modSub(t4, X1, t4, curve_p); |
| |
| uECC_vli_set(X1, Z1); |
| uECC_vli_set(Z1, Y1); |
| uECC_vli_set(Y1, t4); |
| } |
| |
| /* |
| * @brief Computes x^3 + ax + b. result must not overlap x. |
| * @param result OUT -- x^3 + ax + b |
| * @param x IN -- value of x |
| * @param curve IN -- elliptic curve |
| */ |
| static void x_side_default(uECC_word_t *result, |
| const uECC_word_t *x) |
| { |
| uECC_word_t _3[NUM_ECC_WORDS] = {3}; /* -a = 3 */ |
| |
| uECC_vli_modMult_fast(result, x, x); /* r = x^2 */ |
| uECC_vli_modSub(result, result, _3, curve_p); /* r = x^2 - 3 */ |
| uECC_vli_modMult_fast(result, result, x); /* r = x^3 - 3x */ |
| /* r = x^3 - 3x + b: */ |
| uECC_vli_modAdd(result, result, curve_b, curve_p); |
| } |
| |
| void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int*product) |
| { |
| unsigned int tmp[NUM_ECC_WORDS]; |
| int carry; |
| |
| /* t */ |
| uECC_vli_set(result, product); |
| |
| /* s1 */ |
| tmp[0] = tmp[1] = tmp[2] = 0; |
| tmp[3] = product[11]; |
| tmp[4] = product[12]; |
| tmp[5] = product[13]; |
| tmp[6] = product[14]; |
| tmp[7] = product[15]; |
| carry = uECC_vli_add(tmp, tmp, tmp); |
| carry += uECC_vli_add(result, result, tmp); |
| |
| /* s2 */ |
| tmp[3] = product[12]; |
| tmp[4] = product[13]; |
| tmp[5] = product[14]; |
| tmp[6] = product[15]; |
| tmp[7] = 0; |
| carry += uECC_vli_add(tmp, tmp, tmp); |
| carry += uECC_vli_add(result, result, tmp); |
| |
| /* s3 */ |
| tmp[0] = product[8]; |
| tmp[1] = product[9]; |
| tmp[2] = product[10]; |
| tmp[3] = tmp[4] = tmp[5] = 0; |
| tmp[6] = product[14]; |
| tmp[7] = product[15]; |
| carry += uECC_vli_add(result, result, tmp); |
| |
| /* s4 */ |
| tmp[0] = product[9]; |
| tmp[1] = product[10]; |
| tmp[2] = product[11]; |
| tmp[3] = product[13]; |
| tmp[4] = product[14]; |
| tmp[5] = product[15]; |
| tmp[6] = product[13]; |
| tmp[7] = product[8]; |
| carry += uECC_vli_add(result, result, tmp); |
| |
| /* d1 */ |
| tmp[0] = product[11]; |
| tmp[1] = product[12]; |
| tmp[2] = product[13]; |
| tmp[3] = tmp[4] = tmp[5] = 0; |
| tmp[6] = product[8]; |
| tmp[7] = product[10]; |
| carry -= uECC_vli_sub(result, result, tmp); |
| |
| /* d2 */ |
| tmp[0] = product[12]; |
| tmp[1] = product[13]; |
| tmp[2] = product[14]; |
| tmp[3] = product[15]; |
| tmp[4] = tmp[5] = 0; |
| tmp[6] = product[9]; |
| tmp[7] = product[11]; |
| carry -= uECC_vli_sub(result, result, tmp); |
| |
| /* d3 */ |
| tmp[0] = product[13]; |
| tmp[1] = product[14]; |
| tmp[2] = product[15]; |
| tmp[3] = product[8]; |
| tmp[4] = product[9]; |
| tmp[5] = product[10]; |
| tmp[6] = 0; |
| tmp[7] = product[12]; |
| carry -= uECC_vli_sub(result, result, tmp); |
| |
| /* d4 */ |
| tmp[0] = product[14]; |
| tmp[1] = product[15]; |
| tmp[2] = 0; |
| tmp[3] = product[9]; |
| tmp[4] = product[10]; |
| tmp[5] = product[11]; |
| tmp[6] = 0; |
| tmp[7] = product[13]; |
| carry -= uECC_vli_sub(result, result, tmp); |
| |
| if (carry < 0) { |
| do { |
| carry += uECC_vli_add(result, result, curve_p); |
| } |
| while (carry < 0); |
| } else { |
| while (carry || |
| uECC_vli_cmp_unsafe(curve_p, result) != 1) { |
| carry -= uECC_vli_sub(result, result, curve_p); |
| } |
| } |
| } |
| |
| uECC_word_t EccPoint_isZero(const uECC_word_t *point) |
| { |
| return uECC_vli_isZero(point); |
| } |
| |
| void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z) |
| { |
| uECC_word_t t1[NUM_ECC_WORDS]; |
| |
| uECC_vli_modMult_fast(t1, Z, Z); /* z^2 */ |
| uECC_vli_modMult_fast(X1, X1, t1); /* x1 * z^2 */ |
| uECC_vli_modMult_fast(t1, t1, Z); /* z^3 */ |
| uECC_vli_modMult_fast(Y1, Y1, t1); /* y1 * z^3 */ |
| } |
| |
| /* P = (x1, y1) => 2P, (x2, y2) => P' */ |
| static void XYcZ_initial_double(uECC_word_t * X1, uECC_word_t * Y1, |
| uECC_word_t * X2, uECC_word_t * Y2, |
| const uECC_word_t * const initial_Z) |
| { |
| uECC_word_t z[NUM_ECC_WORDS]; |
| if (initial_Z) { |
| uECC_vli_set(z, initial_Z); |
| } else { |
| uECC_vli_clear(z); |
| z[0] = 1; |
| } |
| |
| uECC_vli_set(X2, X1); |
| uECC_vli_set(Y2, Y1); |
| |
| apply_z(X1, Y1, z); |
| double_jacobian_default(X1, Y1, z); |
| apply_z(X2, Y2, z); |
| } |
| |
| static void XYcZ_add_rnd(uECC_word_t * X1, uECC_word_t * Y1, |
| uECC_word_t * X2, uECC_word_t * Y2, |
| ecc_wait_state_t *s) |
| { |
| /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
| uECC_word_t t5[NUM_ECC_WORDS]; |
| |
| uECC_vli_modSub(t5, X2, X1, curve_p); /* t5 = x2 - x1 */ |
| uECC_vli_modMult_rnd(t5, t5, t5, s); /* t5 = (x2 - x1)^2 = A */ |
| uECC_vli_modMult_rnd(X1, X1, t5, s); /* t1 = x1*A = B */ |
| uECC_vli_modMult_rnd(X2, X2, t5, s); /* t3 = x2*A = C */ |
| uECC_vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y2 - y1 */ |
| uECC_vli_modMult_rnd(t5, Y2, Y2, s); /* t5 = (y2 - y1)^2 = D */ |
| |
| uECC_vli_modSub(t5, t5, X1, curve_p); /* t5 = D - B */ |
| uECC_vli_modSub(t5, t5, X2, curve_p); /* t5 = D - B - C = x3 */ |
| uECC_vli_modSub(X2, X2, X1, curve_p); /* t3 = C - B */ |
| uECC_vli_modMult_rnd(Y1, Y1, X2, s); /* t2 = y1*(C - B) */ |
| uECC_vli_modSub(X2, X1, t5, curve_p); /* t3 = B - x3 */ |
| uECC_vli_modMult_rnd(Y2, Y2, X2, s); /* t4 = (y2 - y1)*(B - x3) */ |
| uECC_vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y3 */ |
| |
| uECC_vli_set(X2, t5); |
| } |
| |
| void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, |
| uECC_word_t * X2, uECC_word_t * Y2) |
| { |
| XYcZ_add_rnd(X1, Y1, X2, Y2, NULL); |
| } |
| |
| /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) |
| or P => P - Q, Q => P + Q |
| */ |
| static void XYcZ_addC_rnd(uECC_word_t * X1, uECC_word_t * Y1, |
| uECC_word_t * X2, uECC_word_t * Y2, |
| ecc_wait_state_t *s) |
| { |
| /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
| uECC_word_t t5[NUM_ECC_WORDS]; |
| uECC_word_t t6[NUM_ECC_WORDS]; |
| uECC_word_t t7[NUM_ECC_WORDS]; |
| |
| uECC_vli_modSub(t5, X2, X1, curve_p); /* t5 = x2 - x1 */ |
| uECC_vli_modMult_rnd(t5, t5, t5, s); /* t5 = (x2 - x1)^2 = A */ |
| uECC_vli_modMult_rnd(X1, X1, t5, s); /* t1 = x1*A = B */ |
| uECC_vli_modMult_rnd(X2, X2, t5, s); /* t3 = x2*A = C */ |
| uECC_vli_modAdd(t5, Y2, Y1, curve_p); /* t5 = y2 + y1 */ |
| uECC_vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y2 - y1 */ |
| |
| uECC_vli_modSub(t6, X2, X1, curve_p); /* t6 = C - B */ |
| uECC_vli_modMult_rnd(Y1, Y1, t6, s); /* t2 = y1 * (C - B) = E */ |
| uECC_vli_modAdd(t6, X1, X2, curve_p); /* t6 = B + C */ |
| uECC_vli_modMult_rnd(X2, Y2, Y2, s); /* t3 = (y2 - y1)^2 = D */ |
| uECC_vli_modSub(X2, X2, t6, curve_p); /* t3 = D - (B + C) = x3 */ |
| |
| uECC_vli_modSub(t7, X1, X2, curve_p); /* t7 = B - x3 */ |
| uECC_vli_modMult_rnd(Y2, Y2, t7, s); /* t4 = (y2 - y1)*(B - x3) */ |
| /* t4 = (y2 - y1)*(B - x3) - E = y3: */ |
| uECC_vli_modSub(Y2, Y2, Y1, curve_p); |
| |
| uECC_vli_modMult_rnd(t7, t5, t5, s); /* t7 = (y2 + y1)^2 = F */ |
| uECC_vli_modSub(t7, t7, t6, curve_p); /* t7 = F - (B + C) = x3' */ |
| uECC_vli_modSub(t6, t7, X1, curve_p); /* t6 = x3' - B */ |
| uECC_vli_modMult_rnd(t6, t6, t5, s); /* t6 = (y2+y1)*(x3' - B) */ |
| /* t2 = (y2+y1)*(x3' - B) - E = y3': */ |
| uECC_vli_modSub(Y1, t6, Y1, curve_p); |
| |
| uECC_vli_set(X1, t7); |
| } |
| |
| static void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point, |
| const uECC_word_t * scalar, |
| const uECC_word_t * initial_Z) |
| { |
| /* R0 and R1 */ |
| uECC_word_t Rx[2][NUM_ECC_WORDS]; |
| uECC_word_t Ry[2][NUM_ECC_WORDS]; |
| uECC_word_t z[NUM_ECC_WORDS]; |
| bitcount_t i; |
| uECC_word_t nb; |
| const wordcount_t num_words = NUM_ECC_WORDS; |
| const bitcount_t num_bits = NUM_ECC_BITS + 1; /* from regularize_k */ |
| ecc_wait_state_t wait_state; |
| ecc_wait_state_t * const ws = g_rng_function ? &wait_state : NULL; |
| |
| uECC_vli_set(Rx[1], point); |
| uECC_vli_set(Ry[1], point + num_words); |
| |
| XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z); |
| |
| for (i = num_bits - 2; i > 0; --i) { |
| ecc_wait_state_reset(ws); |
| nb = !uECC_vli_testBit(scalar, i); |
| XYcZ_addC_rnd(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], ws); |
| XYcZ_add_rnd(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], ws); |
| } |
| |
| ecc_wait_state_reset(ws); |
| nb = !uECC_vli_testBit(scalar, 0); |
| XYcZ_addC_rnd(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], ws); |
| |
| /* Find final 1/Z value. */ |
| uECC_vli_modSub(z, Rx[1], Rx[0], curve_p); /* X1 - X0 */ |
| uECC_vli_modMult_fast(z, z, Ry[1 - nb]); /* Yb * (X1 - X0) */ |
| uECC_vli_modMult_fast(z, z, point); /* xP * Yb * (X1 - X0) */ |
| uECC_vli_modInv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0))*/ |
| /* yP / (xP * Yb * (X1 - X0)) */ |
| uECC_vli_modMult_fast(z, z, point + num_words); |
| /* Xb * yP / (xP * Yb * (X1 - X0)) */ |
| uECC_vli_modMult_fast(z, z, Rx[1 - nb]); |
| /* End 1/Z calculation */ |
| |
| XYcZ_add_rnd(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], ws); |
| apply_z(Rx[0], Ry[0], z); |
| |
| uECC_vli_set(result, Rx[0]); |
| uECC_vli_set(result + num_words, Ry[0]); |
| } |
| |
| static uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0, |
| uECC_word_t *k1) |
| { |
| wordcount_t num_n_words = NUM_ECC_WORDS; |
| bitcount_t num_n_bits = NUM_ECC_BITS; |
| |
| /* With our constant NUM_ECC_BITS and NUM_ECC_WORDS the |
| * check (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) always would have "false" result (256 < 256), |
| * therefore Coverity warning may be detected. Removing of this line without changing the entire check will cause to |
| * array overrun. |
| * The entire check is not changed on purpose to be aligned with original tinycrypt |
| * implementation and to allow upstreaming to other curves if required. |
| * Coverity specific annotation may be added to silence warning if exists. |
| */ |
| uECC_word_t carry = uECC_vli_add(k0, k, curve_n) || |
| (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) && |
| uECC_vli_testBit(k0, num_n_bits)); |
| |
| uECC_vli_add(k1, k0, curve_n); |
| |
| return carry; |
| } |
| |
| int EccPoint_mult_safer(uECC_word_t * result, const uECC_word_t * point, |
| const uECC_word_t * scalar) |
| { |
| uECC_word_t tmp[NUM_ECC_WORDS]; |
| uECC_word_t s[NUM_ECC_WORDS]; |
| uECC_word_t *k2[2] = {tmp, s}; |
| wordcount_t num_words = NUM_ECC_WORDS; |
| uECC_word_t carry; |
| uECC_word_t *initial_Z = 0; |
| int r = UECC_FAULT_DETECTED; |
| volatile int problem; |
| |
| /* Protect against faults modifying curve paremeters in flash */ |
| problem = -1; |
| problem = uECC_check_curve_integrity(); |
| if (problem != 0) { |
| return UECC_FAULT_DETECTED; |
| } |
| mbedtls_platform_random_delay(); |
| if (problem != 0) { |
| return UECC_FAULT_DETECTED; |
| } |
| |
| /* Protects against invalid curve attacks */ |
| problem = -1; |
| problem = uECC_valid_point(point); |
| if (problem != 0) { |
| /* invalid input, can happen without fault */ |
| return UECC_FAILURE; |
| } |
| mbedtls_platform_random_delay(); |
| if (problem != 0) { |
| /* failure on second check means fault, though */ |
| return UECC_FAULT_DETECTED; |
| } |
| |
| /* Regularize the bitcount for the private key so that attackers cannot use a |
| * side channel attack to learn the number of leading zeros. */ |
| carry = regularize_k(scalar, tmp, s); |
| |
| /* If an RNG function was specified, get a random initial Z value to |
| * protect against side-channel attacks such as Template SPA */ |
| if (g_rng_function) { |
| if (uECC_generate_random_int(k2[carry], curve_p, num_words) != UECC_SUCCESS) { |
| r = UECC_FAILURE; |
| goto clear_and_out; |
| } |
| initial_Z = k2[carry]; |
| } |
| |
| EccPoint_mult(result, point, k2[!carry], initial_Z); |
| |
| /* Protect against fault injections that would make the resulting |
| * point not lie on the intended curve */ |
| problem = -1; |
| problem = uECC_valid_point(result); |
| if (problem != 0) { |
| r = UECC_FAULT_DETECTED; |
| goto clear_and_out; |
| } |
| mbedtls_platform_random_delay(); |
| if (problem != 0) { |
| r = UECC_FAULT_DETECTED; |
| goto clear_and_out; |
| } |
| |
| /* Protect against faults modifying curve paremeters in flash */ |
| problem = -1; |
| problem = uECC_check_curve_integrity(); |
| if (problem != 0) { |
| r = UECC_FAULT_DETECTED; |
| goto clear_and_out; |
| } |
| mbedtls_platform_random_delay(); |
| if (problem != 0) { |
| r = UECC_FAULT_DETECTED; |
| goto clear_and_out; |
| } |
| |
| r = UECC_SUCCESS; |
| |
| clear_and_out: |
| /* erasing temporary buffer used to store secret: */ |
| mbedtls_platform_zeroize(k2, sizeof(k2)); |
| mbedtls_platform_zeroize(tmp, sizeof(tmp)); |
| mbedtls_platform_zeroize(s, sizeof(s)); |
| |
| return r; |
| } |
| |
| uECC_word_t EccPoint_compute_public_key(uECC_word_t *result, |
| uECC_word_t *private_key) |
| { |
| return EccPoint_mult_safer(result, curve_G, private_key); |
| } |
| |
| /* Converts an integer in uECC native format to big-endian bytes. */ |
| void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes, |
| const unsigned int *native) |
| { |
| wordcount_t i; |
| for (i = 0; i < num_bytes; ++i) { |
| unsigned b = num_bytes - 1 - i; |
| bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE)); |
| } |
| } |
| |
| /* Converts big-endian bytes to an integer in uECC native format. */ |
| void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes, |
| int num_bytes) |
| { |
| wordcount_t i; |
| uECC_vli_clear(native); |
| for (i = 0; i < num_bytes; ++i) { |
| unsigned b = num_bytes - 1 - i; |
| native[b / uECC_WORD_SIZE] |= |
| (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE)); |
| } |
| } |
| |
| int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top, |
| wordcount_t num_words) |
| { |
| uECC_word_t mask = (uECC_word_t)-1; |
| uECC_word_t tries; |
| bitcount_t num_bits = uECC_vli_numBits(top); |
| |
| if (!g_rng_function) { |
| return UECC_FAILURE; |
| } |
| |
| for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) { |
| if (g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE) != num_words * uECC_WORD_SIZE) { |
| return UECC_FAILURE; |
| } |
| random[num_words - 1] &= |
| mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits)); |
| if (!uECC_vli_isZero(random) && |
| uECC_vli_cmp(top, random) == 1) { |
| return UECC_SUCCESS; |
| } |
| } |
| return UECC_FAILURE; |
| } |
| |
| |
| int uECC_valid_point(const uECC_word_t *point) |
| { |
| uECC_word_t tmp1[NUM_ECC_WORDS]; |
| uECC_word_t tmp2[NUM_ECC_WORDS]; |
| wordcount_t num_words = NUM_ECC_WORDS; |
| volatile uECC_word_t diff = 0xffffffff; |
| |
| /* The point at infinity is invalid. */ |
| if (EccPoint_isZero(point)) { |
| return -1; |
| } |
| |
| /* x and y must be smaller than p. */ |
| if (uECC_vli_cmp_unsafe(curve_p, point) != 1 || |
| uECC_vli_cmp_unsafe(curve_p, point + num_words) != 1) { |
| return -2; |
| } |
| |
| uECC_vli_modMult_fast(tmp1, point + num_words, point + num_words); |
| x_side_default(tmp2, point); /* tmp2 = x^3 + ax + b */ |
| |
| /* Make sure that y^2 == x^3 + ax + b */ |
| diff = uECC_vli_equal(tmp1, tmp2); |
| if (diff == 0) { |
| mbedtls_platform_random_delay(); |
| if (diff == 0) { |
| return 0; |
| } |
| } |
| |
| return -3; |
| } |
| |
| int uECC_valid_public_key(const uint8_t *public_key) |
| { |
| |
| uECC_word_t _public[NUM_ECC_WORDS * 2]; |
| |
| uECC_vli_bytesToNative(_public, public_key, NUM_ECC_BYTES); |
| uECC_vli_bytesToNative( |
| _public + NUM_ECC_WORDS, |
| public_key + NUM_ECC_BYTES, |
| NUM_ECC_BYTES); |
| |
| if (memcmp(_public, curve_G, NUM_ECC_WORDS * 2) == 0) { |
| return -4; |
| } |
| |
| return uECC_valid_point(_public); |
| } |
| |
| int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key) |
| { |
| int ret = UECC_FAULT_DETECTED; |
| uECC_word_t _private[NUM_ECC_WORDS]; |
| uECC_word_t _public[NUM_ECC_WORDS * 2]; |
| |
| uECC_vli_bytesToNative( |
| _private, |
| private_key, |
| BITS_TO_BYTES(NUM_ECC_BITS)); |
| |
| /* Make sure the private key is in the range [1, n-1]. */ |
| if (uECC_vli_isZero(_private)) { |
| return UECC_FAILURE; |
| } |
| |
| if (uECC_vli_cmp(curve_n, _private) != 1) { |
| return UECC_FAILURE; |
| } |
| |
| /* Compute public key. */ |
| ret = EccPoint_compute_public_key(_public, _private); |
| if (ret != UECC_SUCCESS) { |
| return ret; |
| } |
| |
| uECC_vli_nativeToBytes(public_key, NUM_ECC_BYTES, _public); |
| uECC_vli_nativeToBytes( |
| public_key + |
| NUM_ECC_BYTES, NUM_ECC_BYTES, _public + NUM_ECC_WORDS); |
| |
| return ret; |
| } |
| #endif /* MBEDTLS_USE_TINYCRYPT */ |